
Symposium in Honor ofSymposium in Honor of

BrunoBruno Buchberger's Buchberger's 60th Birthday 60th Birthday

http://www.http://www.riscrisc..uni-linzuni-linz.ac.at/conferences/LMCS2002.ac.at/conferences/LMCS2002

LMCS 2002LMCS 2002
Logic, Mathematics and Computer Science: InteractionsLogic, Mathematics and Computer Science: Interactions

RISC-LinzRISC-Linz, Castle of, Castle of Hagenberg Hagenberg, Austria, Austria

October 20-22, 2002October 20-22, 2002

Edited by Koji NakagawaEdited by Koji Nakagawa

Symposium in Honor of Bruno Buchberger’s 60th Birthday
Logic, Mathematics and Computer Science: Interactions (LMCS 2002)
October 20-22, 2002
RISC-Linz, Castle of Hagenberg, Austria

RISC-Linz Report Series No. 02-60
c©RISC-Linz, Research Institute for Symbolic Computation, 2002

ISBN 3-902276-03-7 (electronic version)

Web Page: http://www.risc.uni-linz.ac.at/conferences/LMCS2002/

Organizers

General Chairs:
Hoon Hong (USA)
Franz Winkler (Austria)

Program Committee Chair:
Deepak Kapur (USA)

Program Committee:
Franz Baader (Germany)
Alan Bundy (UK)
John Cannon (Australia)
Alain Colmerauer (France)
Nachum Dershowitz (Israel)
Vladimir Gerdt (Russia)
Christoph Hoffmann (USA)
Tetsuo Ida (Japan)
Volker Weispfenning (Germany)

Local Chair:
Tudor Jebelean (Austria)

Local Organization:
Betina Curtis (Austria), Hagenberg Congress GmbH

Publicity:
Wolfgang Windsteiger (Austria)

Proceedings/Web:
Koji Nakagawa (Austria)

Sponsors

Wirtschaftskammer Österreich
(The Austrian Federal Economic Chamber)

BM:BWK Bundesministerium für Bildung, Wissenschaft und Kultur
(Federal Ministry for Education, Science and Culture)

Stadt Linz
(City of Linz)

LHF-Linzer Hochschulfonds
(University Fund of Linz)

Preface

This symposium on Logic, Mathematics, and Computer Science (LMCS), 2002, is
being held to honor Bruno Buchberger on his 60th birthday for his many contributions
to these areas. I am honored to serve as the chair of the program committee of the
symposium. I am grateful for this excellent opportunity to thank Buchberger for
influencing my research. Special thanks go to the organizers as well as the researchers,
who submitted papers, and the participants for making the symposium a success.

The program was selected from 30 submissions which were received on time; many
other submissions which arrived after the deadline could not be considered because
the program committee was working under an extremely tight schedule. With the help
of our colleagues, the program committee members had the difficult task of choosing
a program of 21 papers for presentation on October 20th and 21th, that represented
topics from mathematics, computer science and logic. Since this symposium is also a
celebration, we wanted to provide ample time for the participants to provide informal
comments about the impact of Buchberger’s contributions on their research careers.
We also wanted the participants to have the opportunity to interact with Buchberger,
his former and current students, as well as his former and current colleagues. As a
result, many high quality submissions could not be included in the program for which
I apologize. I wish this celebration could have lasted for more than 3 days.

I would like to thank all the reviewers (see the list on the next page) and the
program committee for their help and cooperation. Special thanks goes to Koji
Nakagawa for installing web pages and putting together the proceedings.

Let us make this a memorable event for Bruno!!!

Deepak Kapur
Albuquerque, NM, USA

Oct. 2002

List of Reviewers

Giuseppa Carra’ Ferro
Louise Dennis
Volker Gebhard
Ralf Hemmecke
Alex Heneveld
Hoon Hong
Yukiyoshi Kameyama
Alexander Levin
Anton Leykin
Paulette Lieby
Mircea Marin
Bill McCune
Teo Mora
Chin Wei Ngan
Eugenii Pankratiev
Wilhelm Plesken
Allan Steel
Franz Winkler
Daniel Winterstein
Denis Yanovich
Serguey Zemskov

Contents

Abstracts of Invited Talks

Mathematician-Friendly Proof-Assistants . 3
Henk Barendregt

The Role of Logic and Algebra in Software Engineering . 4
Manfred Broy

BOOKS OR BYTES? . 6
Dana S. Scott

New Directions in the Foundations of Mathematics . 7
Stephen Wolfram

Towards a SymbolicComputational Philosophy
(and Methodology!) for Mathematics . 8

