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Of course, computing, solving, and proving are mutuallydependent. For example, a prover for a certain class of ex-istentially quanti�ed formulae, essentially, is a solver. Also,certain solvers may need proving potential as a subroutine.Both solvers and provers are expressions that are evaluatedon (abstract) computers. Anyway, from the point of viewof a user, computers, solvers, and provers are doing threedi�erent things with a given expression T . (A more detailedanalysis of \computing", \solving", \proving" will be givenin another paper.)One should also remark that, often, what the user ex-pects from a prover is not only a \black box" decision aboutthe validity of a given formula T but a proof, i.e. a sequenceof inference steps (in a certain logic) together with expla-nations about the assumptions used in each step etc. thatderive the validity of T from the knowledge base K.Existing computer algebra systems are quite good incomputing and, for certain K, are also amazingly good insolving (example: the \Solve" routines for systems of non-linear algebraic equations) but weak in proving. Existingtheorem proving systems, for certain K (in certain areas ofmathematics), are amazingly strong in proving but, usually,are weak in solving and computing. It is natural to strive forsystems that are strong in computing, solving, and proving.In order to close the gap between computing / solving(computer algebra systems) on the one side and proving(theorem proving systems) on the other side one could startfrom either of the two sides. E�orts to close the gap start-ing from theorem provers are for instance, [9], [15], [18].Also, there are some recent projects that are based eitheron adding proving facilities or on linking theorem provers tocomputer algebra systems, see the bibliography in [13]. Themost important current projects combining computer alge-bra systems with theorem provers (in either of the aboveapproaches) are the following: Isabelle [18], Analytica [7],NQTHM [2], Nuprl [9], Coq [15], HOL [12], Oyster-Clam[14], [20], Redlog [11]. In the Theorema project, we decidedto start from an existing computer algebra system, namelyMathematica (version 3.0) and to add proving facilities. Ourproject is di�erent from the other projects in one way or theother. The distinctive features are: integration of an ex-isting rewrite rule language (Mathematica) into our logic;imitation of human proof style; natural language formula-tion of proofs; combination of functor style programmingwith proving; integration of proving into math textbooksgeneration and interactive math teaching; multi-style prov-ing triggered by special context.In principle, one could of course take any of the existingcomputer algebra systems as a starting point for our project.1



Here are the reasons why, after a profound analysis of thecurrent computer algebra systems, we decided to base ourwork on Mathematica 3.0 (at least in the prototype phase):� Essentially, the innermost part of the Mathematica lan-guage is identical to higher-order equational logic (seethe detailed analysis in [5]). As a consequence, Math-ematica can be viewed as a \logic-internal" program-ming language and, thus, the language gap betweencomputing and proving is closed in a natural way.� The rule-based programming style of Mathematicalends itself to the implementation of provers that arebasically a collection of rules for handling proof situa-tions.� Mathematica provides the \notebook" facility by whichmathematical papers can be nicely structured and \ac-tive text" (programs that can be called from withinthe paper) can be intermingled with ordinary passivemathematical text.� The new version 3.0 of Mathematica has highly so-phisticated mathematical typesetting facilities even forexecutable formulae in the \input cells" of Mathemat-ica \notebooks". In particular, Mathematica 3.0 alsoallows to change and extend its syntax and to attachuser-de�ned semantics with syntactical notation.