
Mathematical Knowledge Representation

(Extended Abstract)

James H. Davenport

Department of Computer Science, University of Bath, Bath BA2 7AY, England

J.H.Davenport@bath.ac.uk

Abstract. Mathematical knowledge manipulation requires mathemati-

cal knowledge representation. This is not as easy as it seems, and there

are various ambiguities in mathematics as commonly described. This

paper describes some of these, and, where relevant, outlines how the

OpenMath Content Dictionary mechanism can handle them.

1 Introduction

Before we can talk about the \management" of mathematical knowledge, we

have to talk about its representation. Here we discuss some of the pitfalls that

the author has encountered, ranging from the concrete to the more philosophical

(and fundamental). These are generally described from an OpenMath [16] point

of view, but the problems are inherent to the representation of mathematical

knowledge, rather than accidents of OpenMath.

2 Exactly which : : : do you mean?

Mathematical notation is not quite as unambiguous as we would like (and as

mathematicians like to pretend). This is a problem that pervades much of math-

ematics, and we give just a couple of examples.

Branch cuts Whenever a function f from C to C (or R! R) is not injective,

the inverse needs to be de�ned on only a subset of C (orR), typically de�ned

by taking some injective subset of f , i.e. f de�ned on some subset of C (or

R) by some \branch cuts". There is no fully logical way to choosing these

branch cuts, and some standard decision has to be taken, e.g. as in [1]. These

decisions are not always clear, and many choices can be justi�ed: e.g. it is

common these days to have�� < arg log z � �, but the author was originally

taught the range 0 � arg log z < 2�.

For the inverse trigonometric and hyperbolic functions, this issue is discussed

in [4]. They quote the amusing example of arccot in table 1.

The OpenMath solution to this problem is to be very explicit in the Content

Dictionaries for these functions, de�ning them all in terms of the branch cut

for log, so that arccot, as the symbol



Table 1. value of arccot(�1) in various sources

[1] 1st printing 3�=4 inconsistent

[1] 9th printing ��=4
[10] 5th edition ? inconsistent

[19] 30th edition 3�=4 inconsistent

Maple V release 5 3�=4

Axiom 2.1 3�=4

Mathematica [17] ��=4
Reduce 3.4.1 ��=4 in 
oating point

Matlab 5.3.0 ��=4 in 
oating point

Matlab 5.3.0 3�=4 symbolic toolbox

<OMS name="arccot" cd="transc1">

is de�ned as arccot(z) = 1

2i
ln

�
z+i

z�i

�
.

There are other di�erences: for example Derive and Maple di�er in their

de�nition of inverse tangents, so that

arctan| {z }
Derive

(z) = arctan| {z }
Maple

(z):

Here the di�erence is only on the branch cuts, a set of measure zero, so the

di�erence is less likely to be noticed in testing.

Of course, it would be possible to have other CDs, and the author is con-

templating writing one for the multivalued versions
1
of these, so that

<OMS name="arccot" cd="transc3">

would be de�ned as arccot(z) = fw j cot(w) = zg.
Algebraic Structures Most algebraic structures have names, and we are gen-

erally happy working with these | we all know what PSL(3;Z) is (though

some of us might write it as PSL3(Z), which explains some of the diÆculty

of translating a presentation-oriented language such as LATEX or MathML{

presentation [18] into a content-oriented language such as OpenMath [16]).

It is the OpenMath view that there is one abstract mathematical object, say

<OMA>

<OMS name="PSL" cd="lineargroups"/>

<OMI> 3</OMI>

<OMS name="Z" cd="setname1"/>

</OMA>

and that whether it is rendered as PSL(3;Z) or PSL3(Z) is up to the con-

�guration of the browser, just as the rendering of

1 The reasons why these are not the fundamental OpenMath functions are given in

[5].



<OMA>

<OMS name="interval_oc" cd="interval1"/>

<OMI> 3</OMI>

<OMI> 4</OMI>

</OMA>

as (3; 4] or ]3; 4] depends on whether the browser has been con�gured to

produce English or French notation.

