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Abstract. Polygonal surface models are generally composed of large amount of 
complex polygonal patches. In real-time applications, such as VR or 3D 
simulation system focusing on the real-time interactivity, various simplified 
versions of those models are often used according to the performance of the 
system. The goal of surface simplification is to take a complex polygonal model 
as input and generate a simplified model, which is an approximation of the 
original model, as output without the loss of geometric properties if possible. In 
this paper, we present a surface simplification algorithm, which can excellently 
preserve the characteristic features of the original model, even after drastic 
simplification process. To decrease the amount of real-time transmission of 
surface data, the proposed algorithm is based on the half-edge collapse manner. 
The half-edge based scheme is more efficient in memory usage and useful in 
real-time rendering applications, which require progressive transmission of 
large quantity of surface data compared to other methods. We present numerical 
and visual comparisons showing that the proposed algorithm results in higher 
quality approximations of original models than other algorithms in the literature 
with excellent shape preservation even after drastic simplification process. 

1   Introduction 

With the introduction of reverse engineering in the fields of 3D modeling [1], there 
has been increased need for complex and high detailed models, which are generally 
created by 3D laser scanner, in many computer graphics applications. However, the 
full complexity of such models is not always required and desirable in applications, 
such as simulation and virtual reality systems. Therefore, it is useful to have various 
simpler versions of original complex models according to its uses in applications. 

In polygonal surface simplification, the goal is to take a complex polygonal model 
as input and automatically generate a simplified model as output without a loss of 
geometric properties of the original model if possible. The simplification algorithms 
start with an original model, iteratively remove elements from the model in each 
simplification step until the desired level of approximation is achieved. To decide the 
order of elements for removal during the simplification process, most existing 
algorithms use error metric based on distance optimization. That is, the order is 
determined so that the distance between the meshes before and after removal 
operation is minimized. However, it is difficult to define exactly the local geometric 



characteristics of surface using just the distance metric, which is intrinsically scalar 
and the degree of loss for geometric information caused by simplification cannot be 
guaranteed [4]. Since the distinguishing surface features are mostly concentrated in 
small areas with small scalar values, such as area, length and volume, their 
decimation costs based on distance metric are often low. This means that the 
distinguishing features can be removed in the earlier stage of simplification process 
(Fig.1). In other words, the error metric cannot retain the distinguishing features, and 
consequently, the detailed local shapes of original surface are lost as the 
simplification ratio increases. 
 

   
Original model (a) (b) 

Fig. 1. Distribution of the geometric features and degree of preservation of the features in the 
drastic simplification ratio. In here, the simplified models are composed of only 0.5% of the 
original model. (a): result from the traditional method based on distance optimization. (b): 
result from the method, which considers orientation component as the additional factor besides 
the scalar value. Characteristic features are well preserved in (b), and it is much closer to the 
original 

The surface orientation is one of the important features representing the 
characteristics of local surface and it is independent from the amount of scalar, such 
as distance measure. So, by considering the orientations of local elements, we can 
reconsider whether the elements should be preserved or not even though they are the 
elements with small scalar values. 

In this paper, we present an error metric that describes and reflects the geometric 
features of surface and the geometric changes before and after simplification. To 
define the error metric, we introduce the orientation component of local surface as an 
additional property. In addition, a surface simplification algorithm based on half-edge 
collapse manner utilizing the error metric is implemented. The half-edge based 
scheme is the method that repositions a new vertex after the edge collapse by merging 
one of the two vertices to the other in previous edge having directionality. It is more 
efficient in memory usage and useful in real-time applications, which require 
progressive transmission of large number of surface data and instant rendering 
compared to existing methods adopting optimal positioning scheme. In many cases, 
according to our observation, when the original model is simplified less than some 
degree of simplification ratio, there is almost no visual difference. Moreover, 
applications for real-time rendering might demand higher rate of simplification to 
decrease the complexity of a scene. So, the proposed algorithm is concentrated on the 
preservation of geometric features of the original model even after performing drastic 
level of simplification. 



