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1 Introduction

The theory of shells describes the behaviour (displacement, deformation and stress ana-
lysis) of thin bodies (thin walled structures) defined in the neighbourhood of a curved
surface in the 3D space. Most of contemporary theories of shells use differential geom-
etry as a mathematical tools and tensor analysis for notations. Examples are [1, 2, 3].

Tensor notation has a lot of advantages, first of all it makes it possible to denote general
problems with elegant and short expressions. Therefore it is very suitable for lecturing
purposes (from the point of view of the teacher) and writing scientific essays.

However, it seems to be to be very abstract for most of engineers and boring for students.
Moreover, it is prone to error especially when summations are done by hand. Therefore
most of the publications considering tensor problems are at least suspected to contain
errors in the indices. Thus, all of them need careful scrutiny. Despite of verification
the error can be repeated. Some theories presumed some a’priori simplification of the
expressions, especially in constitutive relations. They make final results shorter but valid
under certain circumstances.

The paper will try to show how these problems can be avoided using computer assisted
symbolic calculations.MathTensorTM 1, an external package of the computer algebra
systemþÿ 2, can be used to solve symbolic tensor problems. The package
was written by Parker and Christensen [4].

First the paper presents selections from theþÿ notebooks3 illustrating solu-
tion of some problems of the theory of shells. The aim is to show that it is possible to
proceed from very general equations to ones ready for numerical computations and then
solve them within one system. Each step requires specific approach. The translation of
the task into the language ofþÿ and MathTensorTM and the information
which can be received will be discussed.

The obtained symbolic differential equations that should be approximated numerically
are very complex. Moreover due to the essential difference in the shear and bending

1 MathTensorTM is a registered trademark of MathTensor, Inc.
2 þÿ is a registered trademark of Wolfram Research, Inc.
3 Full notebooks can be requested by email.
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stiffness of shells the task is usually numerically ill-conditioned. In a lot of cases it
is a boundary layer problem unstable in the Lyapunov sense. Therefore numerical ap-
proaches like Finite Differences or Finite Element methods may fail in some cases.
There are several engineering two step approaches, represented for example by Bielak
[2], which are based on the assumption that the membrane state dominates in shells in
most of the domain except boundary layers. It leads to the reduction of the order of
differential operator of the problem. It results in better stability but also a loss of gener-
ality. Membrane state cannot satisfy all boundary conditions. They are satisfied locally
using so called bending theory in the limited boundary layer in the second step. The
approach fails in cases when bending of shells cannot be neglected. These problems
were investigated in [5].

The Refined Least Squares method (RLS) has been applied to this problem and it has
been found a new approach to the solution of the tasks of long cylindrical shells. It has
been discovered experimentally that the process can be divided into two steps somehow
similar to the [2] approach.

The first step of this approach consists in computing the base solution (approximation of
the10th order differential operator) satisfying only the 4 essential boundary conditions.
This solution is feasible for most of the problem domain except the boundary layer.
Other conditions are neglected. They are adjusted in the second step where only the
boundary layer is considered.

This approach results in better convergence and stability. First of all it is not connected
with reduction of the order of the differential operator. Therefore moments and trans-
verse forces are not neglected what makes the method much more general than ones
based on the membrane state.

It is hoped that the ideas presented will be impressive, particularly for researchers and
engineers who deals with other problems of the Mechanics of Continuum and Math-
ematical Physics which involve tensor analysis and boundary layer tasks. First of all
I tried to present how tools of the computer algebra can be applied effectively and
what can be done additionally to moderate simplification process and exploit its sym-
bolic possibilities more deeply, effectively and how to obtain reliable results. The least
squares method functional has been appended with terms responsible for boundary con-
ditions. It resulted first of all with simpler algorithm, which has been implemented in
þÿ. The very important matter is the discussed numerical occurrence that
the boundary value problem with10th order differential operator can be approximated
with consideration of only 4 boundary conditions. It can be applied for other problems
with a boundary layer phenomenon, which are present for many engineering and phys-
ical tasks.

The considered symbolic problems are based on the theory of shells by Bielak [2]. How-
ever, discussed ideas can be applied for another theory of shells. It is assumed that the
reader is familiar with the notations rules used in theþÿ andMathTensorTM

language. Only the crucial aspects are discussed and some input and output infor-
mation has been intentionally omitted. The system output and formulas derived with
þÿ has been prepared for publication. Despite editorial scrutiny it seems to
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be more sensible and effortless to use the presented commands and ideas to receive own
output than apply directly the final formula.

Notations are explained in the text, some of them: for tensor problems are collected in
the end.

2 Symbolic problems - implementations ofMathTensorTM

Presented are some selections from threeþÿ sessions4. The crucial points
of the process of the derivation of differential equations are discussed. Starting with the
very general relations in tensor notation form, the final equations in terms of displace-
ments are obtained, which are ready for numerical computations.

2.1 Derivation of differential equations from tensor equations of equilibrium

Three steps in the process can be distinguished, each of them is different.

Step 1 - Changing covariant derivatives in equations to (ordinary) partial onesThe
first equation of shell equilibrium takes the following form:

Ni j
;i - bi

j Q i + P j = 0. (1)

The left hand side of the equation can be denoted with the followingMathTensorTM

definition.

In[1]:= CD[n[ui , uj ], li ] - q[ui ] b[li , uj ] + p[uj ]

Out[1]= Nij
;i + Pj - (bi

j ) (Qi )

MathTensorTM was written forþÿ 2. Therefore all symbols in it are denoted
with Latin letters. To receive Greek letters the output form have to redefined. For exam-
ple the symbols of the affine connectionAffineG have got the standard output form
G. This redefines it toG.

In[2]:= Format [AffineG [a ]] := PrettyForm [G, a]

The same can be done for Kronecker deltaKdelta to be expressed with∆ or even
indices to be represented with small Greek letters.

That command changes the covariant derivatives to ordinary partial ones. Dummy in-
dices are automatically recognised and denoted withp, q, r . . . letters.

In[3]:= CDtoOD[%]

Out[3]= (Gj
pq ) (Nqp ) + (Gp

pq ) (Nqj ) + Npj
, p + Pj - (bp

j ) (Qp)

4 The section collects and extends topics which were presented in [8], [9], [10] and [13]
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The space is metric so the affine connection can be expressed in terms of a metric tensor.
It is done with theAffineToMetric function.MathTensorTM functionTsimplify
will simplify the expression taking into account all symmetries of the tensors involved.

In[4]:= Tsimplify [AffineToMetric [%]]

Out[4]=
1

2
(gpj ) (Nqr ) (gpq , r ) +

1

2
(gpq ) (Nrj ) (gpq , r )+

1

2
(gpj ) (Nqr ) (gpr , q) -

1

2
(gpj ) (Nqr ) (gqr , p)+

Npj
, p + Pj - (bp

j ) (Qp)

Both þÿ andMathTensorTM have advanced algebraic simplification tools,
but sometimes the use of automatic function does not result in the simplest form. Using
more complex instruments better results can be obtained. The set of commands below
carry out the following operations. It is easy to find that the expression above contain 3
terms withNqr . Therefore using theCollect terms can be collected in the expression
with respect to it and then simplify it term by term withSimplify . It is done with
the so called mappingMap function in the infix form/ @. The result is saved for further
use.

