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Abstract

The Theorema project aims at extending current computer
algebra systems by facilities for supporting mathematical
proving. The present early-prototype version of the The-
orema software system is implemented in Mathematica 3.0.
The system consists of a general higher-order predicate logic
prover and a collection of special provers that call each other
depending on the particular proof situations. The individ-
ual provers imitate the proof style of human mathematicians
and aim at producing human-readable proofs in natural lan-
guage presented in nested cells that facilitate studying the
computer-generated proofs at various levels of detail. The
special provers are intimately connected with the functors
that build up the various mathematical domains.

1 The Objectives of the Theorema Project

The Theorema project aims at providing a uniform (logic
and software) frame for computing, solving, and proving.
In a simplified view, given a “knowledge base” K of formulae
(and a logical / computational derivation mechanism L),

o a “computer” for K (in an abstract sense) enables the
user to provide an expression (term, formula, program)
T with a free variable « and a value v (from an appro-
priate domain) and “evaluates” Ty, (T with v sub-
stituted for «) w.r.t. K (within the calculus L),

e a “solver” for K enables the user to provide an expres-
sion 1" with a free variable x and produces (all) values

v for which Ty, holds (in L) w.r.t. K, and

e a “prover” for K enables the user to provide an ex-
pression 1" with a free variable z and decides whether,
for all values v, T3+ holds (in L) w.r.t. K.

*This paper was prepared during a stay of the first author as a
visiting research fellow at the University of Tsukuba, Japan, Chair
of Professor Tetsuo Ida, and was supported by TARA (Tsukuba Ad-
vanced Research Alliance), IPA-AITP (Advanced Information Tech-
nology Program of the Information-Technology Promotion Agency,
Japan) in the frame of the project ” Coordination Programming in
Open Computing Environment”, and by a project grant on ” Com-
puter Algebra” by Fujitsu Labs, ISIS, Numazu, Japan.

©1997 ACM. To appear in the ISSAC 97, July 21-23, 1997
Maui, Hawaii, USA.

Of course, computing, solving, and proving are mutually
dependent. For example, a prover for a certain class of ex-
istentially quantified formulae, essentially, is a solver. Also,
certain solvers may need proving potential as a subroutine.
Both solvers and provers are expressions that are evaluated
on (abstract) computers. Anyway, from the point of view
of a user, computers, solvers, and provers are doing three
different things with a given expression 7. (A more detailed
analysis of “computing”, “solving”, “proving” will be given
in another paper.)

One should also remark that, often, what the user ex-
pects from a prover is not only a “black box” decision about
the validity of a given formula 7' but a proof, i.e. a sequence
of inference steps (in a certain logic) together with expla-
nations about the assumptions used in each step etc. that
derive the validity of 7' from the knowledge base K.

Existing computer algebra systems are quite good in
computing and, for certain K, are also amazingly good in
solving (example: the “Solve” routines for systems of non-
linear algebraic equations) but weak in proving. Existing
theorem proving systems, for certain K (in certain areas of
mathematics), are amazingly strong in proving but, usually,
are weak in solving and computing. It is natural to strive for
systems that are strong in computing, solving, and proving.

In order to close the gap between computing / solving
(computer algebra systems) on the one side and proving
(theorem proving systems) on the other side one could start
from either of the two sides. Efforts to close the gap start-
ing from theorem provers are for instance, [9], [15], [18].
Also, there are some recent projects that are based either
on adding proving facilities or on linking theorem provers to
computer algebra systems, see the bibliography in [13]. The
most important current projects combining computer alge-
bra systems with theorem provers (in either of the above
approaches) are the following: Isabelle [18], Analytica [7],
NQTHM [2], Nuprl [9], Coq [15], HOL [12], Oyster-Clam
[14], [20], Redlog [11]. In the Theorema project, we decided
to start from an existing computer algebra system, namely
Mathematica (version 3.0) and to add proving facilities. Our
project is different from the other projects in one way or the
other. The distinctive features are: integration of an ex-
isting rewrite rule language (Mathematica) into our logic;
imitation of human proof style; natural language formula-
tion of proofs; combination of functor style programming
with proving; integration of proving into math textbooks
generation and interactive math teaching; multi-style prov-
ing triggered by special context.

In principle, one could of course take any of the existing
computer algebra systems as a starting point for our project.