2   Related Works 

Most existing simplification algorithms, which are generally based on greedy 
strategy, locally perform a sequence of simple topological operations in each 
simplification step, to remove and update certain geometric elements. Previous works 
can be classified depending on the type of the topological operations. Possible 
topological operations are vertex decimation, edge decimation, triangle decimation 
and vertex clustering [3][6]. Out of these methods, the following two classes are 
broadly relevant to our work. We explain the characteristics of the algorithms in each 
class by focusing on the error metric employed in each algorithm.  

Vertex Decimation Method. This method removes a vertex with a decimation cost 
lower than the predefined threshold in each simplification step. In [5], the distance 
between a given vertex and the average plane composed of its surrounding vertices is 
used for error metric. The Hausdorff distance between the simplified and the original 
mesh is used as error metric in [8]. And in [7], the curvature of local surface around a 
given vertex is used as error metric. In [17], for the planes of triangles adjacent to a 
given vertex in current mesh, the maximum distance from the corresponding planes of 
the intermediate mesh, and its accumulation are used for error metric. 

These approaches need a robust re-triangulation method, as in [15], to fill the 
resulting hole caused by the removal of a vertex. And they mainly focus on the 
connectivity of a surface rather than the geometric characteristics. So, the quality of 
the approximation largely depends on the re-triangulation operation. In addition, the 
intermediate surface models, which are generated from the simplification process, do 
not have any direct hierarchical relationship with each other. Consequently, when 
these models are applied to the rendering applications based on the hierarchical LOD 
(Level Of Detail), it is difficult to switch views smoothly and continuously. 

Edge Decimation Method. This is a simplification method based on iterative edge 
contraction, which replaces an edge with a vertex. Neighboring triangles, which 
contain both vertices of the edge, are removed from the mesh and remaining triangles 
are adjusted so that they are appropriately linked to the new vertex. In [9] and [12], 
energy function using the sum of the squared distance between the sample vertices 
from the original mesh and the simplified mesh is used for error metric. The quadric 
error metric is used in [14]. This metric is derived from the quadratic equation 
representing the measure of sum of squared distance between vertex and associated 
planes. And in [10], the degree of change of geometric properties, such as area and 
volume, between successive meshes is used for error metric. 

In these approaches, each algorithm has to determine the positioning policy for a 
new vertex to replace the edge after contraction. The new vertex may or may not exist 
in the original mesh. The error metrics used in each algorithm provide the clues for 
optimal positioning of the generated vertex. In optimal approach, the generated vertex 
is not a subset of the original mesh in most cases. 

 
After an analysis of existing studies, we decided to use the half-edge collapse 

scheme, which is one of the edge-based approaches, as the topological operation. 



Since this method does not create a new vertex, it is memory efficient. And in most 
cases, this method preserves the original shape well, although it does not use the 
optimal placement policy. 

In addition, as shown previously, most existing algorithms generally use the 
distance as the main factor of the error metric. However, it is difficult to describe the 
degree of deviation from the previous mesh after simplification operation using just 
the distance metric, which is intrinsically a scalar. So we define an error metric by 
introducing additional components. The concrete meaning of the half-edge collapse 
scheme and the proposed error metric are discussed in section 3 and 4, respectively. 

3   Simplification Framework 

The goals of this paper are to retain the characteristic features of the original model 
even after drastic simplification process, and to generate a simplified model that is 
applicable to the incremental multi-resolution model supporting progressive network 
transmission [2][12]. We describe the structural characteristics of the proposed 
algorithm for satisfying the goals. 