In[5]:= r1 = Simplify / @Collect [%, n[u2 , u3]]

It results in the following formula, which contains only “ordinary” partial derivatives.

Np j
,p +

1
2

gpq gpq,r Nr j +
1
2

gp j Igpq,r + gpr,q - gqr,pM Nqr - bp
j Qp + P j = 0. (2)

Step 2 - SummationsThe next step consists in the summation of the expression. The
problem of the shell is two dimensional and the system should be informed about it
before starting the summation process.

In[6]:= Dimension = 2;

The first equation of equilibrium in tensor notation produces two partial differential
equations. The metric tensor on the reference surface is equal to the first differential
form gi j = ai j .

In[7]:= R1[uj ] = MakeSum[r1 ]

Presentation of the result which contains 21 terms is omitted here.

Step 3 - Transformation toþÿ differential equations In the end the equa-
tion can be transformed into an ”ordinary” partial differential equation. First tensor the
components have to be represented as the ”normal” functions of two variables.

In[8]:= n[1, 1] := n11[x , y];
n[1, 2] := n12[x , y];
n[2, 1] := n21[x , y];
n[2, 2] := n22[x , y]; (*and so on *)
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Next ordinary differentiation has to be turned on.

In[9]:= On[EvaluateODFlag ]

The first differential equation takes the form:

In[10]:= eqn[1] = R1[1]

Out[10]= p1[x , y] - bm11[x , y] q1[x , y] - +

bm12[x , y] q2[x , y] + n21 (0, 1)[x , y]+

1

2
n22[x , y] (ag12 [x , y] a22 (0, 1)[x , y] + ag11 [x , y]

(2 a12 (0, 1)[x , y] - a22 (1, 0)[x , y]))+

1

2
n12[x , y] (ag11 [x , y] a11 (0, 1)[x , y]+

ag12 [x , y] a22 (1, 0)[x , y])+

1

2
n11[x , y] (2 ag11 [x , y] a11 (1, 0)[x , y]-

ag12 [x , y] (a11 (0, 1)[x , y] - 4 a12 (1, 0)[x , y])+

ag22 [x , y] a22 (1, 0)[x , y])+

1

2
n21[x , y] (2 ag11 [x , y] a11 (0, 1)[x , y]+

ag22 [x , y] a22 (0, 1)[x , y] + ag12 [x , y]

(2 a12 (0, 1)[x , y] + a22 (1, 0)[x , y])) + n11 (1, 0)[x , y]

We will return to this equation later, in point 2.4.

2.2 Nonlinear equations of the second order theory

The approach can be easily extended to nonlinear problems, this is a simple example.

The third equation of shell equilibrium in tensor notation is:

Mi j
;i - Q j = 0. (3)

In the second order theory the additional moments caused by the stretching (tensile)
forces acting on the normal displacements are taken into consideration.

Mi j ® Mi j + Ni j w3. (4)

It is implemented with the following function:

In[11]:= m[ui , uj ] := m1[ui , uj ] + n[ui , uj ] w3

The moment tensor now has the following form:

In[12]:= m[ui , uj ]

Out[12]= Mij + w3 (Nij )

The left hand side (lhs) of the third equation is:
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In[13]:= CD[m[ui , uj ], li ] - q[uj ]

Out[13]= Mij
;i + w3 (Nij

;i ) + (w3
;i ) (Nij ) - Qj

Using a similar approach as that presented in the previous section the following result
is obtained:

Mp j
,p -

1
2

Mpq gr j Igpq,r - gpr,q - gqr,pM +
1
2

Mp j gqr gqr,p - Q j +

+Np j w3
,p +

1
2

w3 Jgpq Nr j gpq,r + gp j Nqr Igpq,r + gpr,q - gqr,pM + Np j
,pN = 0.

(5)

Nonlinear terms are written in the second line.

2.3 Receiving and simplification of the constitutive relations

One of the task of the theory of shells is to reduce the three dimensional problem of the
theory of elasticity into a two dimensional one5. The analysis of stresses is reduced to
the analysis of internal forces: stretching (tensile) forces and moments. The respective
tensors are computed from the following integrals:

Ni j = à
h

-h

2
g
a

I∆r
j - z br

j M Τri âz, (6)

Mi j = à
h

-h

2
g
a

I∆r
j - z br

j M Τri zâz. (7)

The square root in these formulas is the following function:

Z =

2
g
a

= 1 - 2 H z+ K z2. (8)

In[1]:= Z := 1 - 2 H z + K z2;

The stress tensor for isotropic material can be derived from the formula:

Τi j = E K Ν
1 - Ν2

gi j gpq +
1

1 + Ν
gip g jqO *Γpq. (9)

In[2]:= tau [ui , uj ] := J Ν e

1 - Ν2
Metricg [ui , uj ] Metricg [u1 , u2]+

e

1 + Ν
Metricg [ui , u1] Metricg [uj , u2]N gammastar [l1 , l2 ]

A strain tensor in 3D space can be expressed in terms of the strain tensor of the reference
surface.

*Γi j = Γi j - 2 zΡi j + z2 Ji j . (10)

5 The consideration is made in a newþÿ session
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In[3]:= gammastar [li , lj ] :=

gamma[li , lj ] - 2 z rho [li , lj ] + z2 theta [li , lj ]

Contravariant components of the metric tensor 3-D shell can be computed from the
formula which is a function of the variablezmeasured along the normal to the reference
surface.

gi j =
ai j I1 - K z2M - 2 I2 H ai j - bi j M (1 - H z) z

Z2
. (11)

In[4]:= Metricg [ui , uj ] :=

a[ui , uj ] I1 - K z2M - 2 (2 H a[ui , uj ] - b[ui , uj ]) (1 - H z) z)

Z2

The integrals (6) and (7) appear to be simple but after substituting into them functions
(8), (9), (10) and (11), they become a bit more complicated but using possibilities of the
system they can be computed with arbitrary precision with respect to the thickness2h
expansion. It can be done with the function:

In[5]:= n[ui , uj ][k ] :=

Simplify / @Tsimplify [

AbsorbKdelta [

integ / @Expand[

Normal [

Series [

Z (Kdelta [l3 , uj ] - z b [l3 , uj ])

tau [ui , u3], {z , 0, k}]]]]]

This complex multi-function does the following: the considered integrand –
(Kdelta [l3 , uj ] - z b [l3 , uj ]) tau [ui , u3]
is expanded into a power series withSeries andNormal . The result is algebraically
expanded withExpand and then integrated term by term (using the mapping procedure
/ @) with a predefined function of integrationinteg :

In[6]:= integ [x ] := à
h

-h

xâz

This approach is necessary asþÿ is a program and only a program. If the
argument of the function is complicated it takes a lot of time to deal with it. Therefore
it is usually sensible to divide the task into a set of simpler problems. This approach
speeds up computations. Mapping is a very useful tool in this process.