However, there are still several ambiguities. We all accept that C6 acts on six

elements, and has size six, but what of D6? Does it act on six elements (and

therefore have size 12) or have size 6 (and therefore act on three elements,

and be isomorphic to S3)? The situation is described in [2] as follows.

A name of the form hhX(n)ii denotes the n-th member of a family

as a permutation group on n points. The same group is denoted by

hhXnii if it occurs as an abstract group, but not necessarily with

this action. Exceptions are dihedral and Frobenius groups, for which

traditionally the size is indicated by an index. Thus hhD(4)ii =

hhD8(4)ii is the dihedral group of size 8.

However, this convention is far from universal. Furthermore, the notational

scheme described in [2] (itself based on that in [3]) can lead (inevitably) to

several names for the same group, e.g. F18(6) = [3
2
]2 = 3 o 2 or E(8) : A4 =

[
1

3
A(4)2]2 = e(4) : 6.

Again, the remedy would be that of being very clear in the CDs describing

these objects, with Formal Mathematical Properties to express (at least some

of) the alternative names for groups.

3 Just how constructive are we?

For the moment, let us assume that an integral domain is a well-known concept

(though we will see later that there are problems with this). then we can de�ne

two concepts specialising this.

GCD domain An integral domain R is a GCD domain if, and only if, for any

two elements a and b of R, there is an element g of R such that:

1. gja and gjb;
2. if cja and cjb, then cjg.

Unique factorisation domain An integral domain R is a unique factorisation

domain if, and only if:

1. any r 2 R n f0g has a representation as u
Q

n

i=1
pi, where u is a unit of R

and the pi are irreducible non-unit elements of R, i.e. divisible only by

their associates;

2. any such representation of r is unique up to re-ordering and multiplica-

tion by units.

It is well known that these two concepts are in fact identical.

However, we could ask for constructive versions of these.



Constructive GCD domain A constructive integral domain R is a construc-

tive GCD domain if, and only if, there is an algorithm which, given any two

elements a and b of R, computes an element g of R such that:

1. gja and gjb;
2. if cja and cjb, then cjg.

Constructive unique factorisation domain A constructive integral domain

R is a constructive unique factorisation domain if, and only if:

1. there is an algorithm which, given any r 2 R n f0g computes a represen-

tation r = u
Q

n

i=1
pi, where u is a unit of R and the pi are irreducible

non-unit elements of R;

2. any such representation of r is unique up to re-ordering and multiplica-

tion by units.

As we might expect, the constructive versions are stronger than the non-con-

structive versions. However, the two constructive versions are di�erent: every

constructive unique factorisation domain is a constructive GCD domain, but

not vice versa. The example is given in [8]. Let �i be an in�nite, recursively

enumerable, non-recursive sequence of elements from f1;�1g, and let R =

Q(

p
�1; : : :)[x]. Then Euclid's algorithm demonstrates that R is a constructive

GCD domain. However, it is not a constructive unique factorisation domain,

since the factorisation of x2+1 tells us whether (if it factors into two linears) or

not (if it is irreducible) there is a �1 in the sequence of �i, which was assumed

to be non-recursive
2
.

This problem leads to the need for clear separation of the constructive al-

gebraic domains from the non-constructive ones, probably in di�erent CDs, so

that one could distinguish

<OMS name="GCDdomain" cd="domain1">

from

<OMS name="GCDdomain" cd="cdomain1">

(the latter being short for \constructive domains" to �t into the eight-character

limit for the names of CDs).

4 What do we mean by Equality?

This problem was discussed in [6]. It was pointed out that it is necessary to be

precise about the question \equal as what", since
x
2
�2x+1

x2�1
and

x�1

x+1
are equal as

2 If one wishes to be more formal, one lets � be a Kleene [14] function, i.e. a re-

cursive function de�ned on all positive integers which is an injection such that

fm : 9n(�(n) = m)g is a non-recursive class. Then let Km = Q(
p
x1; : : :), where

xj = �1 if j is the least n such that �(n) = m, and xj = 1 otherwise. Then 1 + x2

is reducible over Km if, and only if, 9n(�(n) = m), and so an e�ective factorisa-

tion algorithm, or even an e�ective irreducibility test, gives us an algorithm to test

membership in a non-recursive set, a contradiction.



elements of the mathematical type Q(x), but not as functions Q! Q, since the

�rst is unde�ned at x = 1, while the latter yields 0 there. In some sense this is

a typing question, in that the two expressions are equal/unequal depending on

their type, but the question is in practice more fundamental than that: do we

really want a 
ag on every expression that says \a g.c.d. has been performed,

therefore you may not use eval"?

