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1 Introduction

For more than ten years, there have been regular predictions of radical changes in the design of
mathematical software. Conventional programming languages in general and Fortran in particular
were dead, and interactive packages would only survive if they adopted open protocols and became
more component-based. These predictions have so far failed to come true and the market for libraries
such as NAG on the one hand, and packages such as Matlab, Maple and Mathematica on the other,
continues to expand. At the same time mathematical and statistical technology has become more
pervasive, often embedded inside application software packages which allow people who have no
formal mathematical training to perform sophisticated computations which a few years ago would
have required the services of a specialist.

One reason why existing software continues to be popular is that longevity and a good reputation
amongst users are the most reliable indicators of correctness, a state of affairs which is liable to
remain true for some time. Another important factor is economics: re-creating any major piece of
mathematical software from scratch would almost certainly not be commercially viable. Finally, the
learning curve in using any complex software can be quite great and users are reluctant to move
away from a familiar combination of syntax and semantics. Thus the challenge for mathematical
software developers is not so much how to write programs that make use of the latest techniques in
software engineering, but how to make their existing software accessible to users in their preferred
environments.

In the light of this experience it is tempting to be sceptical and predict that change will continue
to be gradual. We will argue however that for both technological and social reasons the technology
behind the semantic web has the potential to transform our industry.

2 Scientific Software

From NAG’s perspective as both a producer and vendor of scientific software, we can categorise
our user-base or market (depending on your point of view) very broadly as follows:
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Research & Investigation This group of users typically employ a range of pieces of software on
a daily basis. They might work in a university department doing pure research but they could
equally be employed in a bank predicting future market trends. They need access to a range
of tools, either acquired off-the-shelf or made-to-measure, and benefit from access to the state
of the art.

Production This group of users employ specific software on a regular basis, e.g. as part of quality
control, to direct a robot on a manufacturing line etc. The software is most likely created
specially or at least tailored for their specific application.

Education & Training A significant group of users who traditionally use mathematical software
packages as an adjunct to a conventional lecture-based course, but who in future might be
offering training at a distance across the internet.

In what follows we focus on the requirements of the first two groups.

Different mathematical software systems often have a very steep learning curve and even systems
designed for the same kinds of applications (e.g. Maple and Mathematica) can employ completely
different programming styles not to mention syntax. A “holy grail” for scientific software since at
least the 1980s (see for example some of the papers in [5]) has been to devise problem solving
environments which enable a user access several packages via a common front-end, in the same way
that a modern browser might launch different helper applications to process data of different kinds.
There are at least three fundamental problems with this however:

1. the semantics of both the objects and the algorithms which one finds in a piece of scientific
software are usually subtle and rarely explicit;

2. many mathematical operations involve exception conditions which need to be handled appro-
priately;

3. in practice users need to be able to trace or debug a computation to understand why they
got a particular answer and this is difficult in a non-homogeneous software environment.

If these problems could be overcome then the advantages are clear. Users would no longer be
“locked-in” to a particular software package and could access a wide range of functionality almost
instantly via their preferred interface. The current situation where users have to wait months for
new releases containing bug-fixes would potentially be eliminated with the latest versions of software
being accessible either remotely via the web or downloaded and installed on demand. Users would
find it easy to compare software and developers would be able to specialise.

Solving the above problems and devising an infrastructure which is usable in practice rather than
merely of academic interest is non-trivial, but we believe that many of the ideas and technologies
which underpin the semantic web can help us to achieve this. In particular the notion of so-called
intelligent agents which can carry out tasks which might normally require the intervention of a
human expert, and support for explaining decisions and the sequence of computations which lead
to a particular result in a coherent and comprehensible way, are essential ingredients.

What we envisage is a flexible framework where various services would be accessible to a user and,
indeed, to each other. A researcher would probably access them via a familiar user interface and
would not normally care about whether e.g. an answer was determined by table look-up or by
algorithmic computation. However, just as in some existing (homogeneous) environments, it would
be possible to find out how an answer was determined and ask for a justification of the method
used. In selecting a solution method the software might use the user’s own preferences, or seek
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“advice” as to which systems were best. Human users regularly post to Usenet or apply to software
vendors for trial versions of software to road-test them in the context of their particular application
area. Agents might amass data about the quality of results derived from different services or send
the same problem to several services.

Somebody developing production software might start off this way but at some point would want
to fix the particular software used and perhaps ensure that it was all available on a particular local
machine. This would ensure reproducibility of results, and a reliable and predictable service. This
flexibility and scalability is just as critical an aspect of such a framework as its convenience.

In the next few pages we will look at what technologies exist to help achieve this goal, and what
still needs to be developed.

3 Representing Mathematical Objects

We said earlier that the precise semantics of a mathematical object in a given software system are
often hard to tie down. Users may not even be aware of the different ways in which two systems
might interpret the same input, nor will they care if the end result is correct or at least in line with
their expectations. However if we are to exchange objects between different software packages then
of course they need to agree the data formats to be used.