Doron Zeilberger

Logic, Mathematics, Computer Science:
The Accumulated Thinking Technology of Mankind . 9

Bruno Buchberger

Contributed Papers

High Performance Implementations
for the Gröbner Bases Algorithm and the Characteristic Method.13

Iyad A. Ajwa, Paul S. Wang

Solving For Functions . 24
Michael Beeson

Computing Restrictions of Ideals in Finitely Generated k-Algebras
by Means of Buchberger’s Algorithm . 39

Thomas Beth, Jörn Müller-Quade, Rainer Steinwandt

New Rewriting System for the Braid Group B4 . 48
Leonid Bokut, Andrei Vesnin

Gröbner Bases Property on Elimination Ideals in Finite Group Theory 61
Miguel A. Borges-Trenard, Hebert Pérez-Rosés, Mijail Borges-Quintana

Hilbert Polynomials in Two Variables and Bifiltered Ideals. .70
Giuseppa Carra’ Ferro

Using Gröbner Bases in D-modules Theory . 81
Francisco J. Castro-Jiménez, José M. Ucha

Minimal Generators from Reduced Gröbner Bases
Obtained by Interpolation Methods . 97

Francesca Cioffi, Ferruccio Orecchia

Naive Axiomatic “Mengenlehre” NAM for Experiments .108
Werner DePauli-Schimanovich

On Non-associative Gröbner Bases . 123
Lothar Gerritzen

Incremental Decoding . 138
Patrizia Gianni, Barry Trager

On Inverse Systems and Squarefree Decomposition
of Zero-Dimensional Polynomial Ideals . 147

Werner Heiß, Ulrich Oberst, Franz Pauer

Two Paradigms of Learning . 162
Wolfram Menzel, Frank Stephan

On an Algebraic Description of Colorability of Planar Graphs 177
Michal Mnuk

The Eighth Variation . 187
Teo Mora

Variable Shape Logicographic Symbols . 202
Koji Nakagawa

Solving Linear Boundary Value Problems via Non-Commutative Gröbner Bases 217
Markus Rosenkranz, Heinz W. Engl

A Divide-and-Conquer Method for Integer-to-Rational Conversion 231
Tateaki Sasaki, Yoshinori Takahashi, Takuya Sugimoto

Syzygies, and the Stabilization of the Numerical Buchberger Algorithm 244
Carlo Traverso

Comprehensive Gröbner Bases and Regular Rings . 256
Volker Weispfenning

An Automated Prover for Zermelo-Fraenkel Set Theory in Theorema 266
Wolfgang Windsteiger

Author Index . 281

Abstracts of Invited Talks

Mathematician-friendly proof-assistants

Henk Barendregt

Nijmegen University, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

henk@cs.kun.nl, http://www.cs.kun.nl/~henk/

Abstract

Computer Mathematics is a generalization of Computer Algebra, in which the
system does not only deal with equations, but with arbitrary mathematical ob-
jects. These may include non-computable objects. The way this is done is by
representing formal proofs. Although a statement A may not be decidable, the
statement Γ ` p : A (p is a proof of A within situation Γ) is decidable.

All researchers in the field are convinced that some day most mathematicians
will use such systems of Computer Mathematics, the estimations as to the time
it will take ranges from 10 to 50 years.

In this talk it will be indicated what is at least necessary to become mathe-
matician-friendly.

3

The Role of Logic and Algebra

in Software Engineering

Manfred Broy

Institut für Informatik, Technische Universität München,

D-80290 München Germany, broy@in.tum.de,

http://wwwbroy.informatik.tu-muenchen.de

Abstract

Software systems are among the most complex artefacts humans have built. Soft-

ware is large, expensive, and difficult to develop, to understand, and to maintain.

The requirements and challenges in the development of software are steadily

growing. Building software systems is a costly, laborious process influenced by

many factors including technology, methodology, experience, management, econ-

omy, and application domain know how. Today building software systems is

mainly a craft, which due to their size is a major challenge for management and

organisation similar to building pyramids in ancient Egypt.

Nevertheless in its essence software represents a technical artefact that is a

mathematical object that can be studied by means of logic and algebra. In con-

trast to classical mathematics where small and homogeneous but rather intricate

formulas are considered software is huge, heterogeneous, and incorporates many

different aspects. Therefore particular logical and algebraic theories are needed

to deal with the various aspects of software. They have to support in particular

structuring and separation of concerns. We demonstrate the usage and value of

logic and algebra for modelling various aspects of software systems and show

a simple, logical clean framework that is powerful enough to describe complex

software systems.