It is also necessary to distinguish between \exactly equal", \approximately

equal" (meaning I have evaluated a certain number of digits or series terms, but

have no proof of equality), \probably equal" (meaning I have performed some

sort of Monte Carlo test, as in [15] for straight-line programs [7], in which case

one has to ask what the probability of failure is
3
). Also does returning false

merely mean \I am unable to prove that they are equal", as Maple does with

the following

2

i
ln

 r
1 + z

2

+ i

r
1� z

2

!
= �i ln

�
z + i

p
1� z2

�
(1)

example.

In classical logic (x = y) _ (x 6= y) is always true, but this can cease to be

true in other logics, or in algorithmic systems that do have complete decision

procedures. This point is brought up in [9], where it is pointed out that, in their

constructive logic, \apartness" (i.e. \I can compute, in this logic, that a and b

are not equal") is the more fundamental concept.

[11{13] show that it is possible to have, at least for real algebraic numbers, a

constructive implementation of R for which equality is decidable on this subset.

It should be noted that knowing an object is, say, an integral domain in the

classical sense, is often not suÆcient computationally. For example, if we cannot

computationally decide whether a number is zero or not, we cannot use fraction-

free Gaussian elimination for �nding determinants, but must use Cramer's rule

or the equivalent, an O(n!) algorithm rather than an O(n3) one.

The current OpenMath CDs only de�ne one meaning of equality, which is

intended to be \I can prove that a and b are equal". In some sense, this OpenMath

de�nition is circular, since rules such as commutativity, which one might use in

such a proof, are de�ned as a� b = b�a. Furthermore, the de�nition of \prove"

is not stated, but, this author would argue, is implicitly that of classical logic.

Other notions of equality could clearly be de�ned in other CDs.

These debates over the meaning of equality could be dismissed (but incor-

rectly in the author's view) as the hair-splitting of logicians, were it not for the

fact that these distinctions crop up in practice. There has just (August 2001)

been a debate on comp.soft-sys.maple about the di�erence between FAIL and

false in Maple's testeq Monte-Carlo equality tester.

3 [15] asks whether one should take an a priori or an a posteriori approach to this.

As far as the author knows, this question has not generally been studied.



5 Just what logic are you using, anyway?

This is, in some ways, the most fundamental question of all. Many of the rules

of classical logic do not hold in some constructive, or even intuitionistic, logics.

At one level, this is trivially solved in OpenMath: the logic1 CD clearly de�nes

the operators of classical logic, and other CDs would be needed to de�ne other

concepts, e.g. a logic3 CD to de�ne intuitionistic logic.

However, this is the easy part. How do we know what logic was applied

to yield a piece of mathematical knowledge? This is an area that is not really

treated in OpenMath, where a Formal Mathematical Property is de�ned in the

OpenMath standard [16] as follows.

It corresponds to a theorem of a theory in some formal system

(our italics). Although this has not been 
eshed out, it would be possible to use

CDGroups in a di�erent way to their current use (as collections of thematically-

related CDs): they could be used to group together CDs containing objects and

the Formal Mathematical Properties that were true in the same formal system.

6 Conclusions

Mathematical knowledge, or at least its common representations, is less precise

than is often thought | see the entries marked \inconsistent" in table 1. We have

pointed out several levels of ambiguity, and noted that some of the problems are

soluble through clarity of de�nition, as in the OpenMath Content Dictionary

system. However, the fundamental ones of \what equality do you mean" and

\what logic is this in" are deeper, and it is an open question whether a formal

approach can encompass more than one of these properly.