� The text in notebooks can be structured in nested cellsof arbitrary nesting depth. Such notebooks can be pro-duced by Mathematica programs (e.g. our provers).This allows an elegant and novel way of presentingproofs in nested form as will be demonstrated below.Together, these features of Mathematica provide a goodstarting point for moving towards the �nal goal of the Theo-rema project, which is to provide a uniform (logic and soft-ware) system in which a working mathematician, withoutleaving the system, can get computer-support while loop-ing through all phases of the mathematical problem solvingcycle:� the phase of specifying a problem including the com-pilation of relevant knowledge and the de�nition ofnew concepts (predicates, functions) and auxiliary al-gorithms;� the phase of exploring a given problem and creatingideas and conjectures by studying examples using theavailable knowledge and algorithms;� the phase of proving or disproving conjectures andthereby increasing the relevant knowledge base;� the phase of programming, i.e. transforming useful newand provenly correct mathematical knowledge into al-gorithms for solving the initial problem;� the phase of writing up one's �nding in interactivemathematical documents.The Theorema project is pursued at RISC under the di-rection of the �rst author. It is an attempt at realizing thegoal of integrating computer algebra and theorem proving,which has tentatively been formulated already in [3] and,more explicitly, in [4]. The co-authors of this paper are cur-rently working jointly with the �rst author on the followingparts of the system: syntax of the mathematical language

(F. Kriftner), predicate logic prover (T. Jebelean), induc-tive prover for lists (D. V�asaru), generation of knowledgebases from functors (E. Tomut�a), simpli�cation prover (M.Marin).2 The Structure of the Theorema SystemThe Theorema system is being built up in the following lay-ers:� A symbolic computation software system (at present,Mathematica 3.0) as the basic implementation frame.(Note that we do not rely on the algebraic algorithmslibrary of such a system but only on the languageframe. More speci�cally, algorithms should be derivedand veri�ed within our system before being integratedinto the algorithmic library.)� A mathematical language as a common frame for bothnon-algorithmic and algorithmic mathematics. Basi-cally, we take a version of higher order logic (with theadditional concept of \sequence variables", a conceptborrowed from Mathematica for this purpose). Thesyntax of this language is implemented by using thesyntax extension facilities of Mathematica. The partof the language that consists of \executable formu-lae" (function de�nitions using induction and boundedquanti�ers) gets a semantic interpretation by writingappropriate functions in Mathematica.� The concept of \functor" as the general mechanism forbuilding up towers of mathematical domains. Again,using higher-order variables, the Currying mechanism,and the module concept, functors can be implementedelegantly in Mathematica.� A general predicate logic prover of a \natural style"introduced in earlier papers by Buchberger, see for ex-ample [6], implemented in Mathematica.� Various special theorem provers (and / or interactiveproof developers) corresponding, in a natural way, tothe various functors that build up mathematical do-mains. The design and implementation of these pro-vers is the present main priority in the Theorema pro-ject. All these provers produce proofs that imitate\natural" proof styles of human mathematicians. Bynow, an induction prover for the natural numbers andone over the domain of lists over a given domain arealready implemented, a prover for the domain of multi-variate polynomials over a given domain of monomialsis under way.� Various special black-box theorem provers that decidethe validity of theorems in certain special areas (likethe theory of real closed �elds or certain geometricaltheorems) by reduction of the proof problem to cer-tain algebraic problems solved by purely algebraic al-gorithms (Groebner bases method, see [16]; character-istic sets method, see [22]; cylindrical algebraic decom-position, see [8]; Cayley factorization, see [19]).� Various special solvers including the ones already avail-able in the current symbolic computation systems (no-tably the solvers for multivariate polynomial equationsystems).2



� A general facility that allows the presentation of proofsin natural language and in the form of \nested cells",which is crucial for being able to read complicatedproofs without losing the overview. This facility isbased on the facilities for manipulating cells in Math-ematica notebooks.� Mechanisms for the automatic generation of compli-cated knowledge bases from algebraic properties ofgiven domains and the de�nition of functors.In the present paper we demonstrate the following partsof the system by way of examples:{ The syntax of the higher order predicate logic languageand the semantics of its \executable" part, Section 3.{ The general predicate logic prover, Section 4.{ The induction provers for natural numbers and lists, basedon simpli�cation, Section 5.