After integration the Kronecker delta is absorbed withAbsorbKdelta and simplified
with the already mentioned functionsTsimplify andSimplify .

The parameterk defines the precision of the computation, for engineering purposes it is
sufficient for the calculations to be done with a precision to the third power of the shell
thickness. Then the parameterk in the function should take value 2.

In[7]:= noriginal [ui , uj ] = n[ui , uj ][2]
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The result can be used directly in further computations but is rather long. It contains 24
terms, so its presentation is omitted here. Nevertheless using a set of theþÿ
andMathTensorTM tools it can be presented in a shorter form. Among them we can
find: Dum[%] for finding pairs of dummy indices,Expand [%] for the expression
expansion,Absorb [%, a ] and AbsorbKdelta for lowering and raising indices,
Canonicalize for finding the canonical form of tensor expression and the already
mentionedTsimplify andSimplify for tensor and algebraic simplification.

Automatic simplification does not necessarily give the simplest form. The system can
be helped. An example of enforcing the required behaviour is given below. The terms
are grouped and each group is simplified.

In[8]:= Simplify [%P1T + %P6T]+

Simplify [%P2T + %P4T]+

Simplify [%P3T + %P5T]

Replacement is a very useful tool for controlling the simplification process. The well
known identities:

bpq b jp º 2H bq
j - K aq

j ,

bp
i b jp º 2H bi j - K ai j ,

(12)

Γp j º Γpq ∆q
j (13)

are applied with the following functions, respectively:

In[9]:= %/. {b[l1 , l2 ] b[uj , u1] ®

2 H b[l2 , uj ] - K a[l2 , uj ],

b[l1 , ui ] b[uj , u1] ®

2 H b[ui , uj ] - K a[ui , uj ]}

In[10]:= %/. gamma[u1 , uj ] ®

gamma[u1 , u2] Kdelta [l2 , uj ]

þÿ simplifications tools do not always find the simplest form. Replacement
can be very useful in such cases, for example:

In[11]:= %/. aa Ν + bb Ν ® (aa + bb) Ν

In[12]:= %/. aa b[l1 , l2 ] + bb b[l1 , l2 ] ®

(aa + bb) b[l1 , l2 ]

In[13]:= %//. 9 aa

-1 + Ν2
® -

aa

1 - Ν2
,

aa (-1 + Ν) ® -aa (1 - Ν),

aa I - 1 + h2 KM ® -aa I1 - h2 KM=
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At the end the following result is obtained:

Ni j =
2 E h I1 - h2 KM IΝ ai j Γp

p + (1 - Ν) Γi j M
1 - Ν2

+

+
4 E h3 Γpq JΝ bpq IH ai j + bi j M + (1 - Ν) bp

i Ibq
j + H ∆q

j M N
3 I1 - Ν2M +

-
8 E h3 IΝ ai j bpq Ρpq + (1 - Ν) bp

i Ρp jM
3 I1 - Ν2M +

+
4 E h3 I2 H ∆q

j - bq
j M IΝ aqi Ρp

p + (1 - Ν) ΡqiM
3 I1 - Ν2M +

+
2 E h3 IΝ ai j Jp

p + (1 - Ν) Ji j M
3 I1 - Ν2M + O Ih5M .

(14)

This is a formula for the tensor of moments. It is received by a similar procedure.

Mi j =
4 E h3 IΝ ai j bpq Γpq + (1 - Ν) bp

i Γp jM
3 I1 - Ν2M +

-
2 E h3 I2 H ∆q

j - bq
j M IΝ aqi Γp

p + (1 - Ν) ΓqiM
3 I1 - Ν2M +

-
4 E h3 IΝ ai j Ρp

p + (1 - Ν) Ρi j M
3 I1 - Ν2M + O Ih5M .

(15)

The next step is to check if simplified results obtained satisfy the last equation of equi-
librium, which has the following form and should be satisfied as an identity.

¶pq INpq - br
p MqrM = 0. (16)

The check is carried out by the following function, which shows that it is satisfied. Here
an totally antisymmetric object¶pq is denoted with.EpsDown[l1 , l2]. The function
contain a lot of simplification tools like tensor simplificationTsimplify , canonical-
ization Canonicalize , absorbtionAbsorb and AbsorbKdelta and expansion
Expand . Moreover an identity:

bpq br
p º 2H bqr - K aqr (17)

is applied withb[l1 , l2 ] b[l3 , u1] ® 2 H b[l2 , l3 ] - K a[l2 , l3 ], a.
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In[14]:= Tsimplify [

Absorb [

Canonicalize [

Absorb [

AbsorbKdelta [

Expand [

EpsDown[l1 , l2 ]

(nfinal [u1 , u2]-

b[l3 , u1] mfinal [u3 , u2] )]

], a

]

]/. b[l1 , l2 ] b[l3 , u1] ®

2 H b[l2 , l3 ] - K a[l2 , l3 ], a

]

] == 0
Out[14]= True

2.4 Description of an arbitrary shell with MathTensorTM

The problems presented in the previous two sections are general consideration. The next
step is to carry out the more detailed calculations for a concrete shell, which is done in
a newþÿ session.

Geometrical description of the reference surfaceA surface in 3D space can be
parameterised with two variablesxi . This is an example of parameterisation of the
catenoide shown in figure 1.

In[1]:= r := 9 Cos[x[2]]
1

so
2 + x[1]2 ,

Sin [x[2]]
1

so
2 + x[1]2 , so ArcSinh Ax[1]

so
E=;

The components of the covariant curvilinear basis are computed as a derivative of the
vectorr with respect to the parameterxi .

r i = ¶xi r. (18)

The conditionNegIntegerQ [i ] restricts the definition to covariant components.

In[2]:= ri [i ]/ ; NegIntegerQ [i ] := ri [i ] = ¶x[-i ]r

Geometrical properties The first differential form of the reference surface is defined
by the following scalar product:

ai j = r i × r j . (19)
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Fig. 1. Catenoide

In[3]:= a[i , j ]/ ; NegIntegerQ [i ]&&NegIntegerQ [j ] :=

a[i , j ] = Simplify [ri [i ]. ri [j ]]

It is sensible to collect these coefficients into the matrix.

In[4]:= aLowerMatrix := aLowerMatrix =

Table [a[-i , -j ], {i , 2}, {j , 2}]

This is a definition of the determinanta of this matrix.