Here are the reasons why, after a profound analysis of the
current computer algebra systems, we decided to base our
work on Mathematica 3.0 (at least in the prototype phase):

o FEssentially, the innermost part of the Mathematica lan-
guage is identical to higher-order equational logic (see
the detailed analysis in [5]). As a consequence, Math-
ematica can be viewed as a “logic-internal” program-
ming language and, thus, the language gap between
computing and proving is closed in a natural way.

e The rule-based programming style of Mathematica
lends itself to the implementation of provers that are
basically a collection of rules for handling proof situa-
tions.

o Mathematica provides the “notebook” facilityby which
mathematical papers can be nicely structured and “ac-
tive text” (programs that can be called from within
the paper) can be intermingled with ordinary passive
mathematical text.

e The new version 3.0 of Mathematica has highly so-
phisticated mathematical typesetting facilitieseven for
executable formulae in the “input cells” of Mathemat-
ica “notebooks”. In particular, Mathematica 3.0 also
allows to change and extend its syntax and to attach
user-defined semantics with syntactical notation.

o The text in notebooks can be structured in nested cells
of arbitrary nesting depth. Such notebooks can be pro-
duced by Mathematica programs (e.g. our provers).
This allows an elegant and novel way of presenting
proofs in nested form as will be demonstrated below.

Together, these features of Mathematica provide a good
starting point for moving towards the final goal of the Theo-
rema project, which is to provide a uniform (logic and soft-
ware) system in which a working mathematician, without
leaving the system, can get computer-support while loop-
ing through all phases of the mathematical problem solving
cycle:

o the phase of specifying a problem including the com-
pilation of relevant knowledge and the definition of
new concepts (predicates, functions) and auxiliary al-
gorithms;

e the phase of exploring a given problem and creating
ideas and conjectures by studying examples using the
available knowledge and algorithms;

e the phase of proving or disproving conjectures and
thereby increasing the relevant knowledge base;

o the phase of programming, i.e. transforming useful new
and provenly correct mathematical knowledge into al-
gorithms for solving the initial problem;

e the phase of writing up one’s finding in interactive
mathematical documents.

The Theorema project is pursued at RISC under the di-
rection of the first author. It is an attempt at realizing the
goal of integrating computer algebra and theorem proving,
which has tentatively been formulated already in [3] and,
more explicitly, in [4]. The co-authors of this paper are cur-
rently working jointly with the first author on the following
parts of the system: syntax of the mathematical language

(F. Kriftner), predicate logic prover (T. Jebelean), induc-
tive prover for lists (D. Visaru), generation of knowledge
bases from functors (E. Tomuta), simplification prover (M.

Marin).

2 The Structure of the Theorema System

The Theorema system is being built up in the following lay-
ers:

o A symbolic computation software system (at present,
Mathematica 3.0) as the basic implementation frame.
(Note that we do not rely on the algebraic algorithms
library of such a system but only on the language
frame. More specifically, algorithms should be derived
and verified within our system before being integrated
into the algorithmic library.)

o A mathematical language as a common frame for both
non-algorithmic and algorithmic mathematics. Basi-
cally, we take a version of higher order logic (with the
additional concept of “sequence variables”, a concept
borrowed from Mathematica for this purpose). The
syntax of this language is implemented by using the
syntax extension facilities of Mathematica. The part
of the language that consists of “executable formu-
lae” (function definitions using induction and bounded
quantifiers) gets a semantic interpretation by writing
appropriate functions in Mathematica.

e The concept of “functor” as the general mechanism for
building up towers of mathematical domains. Again,
using higher-order variables, the Currying mechanism,
and the module concept, functors can be implemented
elegantly in Mathematica.

o A general predicate logic prover of a “natural style”
introduced in earlier papers by Buchberger, see for ex-
ample [6], implemented in Mathematica.

e Various special theorem provers (and / or interactive
proof developers) corresponding, in a natural way, to
the various functors that build up mathematical do-
mains. The design and implementation of these pro-
vers is the present main priority in the Theorema pro-
ject. All these provers produce proofs that imitate
“natural” proof styles of human mathematicians. By
now, an induction prover for the natural numbers and
one over the domain of lists over a given domain are
already implemented, a prover for the domain of multi-
variate polynomials over a given domain of monomials
is under way.