We concentrate on modelling issues in software development since software

construction is essentially a modelling task. The most important decisions in

software development are decisions that deal with modelling. The better, the

more adequate and more powerful the available modelling paradigms are, the

easier the program development task is and the better its results are. However,

a large complex software system can hardly be described and understood by

providing one huge model. Instead a number of partial models are used that

describe certain aspects of software systems in so-called views and that are in

certain mutual relationships such as in levels of abstraction.

We describe the role of models and views in program development and show

4

how closely the issue of modelling is related to the logical and mathematical

issues. Moreover, we give a comprehensive family of models of aspects of software

systems and show how to relate and integrate them.

5

BOOKS OR BYTES?

Dana S. Scott

Carnegie Mellon University

Pittsburgh, Pennslyvania, USA

dana.scott@cs.cmu.edu

http://www.cs.cmu.edu/~scott

Abstract

The hopes of the last decade for electronic publishing have not been realized:

some major publishers have recently reduced their commitments. The hopes for

distance learning have not been realized: some major institutions have not been

financially successful. And more generally the hopes for ease of use of computers

in education and science have not been fully realized: we have too many com-

peting formats, too many difficulties with incompatible operating systems, too

clumsy interfaces to machines, and too little organization of information. But

do we want electrons to replace books and paper and pencil? If we do want to

make a suitable evolution to working in the electronic medium, how can we in

the university community formulate rational demands and plans to influence the

future?

6

New Directions in the Foundations of Mathematics

Stephen Wolfram

Wolfram Research, Inc.

100 Trade Center Drive

Champaign, IL 61820-7237, USA

http://www.stephenwolfram.com/

Abstract

I will talk about some of the implications of the ideas and discoveries in my book

A New Kind of Science for the foundations of mathematics. I will address several

questions. How general is mathematics as it has been practiced? Is there some-

thing special about the axiom systems that have been investigated historically

in mathematics? How does one determine what will constitute an interesting

theorem or interesting axiom system in mathematics? What happens if one does

empirical metamathematics, looking at the structure of mathematics as it has

been practiced? Why has Gödel’s Theorem not been more important in practi-

cal mathematics? What idealizations of mathematics still capture its essence?

Is there an intermediate layer of symbolic computation above general transfor-

mation rules, and below specific properties of structures like polynomials, that

captures mathematics as it has been practiced? To what extent is mathematics

as it has been practiced a reflection of human cognitive abilities?

7

Towards a SymbolicComputational Philosophy
(and Methodology!) for Mathematics

Doron Zeilberger

Department of Mathematics, Hill Center-Busch Campus,

Rutgers University, USA,

zeilberg@math.rutgers.edu, http://www.math.rutgers.edu/~zeilberg

Abstract

Symbolic Computation changed my life (for the better, I hope), and Bruno
Buchberger changed Symbolic Computation (for the better, I am sure). Ergo,
Bruno Buchberger changed my life (most probably for the better). But these
two changes are mere iconic SYMBOLS for how Symbolic Computation will
change the lives of ALL mathematicians (by changing the way they DO and
THINK about their trade (mostly for the better, I hope)), and the way that
future mathematical giants will change Symbolic Computation.

8

Logic, Mathematics, Computer Science:

The Accumulated Thinking Technology of Mankind

Bruno Buchberger

Research Institute for Symbolic Computation

University of Linz, A4232 Schloss Hagenberg, Austria

buchberger@risc.uni-linz.ac.at,

http://www.risc.uni-linz.ac.at/people/buchberg

Abstract

In the past century, logic, mathematics, and computer science have seen dramatic
breakthroughs, a profound deepening of insight, and an enormous expansion of
knowledge.

However, as a matter of fact, in the practice of the research communities, logic,
mathematics, and computer science have very little interaction:

• mathematical logic, for the practice of most mathematicians, does not have
any noticeable impact,

• many computer scientist are proud that, basically, they can well get along
without any significant mathematics, and

• most of the mathematicians are happy and proud that they do not bother
about the computer except for reading e-mails, using LATEX, and searching
for literature over the web.

This continues to amaze me and, frankly, I deeply deplore this situation. In fact,
I have the feeling that the gap between the three communities widens instead
of becoming smaller. I do not see any theoretical reason for this. Rather I think
that, mainly, psychologic and sociologic reasons are responsible for the current
separation between the three fields:

• All three fields are difficult and it takes a lot of time and effort to become
proficient in any of the three fields. Feeling at home in two of them or all
three, at first sight, seems to be next to impossible.