In[5]:= Deta := Deta =

Simplify [Det [Table [a[-i , -j ], {i , 2}, {j , 2}]]]

The third vector of the curvilinear basis can now be computed, it is normal to the mid-
surface. It is obtained from the formula:

r3 =
r1 ´ r20

a
. (20)

In[6]:= ri [-3] := ri [-3] = Simplify A ri [-1] ´ ri [-2]

PowerExpand A0
Deta E

E

The normal vector is necessary to calculate the second and the third differential form.
In this example this computations are omitted because the process is very similar to the
first differential form derivation.

Tensorai j is a metric tensor on the reference surface so its contravariant components
can be computed from the inversion ofaLowerMatrix .

In[7]:= aUpperMatrix := aUpperMatrix =

Simplify [Inverse [aLowerMatrix ]]
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Contravariant coefficientsai j are elements of this matrix and can be computed from the
following definition. Here the conditionPosIntegerQ [i ] restricts the definition to
the contravariant components.

In[8]:= a[i , j ]/ ; PosIntegerQ [i ]&&PosIntegerQ [j ] :=

a[i , j ] = aUpperMatrix Pi , j T

Kinematical relations The displacement and rotation vectors can be decomposed in
the covariant basis:

w = wk rk + w3 r3, (21)

d = dk rk + d3 r3. (22)

The last term in the rotation vector is negligible for linear problems. Attention is focused
by limiting further consideration to geometrically linear theory.

In[9]:= w := w = ww[1] ri [-1] + ww[2] ri [-2] + ww[3] ri [-3]

In[10]:= d := d = dd[1] ri [-1] + dd[2] ri [-2](* + dd[3][ri [-3]]*)

It has to be emphasised thatMakeSum[] cannot be used in those definitions because
it results in an error. It is probably not a bug in the package but is caused by further
definitions which express displacements with their physical components. Nevertheless
it is a good example of the need to be critical of the results obtained with computer
assistance, they need careful scrutiny.

Derivatives of the displacement and rotation vectors are objects of valence one.

wi = ¶xi w, (23)

di = ¶xi d. (24)

In[11]:= wi [i ]/ ; NegIntegerQ [i ] := wi [i ] = Simplify [¶x[-i ]w]

In[12]:= di [i ]/ ; NegIntegerQ [i ] := di [i ] = Simplify [¶x[-i ]d]

The physical components of the displacement and rotation components can be com-
puted from the following formulae:

wi = wi 0
aii , (25)

di = di 0
aii . (26)

Thus, the following definition is made:

In[13]:= ww[i ] := ww[i ] =
wi [x[1], x[2]]

PowerExpand A0
a[-i , -i ]E

In[14]:= dd[i ] := dd[i ] =
di [x[1], x[2]]

PowerExpand A0
a[-i , -i ]E
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Strains The generalised formula for the first strain tensor (containing terms responsible
for temperature distortions) is:

Γi j =
1
2

Ir i × w j + r j × wiM - Ε ai j + (nonlinear terms). (27)

It is denoted by:

In[15]:= gamma[i , j ]/ ; NegIntegerQ [i ]&&NegIntegerQ [j ] :=

gamma[i , j ] =

1

2
( ri [i ]. wi [j ] + ri [j ]. wi [i ]) - Ε[x[1], x[2]] a[i , j ]

The other two strain tensors of the reference surface can be computed with the similar
definitions.

Internal forces and equations in terms of displacementsThe formula for the mo-
ments is presented in point 2.3. Having already computed the kinematical relations and
strain tensors internal forces can be expressed in terms of displacements. Here is an ex-
ample of one of the component of moment tensor for the considered parameterisation
of the catenoidal shell.

In[16]:= mRef[1, 1]

Out[16]= -
2 e h 3 so Ε[x , y]

3 (-1 + Ν) (x2 + s2
o)

+
2 e h 3 Κ[x , y]

3 - 3 Ν
-

2 e h 3 x Ν d1[x , y]

3 (-1 + Ν2) (x2 + s2
o)

+

4 e h 3 s2
o w3[x , y]

3 (-1 + Ν2) (x2 + s2
o)2 +

2 e h 3 Ν d(0, 1)
2 [x , y]

(3 - 3 Ν2)
0

x2 + s2
o

+

2 e h 3 d(1, 0)
1 [x , y]

3 - 3 Ν2
+

4 e h 3 so w(1, 0)
1 [x , y]

3 (-1 + Ν) (1 + Ν) (x2 + s2
o)

The internal forces are substituted into the differential equations, obtained in point 2.1,
to receive them in terms of displacements. They are long, for example the first one for
the catenoidal shell contains 17 terms so it will not be presented here.

It can now be stated that it is possible to proceed from the very general equations to
very specific ones which are ready for numerical computations. The next section will
deal with these problems.

3 Numerical tasks - boundary value problems using the refined
least squares method

3.1 Basic features

The least squares method is a well–known, [15], meshless way of finding an approxi-
mate solution to a boundary value problem. The classical approach consists in minimis-
ing the functional based on algebraic, differential or integral equations, or on a system
of equations with a set of independent functions which satisfy boundary conditions.
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The refined least squares (RLS) method uses the following approach. The minimized
functional is supplemented with the terms responsible for boundary conditions. The
approximating functions do not have to satisfy the boundary or initial conditions but
they must be linearly independent. The basic features of the RLS method are described
in [6] and [7].

Described below is an example of applying the RLS method to the tasks of computing
a short and long cylindrical shell, which are specific boundary layer problems. Another
example is presented in [12].

The set of equations presented below, functions in boundary conditions have been de-
veloped withþÿ and theMathTensorTM package in a way presented in the
previous section.

3.2 Problem description

Physical description Let us consider two steel (Young modulusE = 2 × 108, Poisson
ratio Ν = 3

10) cylindrical shells of lengthl = 4 m (short) andl = 60 m (long), thickness
2h = 10mm, and cylinder radiusso = 2 m. It is subjected to the periodical, with regard
to the direction of parallel, load normal to the reference surfacep3 = P3 cos(ny), n = 5,
P3 = 1 kN/m2 normal to the cylinder mid–surface, tangent load componentsp1 = 0,
p2 = 0.

The shapes of the undeformed reference surfaces are presented in the figures 2 and 3.
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Fig. 2. Short shell
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Fig. 3. Long shell, from the plane of symmetryx = 0 to the fixed endx = 30

The variabley Î X 0,2Π\ is measured along parallel of the cylinder, andx Î Xxa, xb\
along the meridian. The cylinder is fixed on both edgesxa = - l

2 andxb = l
2.

Due to the axial symmetry of the cylinder the two–dimensional problem can be reduced
to one–dimensional task by Fourier expansion.

From the engineering point of view the problem can be considered as a static of a steel
pipe loaded with a fifth component of the wind.

Equations The problem is described by a system of five second–order ordinary dif-
ferential equations obtained withinþÿ notebooks discussed in the previous
section. The following notation is used:

D1(x) cos(y)— meridian rotation component,

D2(x) sin(y)— parallel rotation component,

W1(x) cos(y)— meridian displacement component,

W2(x) sin(y)— parallel displacement component,

W3(x) cos(y)— normal displacement component.