Protocols already exist which allow semantically-rich representations of mathematical objects to be
exchanged between applications, in particular OpenMath [8] and Content MathML [6]. Introduc-
tions to both OpenMath and MathML can be found in [3]. Once a user has specified the semantics
of an object, a package reading that object ought to preserve or at least respect those semantics.

As an example of different but equally valid interpretations of the same input in two similar systems,
consider the string “2∗x+1”. Typing this into Maple 6 yields an object equivalent to the OpenMath
expression:
<OMOBJ>
<OMA>

<OMS name="plus" cd="arith1"/>
<OMA>
<OMS name="times" cd="arith1"/>
<OMI>2</OMI>
<OMV name="x"/>

</OMA>
<OMI>1</OMI>

</OMA>
</OMOBJ>

where the semantics of the OpenMath Symbols (OMSs) plus and times are defined in the content
dictionary called arith1, and their arguments are the variable x and the arbitrary precision inte-
gers 1 and 2. In other words this is an expression tree. Typing the same expression into AXIOM
constructs an object equivalent to:
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<OMOBJ>
<OMA>

<OMS name="polynomial_r" cd="polyr"/>
<OMA>
<OMS name="polynomial_ring_r" cd="polyr"/>
<OMS name="Z" cd="setname1"/>
<OMV name="x"/>

</OMA>
<OMA>
<OMS name="poly_r_rep" cd="polyr"/>
<OMV name="x"/>
<OMA>
<OMS name="term" cd="polyr"/>
<OMI> 1 </OMI>
<OMI> 2 </OMI>

</OMA>
<OMA>
<OMS name="term" cd="polyr"/>
<OMI> 0 </OMI>
<OMI> 1 </OMI>

</OMA>
</OMA>

</OMA>
</OMOBJ>

Without going into details of the representation, this is the recursive multivariate polynomial 2x+1
whose coefficients are integers. Both expressions display the same in the different systems and some
simple operations such as what is the leading coefficient? will give the same answer. However an
operation such as adding the floating-point number 1.0 will give different results in the two systems.
By making the semantics explicit (as in the above OpenMath expressions) we remove any ambiguity
and so it would be wrong for AXIOM to represent the first object as a polynomial or for Maple to
represent the second object as an expression tree.

A common interchange format which makes semantics explicit is an important ingredient for our
mathematical software framework, but it only solves part of the problem. We need to be able to
specify what we want to do with an object and, in all but the most trivial cases, map that abstract
specification into a program in our mathematical server. AXIOM and Maple are designed to solve
similar kinds of problems and in many cases implement the same algorithms, but the sequence of
steps which a user has to take to solve a given problem will often be different. In OpenMath the
piece of software that does this is called a phrasebook.

4 Describing Mathematical Interfaces

Many mathematical operations can be viewed naturally as simplifications or transformations, for
example

∫ t
0 cos(x) dx → sin(t). However the algorithms which implement these operations may

require extra information to be provided by the user: parameters which control the way the software
itself operates, and resources to allow the software to do do its job (e.g. a workspace array for a
Fortran routine, permission to write to a file or display on a particular machine in a distributed
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environment . . . ). As an example, a routine in the NAG Fortran Library which is designed to solve
integrals of the above type (D01ANF) requires the user to provide acceptable tolerances for both
the absolute and relative accuracy of the result, an indication of the action to take if the algorithm
fails to compute an acceptable solution, as well as two arrays to be used as temporary workspace.

Many component-based systems have a way of providing a functional description of the interface
to a component, perhaps the best knowledge of which is the Object Management Group’s Interface
Description Language (IDL) which in particular is used in many implementations of CORBA
and in Microsoft’s COM-derived technologies (DCOM, ActiveX etc.). This provides a platform-
independent description of an interface in terms of data types, intent (input/output etc.), and
whether an object is private or shared, which can then be used to generate the extra software
needed to connect to or embed the component.

From a purely mechanical point of view, an IDL description of a piece of algorithmic software does
allow it to be used in a client-server setting. However experience in embedding NAG software in
a variety of environments has shown that, in practice, this is not enough. In addition, there is
more to providing a usable interface than just linking two bits of software together. NAG provides
extensive documentation about each algorithm and parameter, advice to users about what to do if
the algorithm fails, and examples of use. In some contexts there is also advice on which algorithm
to use and on how to combine algorithms (e.g. scaling or pre-conditioning a problem). Some parts
of this documentation are language specific (e.g. Fortran syntax is used, arrays are 1-based, . . . )
while other parts are generic. Finally there is also a test suite designed to verify the correctness of
the software with different compilers on different platforms.

NAG is currently developing a framework which includes a detailed XML-based specification of the
interface to an algorithm and of its documentation. Parameters are classified according to whether
they carry data, control the way the algorithm works or are artifacts of the Fortran language.
Constraints and default values are encoded in a structured, parseable form, and all language-specific
parts of the documentation are marked-up to enable them to be transformed appropriately.