References

1. Abramowitz,M. & Stegun,I., Handbook of Mathematical Functions with Formu-

las, Graphs, and Mathematical Tables. US Government Printing OÆce, 1964. 10th

Printing December 1972.

2. Conway,J.H., Hulpke,A. & McKay,J., On Transitive Permutation Groups. LMS J.

Comput. Math. 1 (1998) pp. 1{8. http://www.lms.ac.uk/jcm/lms96001.
3. Conway,J.H., Curtis,R.T., Norton,S.P. & Parker,R.A., ATLAS of �nite groups Ox-

ford University Press, 1985.
4. Corless,R.M., Davenport,J.H., Je�rey,D.J. & Watt,S.M., \According to Abram-

owitz and Stegun". ACM SIGSAM Bulletin 30 (2000) 2, pp. 58{65.
5. Corless,R.M., Davenport,J.H., Je�rey,D.J., Litt,G. & Watt,S.M., Reasoning about

the Elementary Functions of Complex Analysis. Arti�cial Intelligence and Sym-

bolic Computation (ed. John A. Campbell & Eugenio Roanes-Lozano), Springer

Lecture Notes in Arti�cial Intelligence Vol. 1930, Springer-Verlag 2001, pp. 115-

126. http://www.apmaths.uwo.ca/~djeffrey/offprints.html.

6. Davenport,J.H., Equality in Computer Algebra and Beyond. Proc. Calcule-

mus 2001 (ed. S.A. Linton) pp. 120-129. http://www-theory.dcs.st-andrews.

ac.uk/~sal/CalcCD



7. Freeman,T., Imirzian,G. & Kaltofen,E., A System for Manipulating Polynomials

Given by Straight-Line Programs. Proc. SYMSAC 86 (ACM, New York, 1986) pp.

169{175.

8. Fr�ohlich,A. & Shepherdson,J.C., E�ective Procedures in Field Theory. Phil. Trans.

Roy. Soc. Ser. A 248 (1955{6) pp. 407{432. Zbl. 70,35. MR 17,570d

9. Geuvers,H., Pollack,R., Wiedijk,F. &, Zwanenburg,J The algebraic hierarchy

of the FTA project. Proc. Calculemus 2001 (ed. S.A. Linton) pp. 13-29.

http://www-theory.dcs.st-andrews.ac.uk/~sal/CalcCD.

10. Gradshteyn,I.S. & Ryzhik,I.M. (ed A. Je�rey), Table of Integrals, Series and Prod-

ucts. 5th ed., Academic Press, 1994.

11. Hur,N., Exact Real Arithmetic in Computer Algebra. Ph.D. Thesis, University of

Bath, 2001.

12. Hur,N. & Davenport,J.H., An Exact Real Algebraic Arithmetic with Equality De-

termination. Proc. ISSAC 2000 (ed. C. Traverso), pp. 169{174.

13. Hur,N. & Davenport,J.H., A Generic Root Operation for Exact Real Arith-

metic. Computability and Complexity in Analysis (ed. J. Blanck, V. Brattka &

P. Hertling), Springer Lecture Notes in Computer Science 2064, Springer-Verlag,

2001, pp. 82{87.

14. Kleene,S.C., On Notation of Ordinal Numbers. Journal of Symbolic Logic 3 (1938)

pp. 150{155.

15. Naylor,W.A., Polynomial GCD Using Straight Line Program Representation.

Ph.D. Thesis, University of Bath, 2000.

16. The OpenMath Consortium. OpenMath. http://www.nag.co.uk/projects/

OpenMath/.

17. Wolfram,S., The Mathematica Book . Wolfram Media/C.U.P., 1999.

18. World-Wide Web Consortium, Mathematical Markup Language (MathML [tm])

Version 2.0. W3C Recommendation of 21 February 2001. http://www.w3.org/

TR/MathML2.

19. Zwillinger,D. (ed.), CRC Standard Mathematical Tables and Formulae. 30th. ed.,

CRC Press, Boca Raton, 1996.