3.1   Notation 

Before describing our algorithm, we will briefly introduce some notations. We 
assume that a polygonal surface model is simply a set of triangular polygons in three-
dimensional Euclidean space R3. An arbitrary polygonal surface model M={V,T} is a 
set of vertex set V={v1,v2,v3,…,vm} and triangle set T={t1,t2,t3,…tn}. Mi is a mesh in 
the ith stage of iterative simplification process and normally means the current mesh. 
And Mi+1 is the successive mesh of Mi. An edge e  is denoted by a set of vertices 
{u,v}, where u,v∈ V. Every edge has a direction. A directional edge er  is denoted by a 
set of ordered vertex pairs (u,v). This means that the vertex u will be merged into v 
after collapse operation. P(u) is a set of planes of the triangles that meet at vertex u 
and )e(P  is, generally two, a set of planes adjacent to the edge )v,u(e . Then, )e(Pi

r
 

and )e(P 1i
r

+ are a set of )}e(P)u(P{ −  in mesh Mi and Mi+1, respectively. 

3.2   Half-Edge Contraction 

Generally, in the edge contraction-based simplification, there are three cases of 
placement policies of new generated vertex v' after the edge e(u,v) is contracted, as 
shown in Fig.2. 

First, the midpoint scheme (b) creates a new vertex at the midpoint of the two 
vertices of an edge. This is intuitive and unbiased to the positions of the two vertices. 
However, the drawback is the volume of the original object becomes smaller as 
simplification steps proceed, especially for a convex surface. The optimal point 
scheme (c) generates a new vertex at the optimal position on the contour curve 
connecting two vertices of an edge. This scheme can create a high-quality 



approximation, but finding an optimal position costs both a great deal of time and 
extra memory space to store the new vertex. The endpoint approach (d) is the method 
that places a new vertex by merging one of the two endpoints of the edge to the other. 
Since no new vertex is created, the endpoint approach gives no additional memory 
burden and rapid calculation is possible. Moreover, in most cases, the original shape 
is well preserved [11], although the method does not use the optimal placement 
policy. 

v 
u v' 

v' 
v'

 
(a) (b) (c) (d) 

Fig. 2. Vertex placement policies after edge contraction, in two-dimensional space. (a): original 
submesh, (b): midpoint, (c): optimal point, (d): endpoint 

Our algorithm is based on the half-edge contraction scheme, which has the same 
meaning with the endpoint approach except some implementation details. In terms of 
implementation of the half-edge contraction, we allow every edge to have 
directionality. By using the directional edges, we can easily calculate the 
approximation errors and intuitively process the topological reconstruction of the 
local surface after the contraction (Fig.3). Moreover, when the half-edge contraction 
scheme is applied to the rendering applications based on the hierarchical LOD, 
successive views can be switched smoothly and continuously by utilizing the 
directional edges. 
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Fig. 3. Half-edge contraction and geometric variations of local surface before and after the 
operation. When the directional edge )v,u(e

r
 is contracted, ))v,u(e(P  and the start vertex u 

are removed from the current mesh Mi and Pi ))v,u(e(
r

 are adjusted to Pi+1 ))v,u(e(
r

 in Mi+1. 
With the use of directional edge, we can estimate the degree of geometric deviation after the 
contraction by reconstructing the local planes in next step temporarily 

Another attractive point of the half-edge contraction scheme is that the progressive 
transmission of meshes [12] in the network environment can be performed very 
effectively, since the set of vertices in the simplified mesh is always a proper subset 
of the original mesh. This means that, in every moment, instant rendering of the scene 



is possible with no need to wait for the whole data to be transmitted (Fig.4). In the 
applications, which take seriously the real-time interactivity, this can be a critical 
problem. 

 
 

 
Fig. 4. Progressive refinement of meshes. Filled circle means that the vertex will be split into 
two vertices (edge) in the next stage. In the half-edge contraction scheme, successive mesh can 
be generated immediately after receiving one more vertex, while two more vertices in optimal 
and midpoint approaches. Because, in those approaches, the vertex to be split cannot be reused 
in the successive mesh as it is not a subset of the mesh 