Early experiments suggest that this system is sufficient to allow us to generate documented inter-
faces to our existing Fortran code for a variety of environments. For example, NAG might offer a
service to Mathematica users where they were provided with the necessary material to use certain
NAG routines from within Mathematica. The material they received could be customised in a num-
ber of ways, for example depending on whether they had a suitable NAG Library on their machine
or needed to access the software remotely, but this would be handled transparently. Documentation
could be provided in the form of Mathematica notebooks. A particularly appealing aspect of this
is that the interfaces could be created on demand, so that a user could gain access to our software
with just a few mouse clicks.

In principal, of course, we could write such interfaces by hand but realistically this is not a viable
proposition since it would certainly be error-prone and too costly to be an economic proposition.
Our system is designed to work automatically, to take advantage of existing testing and verification
regimes, and could in theory be extended to other bodies of software.
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5 Describing Mathematical Services

What we have described so far are technologies for describing a mathematical object with a view
to computing with it and for describing mathematical software with a view to accessing it via
different environments. This existing technology takes us a long way towards being able to deploy
mathematical services on the web in a practical and usable way. However the process of linking up
servers and clients must, in practice, be done by hand. What we would like is a mechanism which
allows us (a) to “publish” in some dynamic way the descriptions of the services which are currently
available, and (b) to match a particular user’s set of requirements to these services. This latter
problem is particularly difficult since often we will be looking for a “best” rather than “exact”
match.

We hope that frameworks for handling these two issues will emerge from the communities developing
a semantic web. The languages being developed for the description of business services may also be
used or adapted to address the needs of the mathematical community. Two languages in this area
appear to be particularly relevant:
• UDDI [9] is a framework that aims to provide “a global, platform-independent, open frame-

work to enable businesses to (1) discover each other, (2) define how they interact over the
Internet, and (3) share information in a global registry that will more rapidly accelerate the
global adoption of B2B eCommerce”.

• WSDL [10] is an XML vocabulary for describing network services and operations, together
with mechanisms for binding these to concrete network protocols such as SOAP and HTTP.

In addition to these, the Semantic Web activity is developing languages for defining Ontologies [7, 1].
The relationship between these and OpenMath Content Dictionaries, which in effect define an
Ontology for mathematics, is yet to be formalised but may be important as a means of integrating
mathematical service provision into the wider network of e-commerce and network services. In
our context, the description of a service will include many features ranging from a specification of
the mathematical task which it performs to information about whether problems submitted to it
remain confidential, who is allowed to access it at what cost and so on. Much of this is common to
all online services but parts of it are specific to mathematics.

We said earlier that we needed to be able to match a user’s requirements to the available services.
Some aspects of this will require detailed mathematical knowledge and possibly some initial analy-
sis or computation. For example if a user wants to solve a differential equation then they may not
know whether it is stiff or not. Choosing a non-stiff solver may eventually lead to a solution but it
is definitely not a good strategy. An important class of mathematical service might therefore be an
advisor which would assess the available services suitability to solving a particular problem. This
implies that the services must advertise details of the methods they use, or at least their applica-
bility. Such an advisor could learn from experience, and adjust the advice it gives accordingly. A
number of “method selection” systems have already been implemented [2, 4] which rely on com-
puter algebra systems to investigate underlying properties of a numerical problem. Mathematical
software has also been used to provide “witnesses” for automatic theorem provers.

Another important service which might be combined with the advisor or be provided as a separate
agent, would be a facility to explain how and why a particular answer was reached. This includes
listing calls to services and explaining the reason why they were chosen, but would also need to
include details of the computation and the approach or algorithm used which would be provided
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by the service itself. As a simple example, consider the problem of computing
∫ 1.0

0.0

sin(x)
x

dx which

can also be denoted as the Sine Integral Si(1.0). One possible approach is to recognise that this is
in fact a well-known function and use either an online table to get the result or else compute an
approximation via a Chebyshev expansion. Alternatively one might spot that the integrand had a
singularity at a boundary and either use a method which could cope with this kind of situation, or
recognise that it is a removable singularity and transform the integrand accordingly. Much of the
above analysis requires some computation, and suggests that the distinction between an advisor
and a service may not be very clear-cut. Which approaches was chosen probably would not matter
as long as the result was something close to 0.9461. In more complicated cases a service might
provide extra details of the computation to allow an independent check of the correctness (or even
plausibility) of the result to be carried out. To handle the transfer and manipulation of this kind
of information will require the development of special protocols and ontologies.

6 Conclusions

It is clear that we have many of the ingredients needed to deliver web-based mathematical services.
Initial offerings in this area might appear to users to be similar to existing add-on packages (such as
Matlab toolboxes) which simply give access to extra functionality inside a particular environment.
However the underlying technology would be radically different and, critically from a practical point
of view, add-ons in different packages could make use of much of the same underlying machinery.

Going beyond this simple model is harder, and requires the capability to handle errors and ex-
ceptional events, debug distributed computations, and help match a user’s needs to available com-
putational resources. In theory we could attempt to create protocols for all these tasks and then
re-implement all our software to support them, but for the reasons mentioned in the introduction
this is very undesirable and in any case will never happen in practice. The technologies being devel-
oped under the “semantic web” umbrella therefore appear to us to offer the best hope of achieving
this and allowing existing legacy software to be deployed as web-based mathematical services.
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