The system of equations represents the equilibrium state of the shell. The right hand
sides (rhs) of the equations are equal to zero, and below are their left hand sides (lhs):

e1 := -
E n2 D1 (x) h3

3 s3
o (1 + Ν)

-
2 E D¢¢

1 (x) h3

3 so I1 - Ν2M -
E Ih2 + 3 s2

oM n2 W1 (x) h

3 s4
o (1 + Ν)

+

+
2 E W¢¢

1 (x) h
1 - Ν2

+
n E W¢

2 (x) h
so (1 - Ν)

-
2 E Ν W¢

3 (x) h

so I1 - Ν2M + P1 (x) ,

(28a)
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e2 :=
5 h E D¢

1 (x)
6 (1 + Ν)

+
h n E I4 h2 + 5 (1 - Ν) s2

oM D2 (x)

6 s3
o I1 - Ν2M +

+
2 h E Ν W¢

1 (x)

so I1 - Ν2M +
h n E I4 h2 + (17- 5 Ν) s2

oM W2 (x)

6 s4
o I1 - Ν2M +

-
E h I4 h2 + I5 (1 - Ν) n2 + 12M s2

oM W3 (x)

6 s4
o I1 - Ν2M +

5 h E W¢¢
3 (x)

6 (1 + Ν)
+ P3 (x) ,

(28b)

e3 := -
E I2 h2 n2 + 5 s2

oM D1 (x) h

6 s2
o (1 + Ν)

+
2 E D¢¢

1 (x) h3

3 I1 - Ν2M +
n E D¢

2 (x) h3

3 so (1 - Ν)
+

-
E n2 W1 (x) h3

3 s3
o (1 + Ν)

-
2 E W¢¢

1 (x) h3

3 so I1 - Ν2M -
5 E W¢

3 (x) h
6 (1 + Ν)

,

(28c)

e4 := -
E I4 h2 n2 + 5 (1 - Ν) s2

oM D2 (x) h

6 s4
o I1 - Ν2M -

E D¢¢
2 (x) h3

3 s2
o (1 + Ν)

-
E n W¢

1 (x) h
s2
o (1 - Ν)

+

+
E W¢¢

2 (x) h
so (1 + Ν)

-
E I4 h2 n2 + I12n2 - 5 Ν + 5M s2

oM W2 (x) h

6 s5
o I1 - Ν2M +

+
n E I4 h2 + (17- 5 Ν) s2

oM W3 (x) h

6 s5
o I1 - Ν2M + P2 (x) ,

(28d)

e5 := -
E n D¢

1 (x) h3

3 s2
o (1 - Ν)

-
E I4 h2 n2 + 5 (1 - Ν) s2

oM D2 (x) h

6 s3
o I1 - Ν2M +

E D¢¢
2 (x) h3

3 so (1 + Ν)
+

-
E I4 h2 n2 + 5 (1 - Ν) s2

oM W2 (x) h

6 s4
o I1 - Ν2M -

E W¢¢
2 (x) h3

3 s2
o (1 + Ν)

+

+
n E I4 h2 + 5 (1 - Ν) s2

oM W3 (x) h

6 s4
o I1 - Ν2M .

(28e)

Boundary conditions It is obvious that the system of 5 second–order differential equa-
tions system (28) requires 10 boundary conditions. Two types of boundary conditions
can be distinguished: essential conditions and boundary layer conditions.

Theessential conditions(lhs) for our problem are:

b1 := W1 (xa) ,

b2 := W2 (xa) ,

b3 := W1 (xb) ,

b4 := W2 (xb) .

(29)

Their (rhs) are equal to zero. These boundary conditions are the same as used in the
membrane approach to the problem. Here it needs to be stated that the membrane ap-
proach is not correct for the considered task as the cylindrical shell is significantly bent
by this type of load so the moments and transverse forces cannot be neglected.
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Theboundary–layer conditions(lhs) for our problem are:

b5 := D1 (xa) ,

b6 := D2 (xa) ,

b7 := W3 (xa) ,

b8 := D1 (xb) ,

b9 := D2 (xb) ,

b10 := W3 (xb) .

(30)

3.3 Method description

For the considered system (28)a–eof the equations and boundary conditions (29) and
(30) the following functional can be built:

F = à
xb

xa

æçççç
è

5

â
n=1

(Αn en)2
ö÷÷÷÷
ø

âx +
10

â
k=1

(Βk bk)2, (31)

whereΑn andΒk are scale factors or scale functions.

The RLS method consists in minimising of this functional. If the solution is exact the
value of the functional is zero, otherwise it is positive. Minimisation is done by the Ritz
method. According to it the approximation off (x) can be predicted in a form of linear
combination ofm independent functionsui (x).

f (x) =
m

â
i=1

Ci ui (x) . (32)

Substituting (32) into (31) for eachf (x) (it stands here forD1 (x), D2 (x), W1 (x),
W2 (x) and W3 (x), respectively) one can compute the derivative ofF with respect
to Ci . Minimisation of the functional is equivalent to the condition:

¶F
¶Ci

= 0. (33)

Doing it for each unknownCi a system of algebraic equations is obtained. For a linear
problem it is linear oneIAi j Cj = BiM with a symmetrical and positive definite matrix
Ai j .

The formulae for developing the terms of the system and theþÿ implemen-
tation are presented below.

3.4 Method implementation

Each unknown function of the system of differential equations (28) can be approxi-
mated with a linear combination of monic Chebyshev polynomials. As the considered
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problem is symmetrical with regard to the planex = 0, the functionsW1 (x) andD1 (x)
are antisymmetrical andW2 (x), W3 (x) andD2 (x) are symmetrical. The system can
be informed about it with the following definitions, for example:

In[1]:= W1[x ] :=
PolyDegree

â
i =0

c[5 i ] MonicChebyshevT A2i + 1,
2 (x - bx )

ax - bx
- 1E;

In[2]:= W2[x ] :=
PolyDegree

â
i =0

c[5 i + 1] MonicChebyshevT A2i ,
2 (x - bx )

ax - bx
- 1E;

whereax stands forxa, bx for xb, c[k] for Ck and:

In[3]:= MonicChebyshevT [n , x ] :=
ChebyshevT [n, x]

2n-1

It is not difficult to notice that the real domainXxa, xb\ is transformed to the interval
X-1,1\.
Each differential equation is scaled and saved into the variable, for example:

In[4]:= DifferentialEquation [1] :=

DifferentialEquation [1] =
r1

h
;

According to this approximation the scaled differential equationΑk ek and boundary
conditionΒn bk can be rewritten in the following form:

Αk ek (x) = fk (x) +
5(p+1)-1

â
i=0

Ci mik (x) , (34)

Βk bk = gk +
5(p+1)-1

â
i=0

Ci nik. (35)

wherep is an assumed polynomial degree.