3.3   Memoryless Simplification 

Simplification algorithms perform iterative decimation operation in each 
simplification step depending on the decimation cost calculated from certain criteria. 
Local geometric changes caused by the removal of elements in each simplification 
step alter the decimation cost of adjacent elements. Usually, some form of geometric 
history is kept in the simplified model to reflect the changes and guide the calculation 
of decimation cost in future steps. This means that an over-estimated error from the 
previous simplification step will continue to accumulate in future. A straightforward 
solution to the accumulation of over-estimated errors during the simplification 
process is to re-compute the decimation cost every time, after each decimation 
operation, namely the memoryless approach. This imposes a huge computational 
complexity on the algorithm. Fortunately, however, only a limited number of 
elements will be affected, i.e. the neighbors of decimated element and their associated 
neighbors. Consequently, on each update, it is sufficient to recalculate the decimation 
cost for these neighbors. The memoryless scheme has the following advantages. First, 
the memory requirements for such an algorithm are smaller than those that require 
storing a geometric history. Second, memoryless algorithm is typically faster than 
those that must query a geometric history in order to recalculate the decimation cost 
[10]. Finally, memoryless simplification improves the accuracy of the results [9]. The 
proposed algorithm is based on the memoryless approach. 



4   Error Metric 

In the simplification process, for the assessment of geometric similarity between Mi 
and its descendent Mi+1, we need some means of quantifying the notion of similarity. 
Error metric is a measure that represents the degree of deviation, or error, of 
approximation from the original model. 

( ) ( ) ( )iplanes1iiplanes1ii MH  M,MG  M,ME += ++
 . (1) 

The proposed algorithm defines a geometric error metric that exploits the locality 
of mesh changes before and after simplification. That is, because the geometric 
changes in the simplification method based on iterative edge reduction always 
happens in adjacent areas of the edge, we can estimate the degree of deviation after 
collapse operation, by appropriate description of the local surface. Also, we observe 
the degree of geometric variation (G) between Mi and Mi+1 and geometric 
characteristic (H) of current mesh Mi as the factors for causing errors during the 
simplification process.  Eq.1 is the combination of those two concepts. The proposed 
algorithm assigns the decimation cost for every edge calculated from Eq.1 to 
corresponding edges. We discuss the detailed meaning and sub elements of the factors 
in the following sections. 

4.1   Geometric Variations 

As the factors for geometric variations G occur when an edge is collapsed, we 
consider the amount of distance and changes of surface orientation between meshes 
before and after simplification. They are factors for detecting the degree of variation 
in the magnitude of scalar and vector of each local surface, and they work 
complementary to each other. That is, the degree of variation of surface orientation 
before and after simplification is independent from that of scalar. Therefore, it is 
possible to control overall decimation cost by assigning higher cost to the element 
when the probability of reduction is high due to little change in scalar even when the 
degree of variation for orientation is high, and vice versa. 

Distance. Distance between an arbitrary vertex v and plane t can be calculated using 
Eq.2. vr  is a vector between v and an arbitrary vertex on plane t, nt is a normal vector 
of  t, and · is an inner product of two vectors. 

( )  n   
   nv    vt,d

t

t⋅=
r

 . (2) 

Then, the distance between Mi and Mi+1 can be calculated by the sum of distance 
between plane set ( )ePi

r  in current mesh Mi and an end vertex v of the directional 
edge ( )v,ue

r
 in descendent mesh Mi+1 (Eq.3) (Fig.5). In here, it must be noted that 

( )( )v,ePD i
r  is the sum of distance-to-plane measurement. This is similar to [14] but 

the difference is that, in this case, only P(u), which is the superset of ( )ePi
r  and not 



P(u) ∪ P(v) is considered. Also, the reason why the sum of distance is used rather 
than maximum or average distance is to avoid sensitive response to geometric noise. 