• Logic is the meta-theory of mathematics, i.e. logicians are thinking about

mathematics, namely mainly about the foundational problems of mathe-
matics. For most mathematicians, logic is not the language in which math-
ematics is carried out.

• Mathematicians, normally, do not see any pressing need to improve the logi-
cal / formal quality of their work because the addressee of a mathematician,

9

normally, is again a mathematician who is supposed to be smart enough to
overcome logical deficiencies in the presentation of his colleague. (In con-
trast, the addressee of software engineers is a dull machine that cannot fill
in details or correct mistakes. Thus, the necessity of a good meta-theory,
namely software technology, has soon become a practical necessity in soft-
ware development.)

• Mathematicians, notably “pure” mathematicians, notoriously look down
on computer science because they believe that algorithms are nothing else
than a busy repetition of trivial mathematics and computer scientists or
computer mathematicians are people who are not talented enough for “gen-
uine” mathematics. This is of course based on a misunderstanding: Signif-
icant progress in algorithmic mathematics and computer science can only
be obtained by going deeper into “pure” mathematics and inventing richer
theorems with more difficult proofs.

• Conversely, many computer scientists and software engineers believe they
do not need mathematics because never in their lives they encounter inte-
grals, complex functions or differential equations. Mathematics, however, is
independent of concrete contents, it is the universal arts of reasoning and a
sophisticated expression of reasoning in language. In this perspective, com-
puter science, in particular software science, is just a systematic and very
explicit expansion of the innermost goals and techniques of mathematics.
Thus, it is shortsighted and just a lack of understanding to believe that
computer science does not need mathematics.

Starting from this scenario, in the talk, I will sketch a picture of logic, mathe-
matics, and computer science as the one joint and coherent thinking technology
of mankind that

• has accumulated over the centuries,

• is being refined, deepened, expanded in a continuous process of self-application,

• and will be the steady and ever expanding basis for the future of the science
and technology based global society.

I will draw various conclusions

• on the interplay between research directions in logic, mathematics, and
computer science,

• on the essence of algorithmization and self-trivialization as the implicit goal
of mathematics,

• on the role and importance of future mathematical knowledge management
on a global scale,

• on future integral curricula for mathematics and computer science,

• on the role of mathematics and computer science in society, and

• on the way mathematicians see themselves and the impact of this self-image
on their role in society.

10

Contributed Papers

High Performance Implementations for the
Gröbner Bases Algorithm and the

Characteristic Sets Method

Iyad A. Ajwa1 and Paul S. Wang2

1Department of Mathematics and Computer Science, Ashland University,
Ashland, OH 44805, USA

2Department of Mathematics and Computer Science, Kent State University,
Kent, OH 44242, USA

Abstract

This paper presents high performance parallel implementations for the
Gröbner Bases algorithm and the Characteristic Sets method. Sources
of parallelism in the two algorithms have been investigated. The paral-
lel implementations have been conducted on a network of workstations
and their performance has been evaluated. Empirical observations have
demonstrated significant gains by employing parallelism in these algo-
rithms and suggest that large speedups can be obtained when reasonable
parallelism is exploited.

KEYWORDS: Gröbner Bases, Characteristic Sets

1. Introduction

Over the years, new concepts and results have developed in the area of computer
algebra and computer algebraists have made significant contributions to the
fields of mathematics and computer science. Among these contributions, two
outstanding examples are the theory and algorithms for Gröbner Bases and
Characteristic Sets.

The concept of Gröbner Bases (GB) was introduced by Bruno Buchberger
in 1965. Buchberger’s algorithm for computing GB is a powerful tool for solv-
ing many important problems in polynomial ideal theory. The algorithm was
developed in the context of Buchberger’s work on performing algorithmic com-
putations in residue classes of polynomial rings.

Developed from J. F. Ritt’s work on differential algebra, the Characteristic
Sets (CS) method was discovered independently by Wen-tsün Wu in 1978. Wu
rediscovered the CS method in the context of his work on mechanical geometry

13

High Performance GB and CS

theorem-proving. He developed Ritt’s work for the algebraization of geometry
and introduced a powerful algebraic algorithm to compute CS.

The concepts of GB and CS are important in terms of theory and have found
valuable practical applications in mathematics and computer science. Specific
applications include polynomial system solving, automated geometric reason-
ing, CAD/CAGD, robotics, and computer vision. The two algorithms have been
extensively studied, developed, refined, and have been implemented on most
computer algebra systems.