e Various special black-box theorem provers that decide
the validity of theorems in certain special areas (like
the theory of real closed fields or certain geometrical
theorems) by reduction of the proof problem to cer-
tain algebraic problems solved by purely algebraic al-
gorithms (Groebner bases method, see [16]; character-
istic sets method, see [22]; cylindrical algebraic decom-
position, see [8]; Cayley factorization, see [19]).

e Various special solversincluding the ones already avail-
able in the current symbolic computation systems (no-
tably the solvers for multivariate polynomial equation
systems).



o A general facility that allows the presentation of proofs
in natural language and in the form of “nested cells”,
which is crucial for being able to read complicated
proofs without losing the overview. This facility is
based on the facilities for manipulating cells in Math-
ematica notebooks.

o Mechanisms for the automatic generation of compli-
cated knowledge bases from algebraic properties of
given domains and the definition of functors.

In the present paper we demonstrate the following parts
of the system by way of examples:

— The syntax of the higher order predicate logic language
and the semantics of its “executable” part, Section 3.

— The general predicate logic prover, Section 4.

— The induction provers for natural numbers and lists, based
on simplification, Section 5.

— The syntax and semantics of the functor concept and com-
puting and proving with functors, Section 6.

These parts of the system are already implemented and
extensive experiments are being carried out.

3 A Mathematical Language

The language in which we express both mathematical state-
ments and algorithms is a version of the language of higher
order predicate logic. This language starts from object sym-
bols like “a”, “Sin”, “2”, etc. (Which can be used either as
constants, bound variables or free variables, see below.) The
essential construct is function application by which terms
are built inductively from object symbols using the follow-
ing two rules:

e Every object symbol is a term.
o If Tand Ti,...,T, are terms, then T[T1,...

a term.

,Tn] is

Note that we do not fix the “arity” of object symbols and,
in this stage, we do not define any type restrictions. (Type
restrictions will be necessary, however, for formulating some
of the inference rules). Thus, Sin[2], 2[Sin], and Sin[2, 3] all
are admissible terms. Also, note that “Currying” is possible
i.e, for example, Polys[D][+][5,7] is an admissible term. We
use “=7” as equality symbol.

Furthermore, we allow the usual propositional connec-
tives =, A, etc. and the quantifiers 3 and V (with the bound
variables written under the quantifiers) for building up for-
mulae from terms. (By quantification, object symbols be-
come bound variables!) For example,

Va3y flz, y] = glx, y]

is a typical formula.

Some of the object symbols may be written infix or pre-
postfix. For example, |z +y| is a term, in which + is written
infix and || is written pre-postfix.

Next we introduce sets, tuples and (natural, integer, and
rational) numbers as basic categories of objects with a cou-
ple of special operations and quantifiers on these objects.
(In distinction to the usual convention in Mathematica, we
use curly brackets for the operation of explicit set enumer-
ation and angle brackets for the operation of explicit tuple
construction.) Here we give only a few examples of (true)
formulae involving these special symbols:

{2737 47 3} = {37 27 4}

1{2,3,4,3}| 3
{z|e # =} {

primefi]) = (4,6,10,14)

(20 |

i=2,...,10

(2,4,6,10,14); = 6

In quantified formulae we reserve two lines for special infor-
mation on the bound variables: The first line (as subscript)
indicates the range of the bounded variable, whereas the
second line (as underscript; may also be empty) describes a
condition on the bounded variable. For example, in

Veea T2>n
prime[z]

x € A specifies a range, whereas prime[z] specifies a con-
dition. This distinction (which is normally not made in
logic) is important for those formulae that are “executable”:
The range specification describes a routine by which (finitely
many) objects are enumerated, the condition specifies a rou-
tine by which, for each object enumerated, it is decided
whether or not it should be considered in the body of the
quantified formula. For example, if A is a finite set, the
above formula can be read as an algorithm.

We implemented various general and special quantifiers
like: “¥”, “J”, set braces “{}”, summation “Y”, product
“I1”, etc. which all can be formulated in terms of “A” which
is available as a standard construct in Mathematica. (In
fact, in [10] it was shown that the availability of “A” is cru-
cial.)

Furthermore, we introduce a special category of sym-
bols, called “sequence symbols”. (This is a useful concept
borrowed from Mathematica where the notation with three
underscores is used.) We use an overbar for denoting se-
quence symbols. For example, f[7,0,7] is a term involving
the sequence constants ¥ and y. Whereas ordinary constants
denote individual objects, sequence constants denote finite
ordered sequences of objects. Also sequence symbols can be
used as sequence constants, free sequence variables or bound
sequence variables, see below.