( )( ) ( )
( )
∑
∈

=
ePt

ii
ii

 v, td    v,eP D
r

r  . (3) 
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Fig. 5. Calculation of distance between Mi and Mi+1 during the directional edge ( )v,ue
r

 is 
contracted in two-dimensional space, where, ti∈ )e(Pi

r
 and nti is a normal vector for ti 

Orientation. Describing the geometric variation of local surface before and after 
simplification using just the distance measure is not sufficient. In Fig.6 (a), 
decimation costs based on the distance metric of every vertex (u1~u4) are the same. 
This is because the distance between vertex v to planes, p1~p4, each containing one 
of the vertexes are d. But, the amount of deviation before and after simplification are 
different as shown in (b) and (c). When the orientation variation of planes is 
considered, this problem can be solved. In other words, when decimation costs of (b) 
and (c) based on distance metric are the same but the orientation variation of (b) 
before and after simplification is comparatively larger than (c), higher decimation cost 
can be assigned to (b). 
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Fig. 6. Cases when the decimation costs based on distance metric are the same, where each 
arrow means collapse operation 

In the mesh Mi+1, remaining planes after collapse operation of edge ( )v,ue
r

 are 
P(u) with )e(P  excluded, which is )e(P 1i

r
+ . So, estimation of orientation variation 

only considers the variation among previous planes, )e(Pi
r

 from Mi (Eq.4). 

( ) ( )( ) ( )
( ) ( )
∑

+∈∈
+ ⋅−=

eP't ,ePt
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1ii

  2/ nn1       eP ,eP O
rr

rr  . (4) 



Normal of plane, which is a vector, can be especially sensitive to geometric noise. 
So, similar to the case of distance metric explained previously, to lower the impact of 
noise, summation operator is used in Eq.4. 

4.2   Geometric Characteristics 

As the sub components of H, which is another component of our error metric for 
detecting geometric features in current mesh Mi, we define both local curvature and 
edge's length. Since the geometric features of mesh are constructed with small sized 
elements, which are concentrated in small areas, they have trivial quantity of G. The 
component of orientation variation O, explained in the previous section, may be used 
for preserving the features with small scalar value. This approach, however, computes 
the same decimation cost for those surface areas having different geometric 
characteristics (Fig.7). So, we must introduce an additional component, such as local 
curvature of current mesh Mi, to distinguish the areas. 
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Fig. 7. Cases when the decimation costs based on G of error metric are the same but region 
curvatures are different 

The local curvature C is calculated by the sum of inner product between the plane 
sets P(u) and ( )eP

r
, which are adjacent to start vertex u of edge e

r
 and the edge itself 

respectively (Eq.5). 

( ) ( )( )
( )

( )
( )
∑
∈ ∈

⋅−=
uPt

'tteP't
 2/ nn1   Min    eP ,uP C r

r  . (5) 

Eq.5 is similar to the curvature element of edge cost formula in [13]. We, however, 
use sum instead of max. Roughly speaking, short edges are relatively less important, 
since they make a low impact on the local surface of the mesh. Consequently, they are 
assigned with a low decimation cost. This means that the length of the edge should be 
considered as the additional component of error metric. We completed the final form 
of our error metric by multiplying the edge's Euclidian length  vu −  to the 
summation of Eq.3, 4 and 5. 

5   Experimental Results 

For the measurement of numerical accuracy of the simplified model, we use a public 
tool, namely Metro [16]. Metro is a tool that evaluates the difference between 
surfaces, i.e. triangulated mesh and its simplified representation. The fundamental 



operation of Metro is to calculate both the distances from sampled points of one 
model to the surface of second model and vice versa. It returns numerical results, such 
as maximal, mean and mean squared errors. 

Fig.8 represents the comparison graph of each simplified result from seven 
simplification algorithms including our method by using Fandisk model. The Fandisk 
model is composed of 12,946 triangles and characterized by comparatively uniform 
size of triangular patches, and apparent distinction of the differences in surface 
curvature between low and high curvature regions. At the simplification ratio of 99%, 
the best results are given by the Mesh optimization, and QSlim and the proposed 
method follow. The Mesh optimization, however, shows low accuracy when the 
simplification ratio is less than 90%. In addition, this method keeps a large amount of 
points sampled from original surface to calculate the degree of deviation from the 
original model in each simplification step. Consequently, it has high cost in memory 
usage and time for calculating the optimal location of the new vertex [18]. Therefore, 
we can assume that the results from QSlim, our method and JADE are all fairly 
acceptable. 
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Fig. 8. Maximal (up) and average (down) errors of each simplification method on the Fandisk 
model. All errors are measured as the percentage of the bounding box diagonal. In here, 'Paper' 
means the proposed algorithm 
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Fig. 9. Visual results from each simplification methods for the Fandisk model. 