{ The syntax and semantics of the functor concept and com-puting and proving with functors, Section 6.These parts of the system are already implemented andextensive experiments are being carried out.3 A Mathematical LanguageThe language in which we express both mathematical state-ments and algorithms is a version of the language of higherorder predicate logic. This language starts from object sym-bols like \a", \Sin", \2", etc. (Which can be used either asconstants, bound variables or free variables, see below.) Theessential construct is function application by which termsare built inductively from object symbols using the follow-ing two rules:� Every object symbol is a term.� If T and T1; : : : ; Tn are terms, then T [T1 ; : : : ; Tn] isa term.Note that we do not �x the \arity" of object symbols and,in this stage, we do not de�ne any type restrictions. (Typerestrictions will be necessary, however, for formulating someof the inference rules). Thus, Sin[2], 2[Sin], and Sin[2; 3] allare admissible terms. Also, note that \Currying" is possiblei.e, for example, Polys[D][+][5;7] is an admissible term. Weuse \� " as equality symbol.Furthermore, we allow the usual propositional connec-tives :, ^, etc. and the quanti�ers 9 and 8 (with the boundvariables written under the quanti�ers) for building up for-mulae from terms. (By quanti�cation, object symbols be-come bound variables!) For example,8x9y f [x; y]) g[x; y]is a typical formula.Some of the object symbols may be written in�x or pre-post�x. For example, jx+yj is a term, in which + is writtenin�x and jj is written pre-post�x.Next we introduce sets, tuples and (natural, integer, andrational) numbers as basic categories of objects with a cou-ple of special operations and quanti�ers on these objects.(In distinction to the usual convention in Mathematica, weuse curly brackets for the operation of explicit set enumer-ation and angle brackets for the operation of explicit tupleconstruction.) Here we give only a few examples of (true)formulae involving these special symbols:f2; 3; 4; 3g � f3; 2; 4g

jf2; 3; 4; 3gj � 3fxjx 6= xg � fgh2i ji=2;:::;10 prime[i]i � h4; 6; 10; 14ih2; 4; 6; 10; 14i3 � 6In quanti�ed formulae we reserve two lines for special infor-mation on the bound variables: The �rst line (as subscript)indicates the range of the bounded variable, whereas thesecond line (as underscript; may also be empty) describes acondition on the bounded variable. For example, in8x2Aprime[x] x � nx 2 A speci�es a range, whereas prime[x] speci�es a con-dition. This distinction (which is normally not made inlogic) is important for those formulae that are \executable":The range speci�cation describes a routine by which (�nitelymany) objects are enumerated, the condition speci�es a rou-tine by which, for each object enumerated, it is decidedwhether or not it should be considered in the body of thequanti�ed formula. For example, if A is a �nite set, theabove formula can be read as an algorithm.We implemented various general and special quanti�erslike: \8", \9", set braces \fg", summation \�", product\�", etc. which all can be formulated in terms of \�" whichis available as a standard construct in Mathematica. (Infact, in [10] it was shown that the availability of \�" is cru-cial.)Furthermore, we introduce a special category of sym-bols, called \sequence symbols". (This is a useful conceptborrowed from Mathematica where the notation with threeunderscores is used.) We use an overbar for denoting se-quence symbols. For example, f [x; 0; y] is a term involvingthe sequence constants x and y. Whereas ordinary constantsdenote individual objects, sequence constants denote �niteordered sequences of objects. Also sequence symbols can beused as sequence constants, free sequence variables or boundsequence variables, see below.Sequence constants (and sequence variables occurring asbounded variables in quanti�ed formulae) need particularinference rules. We present here only one such rule, whichis a general induction principle on sequence variables:In order to prove that 8x A, where A contains x unquan-ti�ed, proceed as follows:� Induction base: Prove Ax (i.e. the formula thatresults from A by replacing x by nothing).� Induction hypothesis: Choose _x0 and x0 \arbitrarybut �xed" (i.e. introduce a fresh object symbol _x0 anda fresh sequence symbol x0) and assume Ax x0 .� Induction step: Prove Ax _x0 ;x0 .For understanding this rule, one must specify the sub-stitution process for sequence symbols. We explain this inan example where the above principle specializes to an in-duction principle over lists. Let us consider the followingformula: 8x (a ^ hxi) _ b � ha; x; bi;where ^ and _ denote the operations of prepending, re-spectively appending, to a list. We have (when doing induc-tion over x):{ induction base: (a ^ hi) _ b � ha; bi;{ induction hypothesis: (a ^ hx0i) _ b � ha; x0; bi;{ induction step: (a ^ h _x0; x0i) _ b � ha; _x0; x0; bi:3