Sequence constants (and sequence variables occurring as
bounded variables in quantified formulae) need particular
inference rules. We present here only one such rule, which
is a general induction principle on sequence variables:

In order to prove that Vz A, where A contains T unquan-
tified, proceed as follows:

o Induction base: Prove Az, (i.e. the formula that
results from A by replacing T by nothing).

o Induction hypothesis: Choose 9 and Ty “arbitrary
but fixed” (i.e. introduce a fresh object symbol @¢ and
a fresh sequence symbol 7o) and assume Az, 7.

o Induction step: Prove Az ;, 75

For understanding this rule, one must specify the sub-
stitution process for sequence symbols. We explain this in
an example where the above principle specializes to an in-
duction principle over lists. lLet us consider the following
formula:

V= (a — (F)) ~ b = (a,T,b),

where — and — denote the operations of prepending, re-
spectively appending, to a list. We have (when doing induc-
tion over T):

— induction base: (a—{)) ~b={a,b),
— induction hypothesis: (a — (Zg)) ~ b = {a, Tq, b},
— induction step: (a — {Z0,T0)) — b= {a, &0, To, b).



Using the above induction principle one can produce induc-
tion principles for inductively defined domains as shown in
the section on induction provers for natural numbers and for
lists.
There are two classes of formulae that are “executable”:
¢ inductive equalities,
o formulae using only quantifiers with bounded ranges.

Bounded ranges are finite sets (we saw an example of this
above), ranges of integers specified by an upper and lower
bound (see the example above with : = 2,...,n), and ranges
in enumerable domains (generated by functors) specified by
an upper and lower bound. (We cannot go into the details
of general bounded domain ranges in this paper.)

An example of an inductive function definition by equal-
ities using sequence symbols is the following:

map[f_, ()] = ()
map[f_, (obj_,objs_}] := flobj] — map[f,{objs)].

Here, instead of using a universal quantifier for quantify-
ing the ordinary object symbols f and obj and the sequence
symbol objys, we declared these symbols as universally quan-
tified (or, equivalently, as “free variables”) by writing an
underscore immediately to the right of the symbols. This
is in correspondence with the Mathematica convention for
declaring variables. Note that this declaration is only done
on the left-hand side of the equalities. Note also that all
symbols not explicitly declared to be free or bound variables
are constants.

The inductive function definitions and quantified formu-
lae with bounded ranges constitute a sublanguage of our
variant of higher order predicate logic. This sublanguage is
in fact a universal programming language. Except for no-
tional differences, the inductive definitions part of this lan-
guage is identical to the essential kernel of the Mathematica
language. The bounded quantifier part can be easily imple-
mented by writing a few routines in Mathematica. Hence,
an interpreter for this sublanguage is readily available within
the Mathematica system.

4 The Predicate Logic Prover

This part of the system handles general proof situations
consisting of general (higher-order) predicate logic formulae.
We remark that we do not strive for logical completeness,
rather we emphasize producing “natural proofs” for impor-
tant and frequent proof situations with a variety of different
proof rules.

Our predicate logic prover handles “proof situations’
that, roughly, consist of a “goal” (the predicate logic for-
mula to be proved) and a “knowledge base” (predicate logic
formulae used as assumptions). For reference purpose, we
provide labels for all formulae in the initial knowledge base
and goal and we generate new labels systematically for all
intermediate formulae. The following pair represents a con-
crete proof situation, where the goal and its label are the
first element of the pair while the second element of the pair
is the list of assumptions, each consisting of a label and a
formula:

("AC”, A= C), (("AB”, A= B), ("BC”, B=C))

In one proof step, the prover proceeds from a proof situ-
ation to one or more new proof situations by using various
inference rules. The inference rule to be applied in a given
proof situation is triggered by the outermost symbols of the
formulae constituting the goal and the current knowledge

base. Thus, basically, our prover is a “sequent calculus”.
However, striving for “natural” and easy-to-read proofs, we
formulate and use many more rules than the ones that are
usually compiled in the calculi in logic texts (which strive
for minimality). These rules are taken from [6] and are the
ones the first author also uses in his proof training courses
for graduate students. A typical proof rule of this kind is
the “deduction rule” (for proving Fr = Fgr, assume F; and
prove Fr):

Replace: (label, Fr, = Fr), ((li,A1,), {I2,A2,), ...)
By: (labelr, Fr), ({labelr, Fr), {1, A1), (I2, A2), ...)