Free termsfk are extracted from (34) with the following functions:

In[5]:= DiffEqnFreeTerm [k ] := DiffEqnFreeTerm [k] =

Expand [-DifferentialEquation [k]/. c[ ] ® 0];

The functionsmik(x) can also be found with the very similar procedure. Standardþÿ
functions could be used but this one is faster.

In[6]:= DiffEqnCoefficient [i , k ] := DiffEqnCoefficient [i , k] =

Expand [DifferentialEquation [k]+

DiffEqnFreeTerm [k]/. c[i ] ® 1/. c[ ] ® 0]

Similarly each scaled boundary condition for the task is saved into the variable. Here
the full set ofþÿ input for the edgexa can be seen, the other 5 are similar:
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In[7]:= BoundaryCondition [1] := BoundaryCondition [1] = W1[ax ] e;

In[8]:= BoundaryCondition [2] := BoundaryCondition [2] = W2[ax ] e;

In[9]:= BoundaryCondition [5] := BoundaryCondition [5] = D1[ax ] e ;

In[10]:= BoundaryCondition [6] := BoundaryCondition [6] = D2[ax ] e ;

In[11]:= BoundaryCondition [7] :=

BoundaryCondition [7] = W3[ax ] e;

The following commands are applied to make the extractions ofnik (x) andgk from the
boundary conditions (35).

In[12]:= BoundCondFreeTerm [i ] := BoundCondFreeTerm [i ] =

Expand [-BoundaryCondition [i ]/. c[ ] ® 0];

In[13]:= BoundCondCoefficient [k , i ] :=

BoundCondCoefficient [k , i ] =

Expand [BoundaryCondition [i ]+

BoundCondFreeTerm [i ]/. c[k] ® 1/. c[ ] ® 0]

As x Î Xxa, xb\, coefficients of the symmetric matrix can be computed with the follow-
ing formula:

Ai j = à
xb

xa

æçççç
è

5

â
k=1

mik(x) mjk (x)
ö÷÷÷÷
ø

âx +
10

â
k=1

nik n jk. (36)

It is done with:

In[14]:= MatrixCoefficient [i , j ] :=

MatrixCoefficient [i , j ] = MatrixCoefficient [j , i ] =

Expand Ainteg1 AExpand A
5

â
k=1

DiffEqnCoefficient [i , k] DiffEqnCoefficient [j , k]EE+

Expand A
10

â
k=1

BoundCondCoefficient [i , k]

BoundCondCoefficient [j , k]EE

where integ1 is a function for computing a definite integral. There are predefined
formulas for integrating monomials and dealing with sums, it makes calculations faster.

In[15]:= integ1 [z Plus ] := xxinteg1 / @z;

In[16]:= integ1 [z ] := xxinteg1 [z];

In[17]:= xxinteg1 [z ] := integx [z , ax , bx ];

In[18]:= integx [a xn . , ax , bx ] :=
a (-ax 1+n + bx 1+n)

1 + n
/ ; FreeQ [a, x];
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In[19]:= integx [xn . , ax , bx ] :=
bx 1+n - ax 1+n

1 + n
;

In[20]:= integx [a , ax , bx ] := a (bx - ax )/ ; FreeQ [a, x];

In[21]:= integx [z , ax , bx ] := à
bx

ax

zâx;

System matrix is built from the matrix coefficients. The matrix is symmetrical so only
the lower triangle should be saved.

In[22]:= SystemMatrix := SystemMatrix =

Table [Table [

MatrixCoefficient [j , i ],

{i , 0, j }], {j , 0, NumberOfEqns }]

where, for our task:

In[23]:= NumberOfEqns = 5 (PolyDegree + 1) - 1

Analogously elements of the free vector can be obtained:

Bi = à
xb

xa

æçççç
è

5

â
k=1

mik (x) fk
ö÷÷÷÷
ø

âx +
10

â
k=1

nik gk. (37)

It is done with:

In[24]:= FreeVecCoefficient [i ] :=

FreeVecCoefficient [i ] =

Expand Ainteg1 AExpand A
5

â
k=1

DiffEqnCoefficient [i , k] DiffEqnFreeTerm [k]EE

+Expand A
10

â
k=1

BoundCondCoefficient [i , k]

BoundCondFreeTerm [k]EE
In[25]:= FreeVector := FreeVector =

Table [FreeVecCoefficient [i ],

{i , 0, NumberOfEqns }]

As the matrixAi j is positive definite and symmetrical the Cholesky-Banachiewicz method
is used for the solution of the linear system of equations. This is the only part of the
procedure done numerically. The results of the approximation are functions.
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Fig. 4. Short shell: deformation (exaggeration 5000 times)
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Fig. 5. Short shell approximation

3.5 One step approach

Short shell The approximation for the short shell (l = 4 m) is not difficult. The de-
formed shape of it is presented in figure 4.
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Fig. 6. Short shell approximation
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Fig. 8. Short shell approximation
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Fig. 9. Short shell approximation
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Fig. 10.Short shell approximation: convergence analysis

The figures 5, 6, 7, 8 and 9 show diagrams of some physical internal forces for the
considered case. HereN11(x) cos(y) is a meridian stretching force andN12(x) sin(y) is
a meridian shear force,M11(x) sin(y) is a meridian torsion moment,M12(x) cos(y) is
a meridian bending moment, andQ1(x) cos(y) is a meridian transverse force. They are
defined as follows:

N11 (x) = -
2E D¢

1 (x) h3

3so I1 - Ν2M +
2E W¢

1 (x) h
1 - Ν2

+
2n E Ν W2 (x) h

so I1 - Ν2M -
2E Ν W3 (x) h

so I1 - Ν2M , (38)

N12 (x) = -
E D¢

2 (x) h3

3 so (1 + Ν)
-

E n W1 (x) h
so (1 + Ν)

+
E W¢

2 (x) h
1 + Ν

, (39)

M11 (x) =
n E D1 (x) h3

3 so (1 + Ν)
-

E D¢
2 (x) h3

3 (1 + Ν)
+

E W¢
2 (x) h3

3 so (1 + Ν)
, (40)

M12 (x) =
2 E D¢

1 (x) h3

3 I1 - Ν2M +
2 n E Ν D2 (x) h3

3 so I1 - Ν2M -
2 E W¢

1 (x) h3

3 so I1 - Ν2M , (41)
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Fig. 11.Short shell: relative error of the convergence
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Fig. 12.Short shell approximation

Q1 (x) =
5 h E D1 (x)

6 (1 + Ν)
+

5 h E W¢
3 (x)

6 (1 + Ν)
. (42)

The figures 10 and 11 present analysis of the approximation convergence. The figure
10 shows convergence of the function valueM12 (-1.933 m) with respect to the value
of PolyDegree . The figure 11 demonstrates function valueM12 in 31 point in the
interval x Î Y0, l

2]; variable on the vertical axis isPolyDegree , lighter colour rep-
resent smaller relative error with respect to the approximation for the highest value
of PolyDegree used in computations. It can be seen that the approximation close
to exact solution is reached when value of the variablePolyDegree is equal to 14.
It means that the degrees of the approximating polynomials attain value 28 for even
functions and 29 for odd ones.