Using the above induction principle one can produce induc-tion principles for inductively de�ned domains as shown inthe section on induction provers for natural numbers and forlists.There are two classes of formulae that are \executable":� inductive equalities,� formulae using only quanti�ers with bounded ranges.Bounded ranges are �nite sets (we saw an example of thisabove), ranges of integers speci�ed by an upper and lowerbound (see the example above with i = 2; : : : ; n), and rangesin enumerable domains (generated by functors) speci�ed byan upper and lower bound. (We cannot go into the detailsof general bounded domain ranges in this paper.)An example of an inductive function de�nition by equal-ities using sequence symbols is the following:map[f_; hi] := hi;map[f_; hobj_; objs_i] := f [obj]^ map[f; hobjsi]:Here, instead of using a universal quanti�er for quantify-ing the ordinary object symbols f and obj and the sequencesymbol objs, we declared these symbols as universally quan-ti�ed (or, equivalently, as \free variables") by writing anunderscore immediately to the right of the symbols. Thisis in correspondence with the Mathematica convention fordeclaring variables. Note that this declaration is only doneon the left-hand side of the equalities. Note also that allsymbols not explicitly declared to be free or bound variablesare constants.The inductive function de�nitions and quanti�ed formu-lae with bounded ranges constitute a sublanguage of ourvariant of higher order predicate logic. This sublanguage isin fact a universal programming language. Except for no-tional di�erences, the inductive de�nitions part of this lan-guage is identical to the essential kernel of the Mathematicalanguage. The bounded quanti�er part can be easily imple-mented by writing a few routines in Mathematica. Hence,an interpreter for this sublanguage is readily available withinthe Mathematica system.4 The Predicate Logic ProverThis part of the system handles general proof situationsconsisting of general (higher-order) predicate logic formulae.We remark that we do not strive for logical completeness,rather we emphasize producing \natural proofs" for impor-tant and frequent proof situations with a variety of di�erentproof rules.Our predicate logic prover handles \proof situations"that, roughly, consist of a \goal" (the predicate logic for-mula to be proved) and a \knowledge base" (predicate logicformulae used as assumptions). For reference purpose, weprovide labels for all formulae in the initial knowledge baseand goal and we generate new labels systematically for allintermediate formulae. The following pair represents a con-crete proof situation, where the goal and its label are the�rst element of the pair while the second element of the pairis the list of assumptions, each consisting of a label and aformula:h "AC", A) C i; h h "AB", A) B i; h "BC", B ) C i iIn one proof step, the prover proceeds from a proof situ-ation to one or more new proof situations by using variousinference rules. The inference rule to be applied in a givenproof situation is triggered by the outermost symbols of theformulae constituting the goal and the current knowledge

base. Thus, basically, our prover is a \sequent calculus".However, striving for \natural" and easy-to-read proofs, weformulate and use many more rules than the ones that areusually compiled in the calculi in logic texts (which strivefor minimality). These rules are taken from [6] and are theones the �rst author also uses in his proof training coursesfor graduate students. A typical proof rule of this kind isthe \deduction rule" (for proving FL ) FR, assume FL andprove FR):Replace: hlabel; FL ) FRi; hhl1; A1; i; hl2; A2; i; : : :iBy: hlabelR; FRi; hhlabelL; FLi; hl1; A1i; hl2; A2i; : : :iWe now briey describe the intermediate data structurewe use in our prover: Starting from an initial proof situation,we produce a \proof object" containing this proof situation.In each proof step this proof object is expanded until we,�nally, obtain a proof object that represents the proof, i.e.it contains all the information on the intermediate proofsituations and the inference rules used in each step of theproof. The proof object is an abstract object that is notmeant to be read by humans. However, it