We now briefly describe the intermediate data structure
we use in our prover: Starting from an initial proof situation,
we produce a “proof object” containing this proof situation.
In each proof step this proof object is expanded until we,
finally, obtain a proof object that represents the proof, i.e.
it contains all the information on the intermediate proof
situations and the inference rules used in each step of the
proof. The proof object is an abstract object that is not
meant to be read by humans. However, it contains all the
information necessary to produce, in a second step, a proof
in natural language and well structured in ‘“nested cells”,
see below. In more detail, a proof object can have one of
the following two forms:

a) PND[formula, knowledge-base]

is an unevaluated proof object (PND stands for ”Proof by
Natural Deduction”), containing only the proof situation:
formulais the labeled formula to be proved, and knowledge-
baseis the current knowledge base (axioms, definitions, tem-
porary assumptions, etc.) expressed as a tuple of labeled
formulae. Since the prover is a collection of rewrite rules of
the form:

PND[proof-situation] := proof-object,
Mathematica internal evaluation engine will always try to
replace an unevaluated proof object by applying one of the
rules — this is how the proving engine works.

b) ( proof-rule-info, tuple-of-proof-objects, proof-result )
is a [partially] evaluated proof object, where:

o proof-rule-info: information on the prover (proof rule)
applied in the current proof situation; this information
comprises the name of the prover (proof rule), the (la-
bels of the) formulae involved in this proof situation,
and new formulae formed in this proof situation,

o tuple-of-proof-objects: the tuple of proof objects de-
scribing the subproofs generated by applying the pro-
ver (proof rule) in the current proof situation — while
the proof is not yet completed some of these proof-
objects (or sub-objects of them) are still unevaluated.
The tuple-of-proof-objects can also be empty: in this
case we have a terminal proof object which indicates
the termination of a branch of the proof.

e proof-result: information on whether the proof was suc-
cessful or not. This element is missing if the proof ob-
ject contains still unevaluated sub-objects. However,
the proof-result is always present in a terminal proof
object. Also, the mechanism of composing sub-proofs
(which we do not describe here for lack of space) will
insure that the proof results of the various proof ob-
jects are composed correctly and inserted as the last
element of the final proof object.



In the example of the inference rule above, the proof
object constructed by applying the rule has the following
form:

”deduction rule”, label, labelr, Fr,labelr,, F1),
PND[(labelr, Fr), {{labely, FL), {1, A1), (l2, A2}, ...}])

If the proof succeeds, the final proof object will have the
form:

( { 7deduction rule”, label, labelr, Fr,labelr,, F1),
proof-object,
"proved”)

where proof-object contains the proof of Fg.

Our notion of proof object is an ad-hoc notion which is
sufficient for the practical purpose of our system. In a later
stage of our project, we will study how these proof objects
can be translated into the formal proof objects described in
[1] (p. 202), in the frame of the Curry-Howard formalism.

After having produced the proof object, our prover en-
ters into the stage of producing the natural language version
of the proof in nested cell representation. This is done by
syntactical transformation of the proof object into a proof
expressed in human style which explains in detail each step
of the proof in a structured manner. Failed proofs will also
be displayed in this way, giving precise information about
the place of failure: this is an important advantage over
other “black-box” automatic provers, because it helps the
mathematician to locate possible errors in the formulation
of the problem.

The main programming tool we use in this post-processor
is the NotebookPut command of Mathematica with the Op-
tion CellGrouping -> Manual. By this, a notebook is gen-
erated that consists of the nested Mathematica cells pro-
duced by our program. We programmed a couple of auxil-
iary functions for generating certain standard types of cells
(labeled formula cells, proof text cells, etc.). By setting
the option CellGrouping -> Manual, the built-in styles for
nested cells are replaced by our own styles and the nest-
ing can be of “arbitrary” depth (“arbitrary” := to a depth
that is limited by the width of the screen.) As soon as
the notebook with the nested cells representing the proof is
generated the user can click the desired parts of the proof
“open” or “close” as described in the Mathematica manual
[21]: By the recursive structure of the proof objects and the
corresponding recursive call of the function “Nested-Pres-
entation”, entire subproofs may be compressed (by clicking
the cell containing the subproof “closed”) to only one line
when studying a proof. Thus, the reader of a proof may
decide himself to which level of detail he wants to study a
proof.