Solving symbolic and numerical problems in the theory of shells. . . 333

The obtained functions can be substituted to the approximated equations to observe the
error. The figure 12 presents (dis)satisfaction of the first differential equation for the
considered case.
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Fig. 13. Long shell: deformation from the plane of symmetryx = 0 to the fixed endx = 30
(exaggeration 500 times)
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Fig. 14.Long shell, one step approximation approach

Long shell If the approximation of the problem of a long cylindrical shell had been
done with a full set of boundary conditions, then difficulties would have been expe-
rienced with convergence and stability. This is a high-order differential operator and
therefore the problem is ill-conditioned. The degrees of the approximating polynomials
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Fig. 15.Long shell, one step approximation approach
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Fig. 16.Long shell, one step approximation approach
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Fig. 17.Long shell, one step approximation approach
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Fig. 18.Long shell, one step approximation approach
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Fig. 19.Long shell, one step approximation approach: convergence analysis

have to be quite large number and the working precision of the computations have to be
equal to 512. Despite of this the loss of the precision has been over 300 digits.

The results of this approximation are presented in figures 14, 15, 16, 17 and 18.

The figures 19 and 20 show analysis of the approximation convergence. The figure
19 shows convergence of the function valueM12 (-29 m) with respect to the value
of PolyDegree . The figure 20 demonstrates function valueM12 in 31 point in the
interval x Î Y0, l

2]; variable on the vertical axis isPolyDegree , lighter colour rep-
resent smaller relative error with respect to the approximation for the highest value of
PolyDegree used in computations. It can be seen that the approximation close to
exact solution is reached when value of the variablePolyDegree is equal to 46. It
means that the degrees of the approximating polynomials attain value 92 for even func-
tions and 93 for odd ones. The computational process becomes very long because the
system has a lot integrals to be computed symbolically.

The figure 21 show (dis)satisfaction of the first differential equation for the considered
case.
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Fig. 20.Long shell, one step approximation approach: relative error of the convergence
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Fig. 21.Long shell, one step approximation approach

3.6 Two step approach

One of the most important features of the RLS method is the scale factors by which
better or worse satisfaction a selected equation or boundary condition can be enforced.
The idea of the base solution presented below has been developed by experimenting
with scale factors. When decreasing a scale factor in some boundary conditions a zero
has been put in instead of a very small number and it has turned out to still produce a
very good approximation.

Base solution It has been found that it is possible to approximate the system (28) with
the RLS method, taking into account only the essential boundary conditions (29) and
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Fig. 22.Long cylindrical shell, ”base” approximation

-30 -20 -10 0 10 20 30

-10

-5

0

5

10

Meridian Shear Force N12 @ kN
����������
m

D

Fig. 23.Long shell, ”base” approximation
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Fig. 24.Long shell, ”base” approximation
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Fig. 25.Long shell, ”base” approximation
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Fig. 26.Long shell, ”base” approximation
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Fig. 27.”Base” approximation: convergence analysis

neglecting the boundary–layer ones (30). As it has been already mentioned they are
simply multiplied by zero, for example:
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Fig. 28.”Base” approximation: relative error of the convergence
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Fig. 29.Long shell, ”base” approximation

In[26]:= BoundaryCondition [5] :=

BoundaryCondition [5] = D1[ax ] e 0 ;

It is an unexpected situation but it can be interpreted physically - the problem is stat-
ically indeterminate if all boundary conditions on fixed edge are satisfied. Some the
boundary conditions which are not essential for the overall stability can be released. It
has been found that it is enough to apply polynomials much lower degree than for one
step approach to obtain quite good results. The results of this approximation are shown
in figures 22, 23, 24, 25 and 26.

The figures 27 and 28 show analysis of the approximation convergence. The figure
27 shows convergence of the function valueM12 (-29 m) with respect to the value
of PolyDegree . The figure 28 demonstrates function valueM12 in 31 point in the
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interval x Î Y0, l
2]; variable on the vertical axis isPolyDegree , lighter colour rep-

resent smaller relative error with respect to the approximation for the highest value of
PolyDegree used in computations. It can be seen that the approximation close to ex-
act solution is reached when value of the variablePolyDegree is equal to 10. It means
that the degree of the approximating polynomial attains value 20 for even functions and
21 for odd ones.

The figure 29 shows (dis)satisfaction of the first differential equation for the considered
case.

The solution is feasible on the most of the domain except boundary layers which sizes
are limited to about1.2 m from each edge. The actual functions are highly oscillating
but they quickly decay to the base solution, which is smooth. Hence, it is practically
impossible to satisfy all the boundary conditions in one step, as the problem becomes
ill–conditioned in the Lyapunov sense and is slowly convergent. The base solution is
not a membrane because the moments and shear forces are not zero functions. Note that
neglecting of some boundary conditions in other methods usually results in a singular
system. Here a well–conditioned and non–singular problem is obtained.
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Fig. 30.Boundary layer refinement of the ” base” approximation

Boundary–layer refinement The base solution allows refinement of the approxima-
tion at the boundary layers.

We are taking into account limited domain so the parameters describing the position of
the boundaries take values:

In[27]:= ax = -30;

In[28]:= bx = -288 / 10;

As none symmetry can be expected the approximation polynomials should contain both
odd and even functions.

In[29]:= W1[x ] :=
PolyDegree

â
i =0

c[5 i ] MonicChebyshevT Ai ,
2 (x - bx )

ax - bx
- 1E;
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Fig. 31.Boundary layer refinement of the ” base” approximation
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Fig. 32.Boundary layer refinement of the ” base” approximation
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Fig. 33.Boundary layer refinement of the ” base” approximation

In[30]:= W2[x ] :=
PolyDegree

â
i =0

c[5 i + 1] MonicChebyshevT Ai ,
2 (x - bx )

ax - bx
- 1E;
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Fig. 34.Boundary layer refinement of the ” base” approximation
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Fig. 35.Boundary layer refinement of the ” base” approximation
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Fig. 36.Boundary layer refinement of the ” base” approximation

A full set of boundary conditions are now taken into account, for the fixed edge the
boundary conditions are expressed in displacements.