contains all theinformation necessary to produce, in a second step, a proofin natural language and well structured in \nested cells",see below. In more detail, a proof object can have one ofthe following two forms:a) PND[formula, knowledge-base]is an unevaluated proof object (PND stands for "Proof byNatural Deduction"), containing only the proof situation:formula is the labeled formula to be proved, and knowledge-base is the current knowledge base (axioms, de�nitions, tem-porary assumptions, etc.) expressed as a tuple of labeledformulae. Since the prover is a collection of rewrite rules ofthe form: PND[proof-situation] := proof-object,Mathematica internal evaluation engine will always try toreplace an unevaluated proof object by applying one of therules { this is how the proving engine works.b) h proof-rule-info, tuple-of-proof-objects, proof-result iis a [partially] evaluated proof object, where:� proof-rule-info: information on the prover (proof rule)applied in the current proof situation; this informationcomprises the name of the prover (proof rule), the (la-bels of the) formulae involved in this proof situation,and new formulae formed in this proof situation,� tuple-of-proof-objects: the tuple of proof objects de-scribing the subproofs generated by applying the pro-ver (proof rule) in the current proof situation { whilethe proof is not yet completed some of these proof-objects (or sub-objects of them) are still unevaluated.The tuple-of-proof-objects can also be empty: in thiscase we have a terminal proof object which indicatesthe termination of a branch of the proof.� proof-result: information on whether the proof was suc-cessful or not. This element is missing if the proof ob-ject contains still unevaluated sub-objects. However,the proof-result is always present in a terminal proofobject. Also, the mechanism of composing sub-proofs(which we do not describe here for lack of space) willinsure that the proof results of the various proof ob-jects are composed correctly and inserted as the lastelement of the �nal proof object.4



In the example of the inference rule above, the proofobject constructed by applying the rule has the followingform:h h "deduction rule", label; labelR; FR; labelL; FLi;PND[hlabelR; FRi; hhlabelL ; FLi; hl1; A1i; hl2; A2i; : : :i]iIf the proof succeeds, the �nal proof object will have theform:h h "deduction rule", label; labelR; FR; labelL; FLi;proof-object,"proved"iwhere proof-object contains the proof of FR.Our notion of proof object is an ad-hoc notion which issu�cient for the practical purpose of our system. In a laterstage of our project, we will study how these proof objectscan be translated into the formal proof objects described in[1] (p. 202), in the frame of the Curry-Howard formalism.After having produced the proof object, our prover en-ters into the stage of producing the natural language versionof the proof in nested cell representation. This is done bysyntactical transformation of the proof object into a proofexpressed in human style which explains in detail each stepof the proof in a structured manner. Failed proofs will alsobe displayed in this way, giving precise information aboutthe place of failure: this is an important advantage overother \black-box" automatic provers, because it helps themathematician to locate possible errors in the formulationof the problem.The main programming tool we use in this post-processoris the NotebookPut command of Mathematica with the Op-tion CellGrouping -> Manual. By this, a notebook is gen-erated that consists of the nested Mathematica cells pro-duced by our program. We programmed a couple of auxil-iary functions for generating certain standard types of cells(labeled formula cells, proof text cells, etc.). By settingthe option CellGrouping -> Manual, the built-in styles fornested cells are replaced by our own styles and the nest-ing can be of \arbitrary" depth (\arbitrary" := to a depththat is limited by the width of the screen.) As soon asthe notebook with the nested cells representing the proof isgenerated the user can click the desired parts of the proof\open" or \close" as described in the Mathematica manual[21]: By the recursive structure of the proof objects and thecorresponding recursive call of the function \Nested-Pres-entation", entire subproofs may be compressed (by clickingthe cell containing the subproof \closed") to only one linewhen studying a proof. Thus, the reader of a proof maydecide himself to which level of detail he wants to study aproof.The natural language text for each proof rule can be com-posed freely by the \prover programmer". In the particularimplementation, emphasis is put on logically and syntacti-cally correct text. The text produced has a quality that cancompete with proof text produced by good students. Ofcourse, it may sometimes read a little boring. However, theprinciple is: \Better boring but correct than poetic and in-correct." In Figure 1 we give an example of a proof whichis generated automatically by our prover (including the nat-ural language text and the cell brackets at the right-handside, which represent the nested cell structure).5 Induction ProversIn this section we describe two special provers which arealready implemented. Both can prove theorems of the fol-