The natural language text for each proof rule can be com-
posed freely by the “prover programmer”. In the particular
implementation, emphasis is put on logically and syntacti-
cally correct text. The text produced has a quality that can
compete with proof text produced by good students. Of
course, it may sometimes read a little boring. However, the
principle is: “Better boring but correct than poetic and in-
correct.” In Figure 1 we give an example of a proof which
is generated automatically by our prover (including the nat-
ural language text and the cell brackets at the right-hand
side, which represent the nested cell structure).

5 Induction Provers

In this section we describe two special provers which are
already implemented. Both can prove theorems of the fol-

Prove
(D) (FP[z]) = Q) & VaPlz] = Q

with no assumptions.
We prove (D) by natural deduction.
We prove (D) in both directions.

Direction from left to right:
We assume

(D.LA) (3.P[z]) = @
and show

(D.RC) V. P[z] = Q.

For proving (D.RC) we prove, for arbitrary but fixed values,
(D.RC’) Plwo] = Q.

We prove (D.RC’) by the deduction rule. We assume
(D.RC".H) Plzo]
and show

(D.RC".C) Q.

For proving (D.RC’.C), by (D.LA), it suffices to prove
(D.LA.A) 3, P[2].

Formula (D.LA.A) is proved because it is instantiated by

(D.RC".H). Il

Direction from right to left:We assume
(D.RA) VP[z] = Q
and show

(D.LC) (3, P[z]) = Q.

We prove (D.LC) by the deduction rule.We assume
(D.LC.H) 3, P[]
and show

(D.LC.C) Q.

By (D.LC.H) we can take appropriate values such that
(D.LC.H') Plzo].

From (D.LC.H’) and (D.RA) we obtain by modus ponens
(D.RA.D.LC.H") Q.

Formula (D.LC.C) is true because it is identical to

(D.RA.D.LC.H). il

Figure 1: Proof generated automatically.

lowing kind:
Vaz,y,.. rhs =lhs

where rhs and lhs are terms containing functions inductively
defined by equalities in either the domain of natural numbers
in the representation 0, s[0], s[s[0]],... (we will use =t for
s[z]) or in the domain of lists (over some domain) in the
representation (), (a1}, (a1,a2),.... We could define these
domains by functors, see next section. However, in order
not to overload this presentation, we just assume that these
domains are “given”. In these provers, the knowledge base
consists of the inductive equalities that define the function
symbols occurring in lhs and rhs. A typical definition of this
kind is the definition of @(plus) on the natural numbers:

Yo m 0
Yom,n mo®nt

m,

(m&n)*,

or the definition of || (length) on the domain of lists:

101
Yoy [, 9)

The provers proceed recursively over the number n of univer-
sally quantified variables: First, all variables are replaced by
“arbitrary but fixed” constants and a proof by simplification
is attempted (see below). If the formula cannot be proved
by simplification then we use induction over the first vari-
able. The base case and the induction step become proofs of

0,
ot & [(y)].




formulae with one variable less! For these proofs, we call our
prover recursively. The induction principle for the natural
numbers is straight-forward (base case: n « 0; induction
hypothesis: n « ng; induction step: n ¢« (n0)+). The
induction principle for lists is an immediate application of
the induction principle for sequence symbols introduced in
Section 3.

For the sub-proofs by simplification, one could use, in
principle, the built-in simplifier of Mathematica. However,
for more subtle proofs, we need to have more control over
the simplification process and also to trace it step-by-step.
Therefore, we implemented our own simplifier.

We give here an example proof automatically generated
by the induction prover over lists. The cells corresponding
to simplification are closed.

PROPOSITION:
(I=1) Yzz @) =<@I=[@) ")l
under the assumptions

(x) Vzz (z,79),

(@) =) =
(10D 0l = 0,
(o) Yoz z.7)| = 0F @@,
(0 ) Vo 0dn = n,
(+8) Vimn mtén = (maon)t.

PROOF:
We try to prove

(I=1V) Vaz @ =@ =@ o [®)

by simplification. For this, we take all variables arbitrary,
but fixed and try to prove

(o) =< (wo)| = [(To)| © |(wo)l-

An attempt for proving this by simplification fails.
Now we prove the simplified formula

(I=1v.5) vaz @yl =@ @@

by induction on T .
Induction base for T :
We prove

(I=].V.F)

(I=1ViB) vy W) =1012@).