 
Fig.9 represents the visual results. In the results of Mesh decimation, QSlim, JADE 

and ours, we can observe that there are almost no visual differences. Another two 
surface models used in accuracy comparison, are Venus and Cow. These models are 
characterized by various sizes of triangular patches, and sophisticated surface 
curvature (Fig.11). In this case, we compared the results of the proposed algorithm 
with two previous methods, QSlim v2.0 [14] and JADE v2.1 [17]. They are publicly 
available and representative methods for vertex and edge decimation methods 
respectively. Fig.10 shows the numerical results of the three methods by using the 
Venus model, at the simplification ratio of 99.7%. The proposed algorithm obtains the 
minimal mean and mean square errors. The best result in terms of maximal error is 
given by JADE, which is based on the global error management approach. Similar to 
the previous Mesh optimization, however, this method costs high in memory usage, 
since it keeps the history of the removed vertices for the global error management. It 
is noticeable that QSlim has the lowest overall accuracy, though it adopts the optimal 
vertex placement policy. 
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Fig. 10. Maximal, mean and mean square errors for the Venus model 

Fig.12 and 13 represent the visual results of the simplified models for Cow and 
Venus obtained from the three algorithms, respectively. In both cases, it is noticed 
that our algorithm retains the best high curvature region of the original model at the 



same simplification ratio. Fig.14 represents the distribution of the approximation 
errors with gray scale. Lighter color indicates more errors occurred in the area and 
darker color indicates less error. In the results of the QSlim, large approximation 
errors are distributed broadly, since it uses the optimal vertex positioning policy. That 
is, in most cases, since the new generated vertices are not the subset of the original 
model, approximation errors occurred in almost all areas. While large approximation 
errors occurred in high curvature regions, such as brow, eyes, nose, lips, in JADE, the 
proposed algorithm preserves the areas excellently. 

 
The numerical results do not guarantee the accuracy or the quality of the simplified 

model. Because the most important measure of fidelity is not geometric but perceptual 
[21]. This means that whether or not the simplified model looks like the original. In 
terms of the perceptual fidelity, the visual results indicate that the proposed algorithm 
works well with good shape preservation. 

 

  
Fig. 11. Original Cow and Venus models. Each of them are composed of 5,804 and 100,000 
triangles, respectively 
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Fig. 12. Visual results for the Cow model with 150 triangles 

 
 
 
 
 



 

   

    

  
Fig. 13. Visual results for the Venus model. Top: QSlim, middle: JADE, bottom: proposed 
algorithm, left two: 500 triangles, right two: 300 triangles 

 

 
Fig. 14. Error distributions. The simplified Venus model is composed of about 300 triangles. 
Left: QSlim, middle: JADE, right: proposed algorithm 

6   Conclusion 

There is no unique simplification method generating the best results for every surface 
model. This means that it is desirable to select an appropriate method according to the 
various usages in the applications. 

The goals of this paper are to retain the characteristic features of the original model 
even after drastic simplification process, and to generate various simpler versions of 



original complex model, which are applicable to the real-time rendering applications. 
To satisfy the goals, we proposed an error metric and implemented a surface 
simplification algorithm utilizing the error metric. In addition, we proposed the 
topological operation based on the half-edge collapse manner. 

The experimental results indicate that the proposed algorithm works well when 
there is a need to preserve comparatively high curvature regions in the surface model, 
which is constructed with various local curvatures. That is, the proposed algorithm 
preserves the details of the original mesh and retains the overall shape even after 
drastic simplification process. And the half-edge collapse scheme is memory efficient 
and can be effectively applied to the real-time applications, which require progressive 
transmission of the large number of surface data. 
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