Prove (D) ((9xP [x])) Q), 8xP [x]) Qwith no assumptions.We prove (D) by natural deduction.We prove (D) in both directions.Direction from left to right:We assume(D.LA) (9xP [x])) Qand show(D.RC) 8xP [x]) Q.For proving (D.RC) we prove, for arbitrary but �xed values,(D.RC') P [x0 ]) Q.We prove (D.RC') by the deduction rule. We assume(D.RC'.H) P [x0]and show(D.RC'.C) Q.For proving (D.RC'.C), by (D.LA), it su�ces to prove(D.LA.A) 9xP [x].Formula (D.LA.A) is proved because it is instantiated by(D.RC'.H).Direction from right to left:We assume(D.RA) 8xP [x]) Qand show(D.LC) (9xP [x])) Q.We prove (D.LC) by the deduction rule.We assume(D.LC.H) 9xP [x]and show(D.LC.C) Q.By (D.LC.H) we can take appropriate values such that(D.LC.H') P [x0].From (D.LC.H') and (D.RA) we obtain by modus ponens(D.RA.D.LC.H') Q.Formula (D.LC.C) is true because it is identical to(D.RA.D.LC.H').Figure 1: Proof generated automatically.lowing kind: 8x;y;::: rhs � lhswhere rhs and lhs are terms containing functions inductivelyde�ned by equalities in either the domain of natural numbersin the representation 0, s[0], s[s[0]]; : : : (we will use x+ fors[x]) or in the domain of lists (over some domain) in therepresentation hi, ha1i, ha1; a2i; : : :. We could de�ne thesedomains by functors, see next section. However, in ordernot to overload this presentation, we just assume that thesedomains are \given". In these provers, the knowledge baseconsists of the inductive equalities that de�ne the functionsymbols occurring in lhs and rhs. A typical de�nition of thiskind is the de�nition of �(plus) on the natural numbers:8m m� 0 � m;8m;n m� n+ � (m� n)+;or the de�nition of jj (length) on the domain of lists:jhij � 0;8x;y jhx; yij � 0+ � jhyij:The provers proceed recursively over the number n of univer-sally quanti�ed variables: First, all variables are replaced by\arbitrary but �xed" constants and a proof by simpli�cationis attempted (see below). If the formula cannot be provedby simpli�cation then we use induction over the �rst vari-able. The base case and the induction step become proofs of5



formulae with one variable less! For these proofs, we call ourprover recursively. The induction principle for the naturalnumbers is straight-forward (base case: n  0; inductionhypothesis: n  n0; induction step: n  (n0)+). Theinduction principle for lists is an immediate application ofthe induction principle for sequence symbols introduced inSection 3.For the sub-proofs by simpli�cation, one could use, inprinciple, the built-in simpli�er of Mathematica. However,for more subtle proofs, we need to have more control overthe simpli�cation process and also to trace it step-by-step.Therefore, we implemented our own simpli�er.We give here an example proof automatically generatedby the induction prover over lists. The cells correspondingto simpli�cation are closed.PROPOSITION:(j � j) 8x;y jhxi � hyij � jhxij � jhyijunder the assumptions(�) 8x;y (hxi � hyi) � hx; yi;(jhij) jhij � 0;(jh:; : : :ij) 8x;y jhx; yij � 0+ � jhyij;(0�) 8n 0� n � n;(+�) 8m;n m+ � n � (m� n)+:PROOF:We try to prove(j � j:V ) 8x;y jhxi � hyij � jhxij � jhyijby simpli�cation. For this, we take all variables arbitrary,but �xed and try to prove(j � j:V:F ) jhx0i � hy0ij � jhx0ij � jhy0ij:An attempt for proving this by simpli�cation fails.Now we prove the simpli�ed formula(j � j:V:S) 8x;y jhx; yij � jhxij � jhyijby induction on x .Induction base for x :We prove (j � j:V:IB) 8y jhyij � jhij � jhyij:For this, we take in (j � j:V:IB) all variables arbitrary, but�xed and prove(j � j:V:IB:F ) jhy0ij � jhij � jhy0ij:A proof by simpli�cation works.Induction hypothesis for x:(j � j:V:IH) 8y jhx0; yij � jhx0ij � jhyij:Induction step for x:We prove(j � j:V:IS) 8y jh _x0; x0; yij � jh _x0; x0ij � jhyij:For this, we take in (j � j:V:IS) all variables arbitrary, but�xed and prove(j � j:V:IS:F ) jh _x0; x0; y0ij � jh _x0; x0ij � jhy0ij:A proof by simpli�cation works.