For this, we take in (| < |.V.IB) all variables arbitrary, but
fixed and prove

(I=|ViIB.E) (o) = [0l @ (o)l

A proof by simplification works.
Induction hypothesis for T:

(I=|V.IH) Yy [0, 9)| = [(mo)| @ (W)

Induction step for
We prove

(I = |-V.LS) Vg [(F0, %0, Y)| = [{Fo,T0)| © [(B)]-

For this, we take in (] < |[.V.I.S) all variables arbitrary, but
fixed and prove
(| < [.VIS.F) (&0, %o, %0)| = [(Fo, Z0)| & |(%0)|-

A proof by simplification works.

6 Functors

6.1 The Concept of Functor in Theorema

Functors are a well known concept for building up mathe-
matics in a structured way. In the frame of the Theorema
project, we adopt the notion of functor in the sense of ML
(see [17]), which is technically slightly different from the
notion of a functor in the sense of category theory. It is im-
portant to observe that, although not explicitly mentioned
in the Mathematica manual, functors can easily be imple-
mented in Mathematica. We will publish the details of our
approach for implementing functors in Mathematica in a dif-
ferent paper in order not to overload this overview on the
Theorema project. Here, we only summarize the main idea
of the approach.

However, we would like to emphasize the role functors
can play in structuring special provers of the type described
in this paper. We believe that, together with each func-
tor implemented for building up certain new domains from
given domains, one should also provide theorem provers that
specialize in proving theorems about the domains generated
by the functor. In other words, we consider a functor not
only as a mechanism for defining a new domain (collection of
operations) in terms of a given domain but also as a mech-
anism for transporting knowledge about the given domain
to the new domain. The problem of proving this kind of
“transport knowledge” properties is addressed in the next
section where we also give an example of an automatically
generated proof.

6.2 Computing with Functors

In this section we briefly summarize the way we implement
functors in Mathematica. We start with representing a do-
main [} as a function that defines functions for certain “op-
erators”. For example, the following object Z is a simple
domain:

Z[+] := Plus, Z[0] := 0,

where “Plus” and “0” are the “built-in” addition and the
built-in integer of Mathematica. For syntactic simplicity, we

introduce the convention that “ o ” etc. stands for “D[o]”
D

(which is perfectly possible in the new version of Mathemat-
ica). Thus, we could write, for example, 2 4 2 which, with
zZ

the above definitions, evaluates to 4.

We also add the unary operator “¢” to any domain with
the convention that, for any domain D, Dle] is a decision
function which yields “True” for exactly the objects we con-
sider to be in the “carrier” of D). For example, we could
define

Z[e] := IntegerQ

where “IntegerQ” is the built-in decision algorithm for inte-
gers. Note that the symbol “€” is different from the symbol
“€” that denotes the element predicate of set theory.

In our terminology (which is basically the ML terminol-
ogy), a functor is just a function that maps domains into
domains. Thus, a functor is an object F' that takes ) as
an argument and produces F[D] with the view that F[D]
can now be applied to any operation symbol o yielding an
operation in the domain F[D]. In particular, F[D][e] is a
decision function for the objects which we want to be in the
carrier of F[D].

For constructing functors we provide a function Functor.
The function parses the Theorema formulae passed as argu-



ments, performs a basic correctness check on them, trans-
forms them into Mathematica rules and wraps them in a
Module construct. In other words the function produces an
internal representation of the functor definition which cap-
tures the computational content of the formulae input by
the user and is directly executable by Mathematica.

With this function one can define the operations in F[D]
depending on D as shown in the following simple example
that generates the complexification C' of a domain D.

Complexification[D_] := Functor[{C, e, 0,+, ...},

("€”, Vi € [(r,i)] :& € [r] A ¢ [i]);
(707, ° = °, 0 i

<77+777er,mi,yr,yi <$T7$i> + (yr, yl> = <.I,‘7" + yT,.’L‘i + yl>>7
c D D

Cl;

The function DefineDomainis provided for defining new
domains in terms of existing functors and domains. For
example, for defining the domain G obtained by applying
Complexi fication to Z, we can enter:

G "DefineDomain~ Complexification[Z].