In[31]:= BoundaryCondition [1] :=

BoundaryCondition [1] = D1[ax ] e;
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Fig. 37.Boundary layer refinement of the ” base” approximation
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Fig. 38.Boundary layer refinement of the ” base” approximation: convergence analysis

In[32]:= BoundaryCondition [2] :=

BoundaryCondition [2] = D2[ax ] e;

In[33]:= BoundaryCondition [3] :=

BoundaryCondition [3] = W1[ax ] e;

In[34]:= BoundaryCondition [4] :=

BoundaryCondition [4] = W2[ax ] e;

In[35]:= BoundaryCondition [5] :=

BoundaryCondition [5] = W3[ax ] e;

The boundary conditions on the ”artificial” edgex = 28.8 are expressed in forces. It
is assumed that the forces are equal to those obtained from the base approximation. To
avoid further loss of precision we can change numerical values of base approximation
with a Rationalize function to ”exact” fractions. It is a kind of cheating but en-
sures symbolic computations of the coefficients of the system of algebraic equations.
Moreover the calculations are quicker.

In[36]:= rd1 = Rationalize An11[bx ], 10-Precision [n11[bx ]]E;
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Fig. 39.Boundary layer refinement of the ” base” approximation: relative error of the convergence
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Fig. 40.Boundary layer refinement of the ” base” approximation

In[37]:= rd2 = Rationalize An12[bx ], 10-Precision [n12[bx ]]E;

In[38]:= rd3 = Rationalize Am11[bx ], 10-Precision [m11[bx ]]E;

In[39]:= rd4 = Rationalize Am12[bx ], 10-Precision [m12[bx ]]E ;

In[40]:= rd5 = Rationalize Aq1[bx ], 10-Precision [q1[bx ]]E;

In[41]:= BoundaryCondition [6] :=

BoundaryCondition [6] =
N11 [bx ] - rd1

h
;

In[42]:= BoundaryCondition [7] :=

BoundaryCondition [7] =
N12 [bx ] - rd2

h
;
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In[43]:= BoundaryCondition [8] :=

BoundaryCondition [8] =
M11 [bx ] - rd3

h3
;

In[44]:= BoundaryCondition [9] :=

BoundaryCondition [9] =
M12 [bx ] - rd4

h3
;

In[45]:= BoundaryCondition [10] :=

BoundaryCondition [10] =
Q1[bx ] - rd5

h3
;

Satisfying all boundary conditions on the fixed edge layer conditions results in the re-
fined functions which diagrams are shown in figures 30, 31, 32, 33, 34, 35, 36 and 37
compared to the base solution. It can be observed that the taking into account additional
boundary conditions results in a small decrease of displacements. It can be interpreted
physically as a local increase of the shell stiffness connected with taking into consider-
ation more constrains in the boundary conditions. The obtained approximation error is
allowable for engineering purposes.

The figures 38 and 39 show analysis of the approximation convergence. The figure
38 demonstrates convergence of the function valueM12 (-29m) with respect to the
value ofPolyDegree . The figure 39 demonstrates function valueM12 in 31 point
in the intervalx Î Y0, l

2]; variable on the vertical axis isPolyDegree , lighter color
represent smaller relative error with respect to the approximation for the highest value
of PolyDegree used in computations. It can be seen that the approximation close to
exact solution is reached when value of the variablePolyDegree is equal to 25. It
means that the degree of the approximating polynomial attains the same value.

The figure 40 presents (dis)satisfaction of the first differential equation for the consid-
ered case.

4 Conclusions and final remarks

4.1 Symbolic tasks

It has been shown that it is possible to solve the linear and nonlinear tensor symbolic
problems in different aspects with theMathTensorTM package and formulate equations
from the very general formulas to the ones ready for numerical computations. Each task
requires different tools. There has been shown how the built in functions of the system
and the package can be used efficiently. The tools are intuitive and relatively simple,
nevertheless the full responsibility for the results obtained belongs to the user of the
system and package.
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4.2 Numerical tasks

The RLS method allows simpler algorithm to be built if there is no need to use functions
that have to satisfy boundary conditions. Therefore it is applicable to more general
purposes like multidimensional problems with discontinuities of boundary conditions.

The results of approximation are functions, not numbers. Therefore the results can be
used directly in further computations without interpolation. The quality of the approxi-
mation can be evaluated by substituting functions into approximated equations.

Moreover it has been shown that there is the possibility of the neglecting of some bound-
ary conditions for boundary layer problems and satisfy them locally in the next step.
This phenomenon for the problem being considered has a physical interpretation. The
mathematical interpretation seems to be an open problem.

According to that the two step approach to the boundary layer problems of theory of
shells has been proposed. The first step consists in approximation with negligence of
some boundary conditions. They are adjusted in the second step when only boundary
layer is considered. This approach can be applied to other boundary layer tasks.

þÿ as a (fully) integrated environment of symbolic and numerical computa-
tion and graphics is a very effective tool for the complex analysis of symbolic (tensor)
calculations and can be applied to in the entire computational and publication process.
Its external packageMathTensorTM is an effective tool of tensor analysis with the theory
of shells. However, its long expected upgrade should be better adopted for the current
possibilities ofþÿ 4.1.
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Some notations

There are some symbols used for tensor problems discussed in the section 2.

a — determinant of the first differential form

ai j — the first differential form of the reference surface, metric tensor on the reference
surface

bi j — the first differential form of the reference surface, curvature tensor
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d — rotation vector

di — derivative of rotation vector

di — physical component of the rotation vector

di — contravariant component of the rotation vector in the curvilinear basis

g — determinant of the metric tensor

gi j — metric tensor

2h — shell thickness

H — mean curvature

K — Gaussian curvature

Ni j — tensor of stretching (tensile) forces

Mi j — tensor of moments

Pi — vector of loads

Qi — vector of transverse forces

r — parameterisation vector

r i — component of the curvilinear basis

w — displacement vector

wi — derivative of displacement vector

wi — physical component of the displacement vector

wi — contravariant component of the displacement vector in the curvilinear basis

w3 — normal displacement component

∆i
j — Kronecker delta

*Γi j — strain tensor in 3D space

Γi j — the first strain tensor of the reference surface

Ε — coefficient of the thermal expansion

¶i j — antisymmetric object under interchange of any indices

Ρi j — the second strain tensor of the reference surface

Ji j — the third strain tensor of the reference surface

Τi j — stress tensor

Other notations are explained in the text.
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[1] Başar Y., Ding Y. (1990): Theory and finite-element formulation for shell structures un-
dergoing finite rotations. In: Voyiadjis G.Z., Karamanlidis D. (eds) Advances in the theory
of plates and shells. Elsevier Science Publishers B.V., Amsterdam, 3–26

[2] Bielak S. (1990): Theory of Shells. Studies and Monographs,30, Opole University of
Technology, Opole

[3] Naghdi P.M. (1963): Foundations of Elastic Shell Theory. chapter 1, North-Holland Pub-
lishing CO., Amsterdam, 2–90

[4] Parker L., Christensen S.M. (1994):MathTensorTM : A System for Doing Tensor Analysis
by Computer. Addison-Wesley, Reading, MA, USA

[5] Walentýnski, R.A. (1995): Statics of Sloped Shells of Revolution, Comparison of Analytic
and Numerical Approaches. PhD Thesis, Silesian University of Technology, Gliwice
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