6 Functors6.1 The Concept of Functor in TheoremaFunctors are a well known concept for building up mathe-matics in a structured way. In the frame of the Theoremaproject, we adopt the notion of functor in the sense of ML(see [17]), which is technically slightly di�erent from thenotion of a functor in the sense of category theory. It is im-portant to observe that, although not explicitly mentionedin the Mathematica manual, functors can easily be imple-mented in Mathematica. We will publish the details of ourapproach for implementing functors in Mathematica in a dif-ferent paper in order not to overload this overview on theTheorema project. Here, we only summarize the main ideaof the approach.However, we would like to emphasize the role functorscan play in structuring special provers of the type describedin this paper. We believe that, together with each func-tor implemented for building up certain new domains fromgiven domains, one should also provide theorem provers thatspecialize in proving theorems about the domains generatedby the functor. In other words, we consider a functor notonly as a mechanism for de�ning a new domain (collection ofoperations) in terms of a given domain but also as a mech-anism for transporting knowledge about the given domainto the new domain. The problem of proving this kind of\transport knowledge" properties is addressed in the nextsection where we also give an example of an automaticallygenerated proof.6.2 Computing with FunctorsIn this section we briey summarize the way we implementfunctors in Mathematica. We start with representing a do-main D as a function that de�nes functions for certain \op-erators". For example, the following object Z is a simpledomain: Z[+] := Plus; Z[0] := 0;where \Plus" and \0" are the \built-in" addition and thebuilt-in integer of Mathematica. For syntactic simplicity, weintroduce the convention that \ oD " etc. stands for \D[o]"(which is perfectly possible in the new version of Mathemat-ica). Thus, we could write, for example, 2 +Z 2 which, withthe above de�nitions, evaluates to 4.We also add the unary operator \�" to any domain withthe convention that, for any domain D, D[�] is a decisionfunction which yields \True" for exactly the objects we con-sider to be in the \carrier" of D. For example, we couldde�ne Z[�] := IntegerQwhere \IntegerQ" is the built-in decision algorithm for inte-gers. Note that the symbol \�" is di�erent from the symbol\2" that denotes the element predicate of set theory.In our terminology (which is basically the ML terminol-ogy), a functor is just a function that maps domains intodomains. Thus, a functor is an object F that takes D asan argument and produces F [D] with the view that F [D]can now be applied to any operation symbol o yielding anoperation in the domain F [D]. In particular, F [D][�] is adecision function for the objects which we want to be in thecarrier of F [D].For constructing functors we provide a function Functor.The function parses the Theorema formulae passed as argu-6



ments, performs a basic correctness check on them, trans-forms them into Mathematica rules and wraps them in aModule construct. In other words the function produces aninternal representation of the functor de�nition which cap-tures the computational content of the formulae input bythe user and is directly executable by Mathematica.With this function one can de�ne the operations in F [D]depending on D as shown in the following simple examplethat generates the complexi�cation C of a domain D.Complexi�cation[D ] := Functor[hC; �; o;+; : : :i;h"�";8r;i �C [hr; ii] :, �D [r] ^ �D [i]i;h"o"; oC � h oD ; oD ii;h"+";8xr;xi;yr;yi hxr; xii +C hyr; yii � hxr +D yr; xi +D yiii;...C];The function De�neDomain is provided for de�ning newdomains in terms of existing functors and domains. Forexample, for