The function DefineDomain can be seen as a specialized as-
signment used in domain definitions in place of the usual
assignment ( := ) of Mathematica. Its task is twofold:

— it stores “type” information related to the defined sym-
bol in an internal Theorema structure, making it possible to
“reason” about the symbol;

— 1t executes the representation of the functor definition
produced by the function Functor (see above) associating
Mathematica rules to the new domain which is being con-
structed.

After defining G as shown above, one can compute, for ex-

ample, (2,3) + (4,6), which yields (6,9).
G

6.3 Proving Theorems about Functors

We address the problem of proving statements of the form
P[D] under the assumptions: D = F[D1,...,Dx], Pi[D1],

.. Py[Dx], where F' is a functor; D, Dy, ..., Dy are do-
mains; P, P1,..., Py, are sets of Theorema formulae express-
ing properties of the respective domains. For instance, such
a P[D] can contain the axioms of a group:

isGroup[D ] :=

((Cassoc”, ey (¢ + ) + 2= + (y + )
D D D D
("zero”, Vo o + z =ux),
D D
(Pinverse”, Vo, z + ( — )= o )
D D
);

Such statements are special cases of general formulae in-
volving functors and thus are a good example for studying
and extending functors. In particular they demonstrate the
transfer of knowledge from existing domains to a newly con-
structed one, a reasoning pattern which is very often en-
countered in “real life” mathematics.

In Theorema, the proof of a statement of the kind shown
above consists in the following main steps:

Generation of the proof situation: The formulae of the
form P;[D;] are replaced with the sequence of formulae
defining them, while formulae of the form D = F[D;,
Dy, ..., D] are replaced with a list of formulae ex-
tracted from the definition of the functor F' with the
input and output domain variables properly instanti-
ated.

Natural Deduction Steps: The logical connectors and the
free variables are eliminated (instantiated) by a apply-
ing natural deduction inference rules.

Call Specialized Provers: Typically, the problem is to re-
duce the predicates (equalities) expressed over con-
stants in the constructed domain to predicates ex-
pressed in the base domains. For this, special provers
are called (e.g. simplifiers, induction provers) which
correspond to the structure of the functor.

In our current implementation the steps above are per-
formed by a dedicated prover called FND (Functor Natural
Deduction). The prover produces a Theorema proof-object
and provides an option for formatting the proof-object as a
Mathematica 3.0 notebook. The proof-objects returned by
the specialized provers are embedded into the main proof-
object.

We illustrate the way the functor prover works, by listing
below the proof automatically generated by the Theorema
system for the complexification of a group. (For reasons of
space, only the proof of the second subgoal is given in full
detail.) Note the special sub-proof by simplification, which
applies the adequate known equalities as rewrite rules in or-
der to reduce the properties of GG to properties of Z.

Prove: (G) IsGroup(G)

under the assumptions:
(C) G = Complexification(Z)
(Z) IsGroup(Z).

Proof:
We prove the individual conjunctive parts of (G):
O Proof of
(G.assoc) Veoy- (x +y) + 2 = 2 4+ (y + 2).
G G G G
O Proof of
(G.zero) Vo o + z=ux.

G G
We prove, for arbitrary but fixed values,

(G.zero’) o + zp = xo.
G G

By (C.€) we can take appropriate values in Z such that:
(C.e’) To = <T0,i0>.

A proof of (G.zero’) by simplification works.
Simplification of the LHS term:
o + zo =by (C.e'.1)
G

G
o + {ro,i0) = by (C.0)
G

Q

(o, 0) 4 {ro,10) = by (C.4)
z z G
(o + ro, o + io) = by (Z.zero)
z z z z
(ro, o 4+ io) = by (Z.zero)
z z
(ro,10)]



Simplification of the RHS term:
zo = by (C.€’.1)
(ro, 70)]

O Proof of
(+.inverseleft) V. ¢ + ( — ) = o .
G

G G

7 Conclusion

We described the objectives and present state of the Theo-
rema project. Although this project is in its initial stage, we
believe that it demonstrates a high potential for enhancing
the current computer algebra systems by computer-support
for the proving phase of the mathematical problem solv-
ing cycle. Our next step will be the systematic design and
implementation of special provers for all the fundamental
domains and functors, which are used in building up (algo-
rithmic) mathematics. Our first priority is to design provers
that generate easy-to read proofs in natural language. Later,
as part of our project, we will also re-implement or link the
existing “black-box” provers based on algebraic algorithms,
to our system. Also, we will integrate special solvers for the
various domains and functors.
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