de�ning the domain G obtained by applyingComplexification to Z, we can enter:G ~DefineDomain~ Complexification[Z]:The function De�neDomain can be seen as a specialized as-signment used in domain de�nitions in place of the usualassignment ( := ) of Mathematica. Its task is twofold:{ it stores \type" information related to the de�ned sym-bol in an internal Theorema structure, making it possible to\reason" about the symbol;{ it executes the representation of the functor de�nitionproduced by the function Functor (see above) associatingMathematica rules to the new domain which is being con-structed.After de�ning G as shown above, one can compute, for ex-ample, h2; 3i +G h4; 6i, which yields h6; 9i.6.3 Proving Theorems about FunctorsWe address the problem of proving statements of the formP [D] under the assumptions: D = F [D1; : : : ;Dk]; P1[D1];. . .Pk[Dk]; where F is a functor; D, D1, : : :, Dk are do-mains; P , P1; : : : ; Pk, are sets of Theorema formulae express-ing properties of the respective domains. For instance, sucha P [D] can contain the axioms of a group:isGroup[D ] :=hh"assoc"; 8x;y;z (x +D y) +D z � x +D (y +D z)i;h"zero"; 8x oD +D x � xi;h"inverse"; 8x x +D ( �D x) � oD ii;Such statements are special cases of general formulae in-volving functors and thus are a good example for studyingand extending functors. In particular they demonstrate thetransfer of knowledge from existing domains to a newly con-structed one, a reasoning pattern which is very often en-countered in \real life" mathematics.In Theorema, the proof of a statement of the kind shownabove consists in the following main steps:

Generation of the proof situation: The formulae of theform Pi[Di] are replaced with the sequence of formulaede�ning them, while formulae of the form D = F [D1,D2, : : : , Dk] are replaced with a list of formulae ex-tracted from the de�nition of the functor F with theinput and output domain variables properly instanti-ated.Natural Deduction Steps: The logical connectors and thefree variables are eliminated (instantiated) by a apply-ing natural deduction inference rules.Call Specialized Provers: Typically, the problem is to re-duce the predicates (equalities) expressed over con-stants in the constructed domain to predicates ex-pressed in the base domains. For this, special proversare called (e.g. simpli�ers, induction provers) whichcorrespond to the structure of the functor.In our current implementation the steps above are per-formed by a dedicated prover called FND (Functor NaturalDeduction). The prover produces a Theorema proof-objectand provides an option for formatting the proof-object as aMathematica 3.0 notebook. The proof-objects returned bythe specialized provers are embedded into the main proof-object.We illustrate the way the functor prover works, by listingbelow the proof automatically generated by the Theoremasystem for the complexi�cation of a group. (For reasons ofspace, only the proof of the second subgoal is given in fulldetail.) Note the special sub-proof by simpli�cation, whichapplies the adequate known equalities as rewrite rules in or-der to reduce the properties of G to properties of Z.Prove: (G) IsGroup(G)under the assumptions:(C) G � Complexification(Z)(Z) IsGroup(Z).Proof:We prove the individual conjunctive parts of (G):2 Proof of(G.assoc) 8x;y;z (x +G y) +G z � x +G (y +G z):. . .2 Proof of(G.zero) 8x oG +G x � x.We prove, for arbitrary but �xed values,(G.zero') oG +G x0 � x0:By (C.�) we can take appropriate values in Z such that:(C.�') x0 � hr0; i0i:A proof of (G.zero') by simpli�cation works.Simpli�cation of the LHS term:oG +G x0 � by (C.�'.1)oG +G hr0; i0i � by (C.o)h oZ ; oZ i +G hr0; i0i � by (C.+)h oZ +Z r0; oZ +Z i0i � by (Z.zero)hr0; oZ +Z i0i � by (Z.zero)hr0; i0ic7
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