1.1. Parallel GB and CS

The study of parallel GB and CS has developed into a new area of computer
science. Paralleling the GB algorithm and the CS method is a nontrivial under-
taking. Tools for symbolic mathematical manipulation, inter-process communi-
cation, and controlling parallel/distributed tasks are needed. This paper focuses
on applying parallelism to the GB algorithm and the CS method.

1.1.1. Motivation

Speed and efficiency are crucial factors in our field because real-world problems
often involve huge symbolic and algebraic computations. In spite of great efforts
over the years, sequential computations of GB and CS are still time and space
consuming. Algebraic algorithms like these, which are universal for a broad class
of problems, are very compute intensive. High speed is, therefore, essential for
using these algorithms in practical cases. Based on analysis and experiments, we
believe that the power of the GB algorithm and the CS method could be en-
hanced by use of parallel processing. The two algorithms contain natural sources
of parallelism. Further, they produce a lot of mutually independent subproblems
that may be treated in parallel.

1.1.2. Related Work

In 1985, Buchberger (3) was the first to propose a parallel algorithm to compute
GB. Since then, there have been several attempts to implement the GB algorithm
in parallel. We refer the reader to (1) for a comprehensive list of these attempts.
Several of these attempts were successful but reported limited speedup. Perhaps
the most successful parallel implementations of the GB algorithm are due to
Faugère (5) and Amrhein-Gloor-Küchlin (2).

In 1991, Dongming Wang (7) presented a parallelized version of the CS method.
He implemented the parallel algorithm using a Maple research system and re-
ported a speedup of 5 using 12 processors over the sequential version of the
algorithm. These are the only experiments reported in the literature regarding
parallel implementations of the CS method.

14

I. A. Ajwa

1.1.3. Ongoing Research

We present new parallel implementations for the GB and CS algorithms that use
message passing in a master/slave paradigm and have the following features:

• Parallelism exploited is natural and quite obvious.

• The implementations demonstrate that large speedups are possible when
reasonable parallelism is applied.

• The parallel implementations can be installed on standard networks and
rely only on publicly available software making them widely available and
independent of commercial computer algebra systems.

• The parallel implementations are based on the most efficient sequential
implementations available: GRÖBNER (8) and CSETLIB (9) which are
written in the C language and are based on the SACLIB (4) system.

The sequential version of the GB algorithm is illustrated in Figure 1. Polyno-
mial reduction is the corner stone of the GB algorithm. It is the most computa-
tionally intensive part of the algorithm. Analysis and experiments have shown
that most of the time is spent in reducing the S-polynomials. During this time,
neither the basis nor the set of pairs change. This fact allows several reduc-
tions to proceed simultaneously and independently. We follow the common ap-
proach to parallelizing the GB algorithm which has been the parallelization of
the main loop shown in Figure 1. In our approach, we compute and reduce the
S-polynomials in parallel using a message-passing model within a master/slave
paradigm. This scheme is illustrated in Figure 3.

For the CS method, our parallelization strategy focuses on parallelizing the
inner loop of the main loop of the algorithm illustrated in Figure 2. The basic
operation in the CS method is the pseudo-division of polynomials. Analysis and
experiments have shown that many costly pseudo-divisions are needed. The for-
mation of the set RS is thus the most time consuming task, especially when the
intermediate polynomials become large. The inner loop of the main loop per-
forms the computations to form RS and is a prime candidate for parallelization.
In each iteration of the inner loop, a polynomial from the set PS = QS −CS is
picked and a pseudo-reduction with respect to CS is carried out. If the pseudo-
remainder is non-zero, it is adjoined to the set RS. The inner loop terminates
when all polynomials from PS are pseudo-reduced. During the pseudo-reduction
process, QS and CS remain unchanged. The strategy is to divide PS into several
disjoint subsets of polynomials. All subsets are then pseudo-reduced in parallel.
This scheme is illustrated in Figure 4.

Our approach to paralleling the GB and CS algorithms is straightforward. We
took the most efficient sequential implementations reported in the literature and
applied parallel/distributed computation to them. This application resulted in
two programs for each algorithm: a master program and a slave program. The
master program performs a special task: coordinating the work of the slave pro-
grams running on multiple nodes of the network. The slave programs all perform

15

High Performance GB and CS

the same task: the actual computations and reductions. Each slave program com-
municates only with the master program in a star topology. Slaves and master
programs communicate data via PVM and SaclibPvm as explained in Section 2.
Assuming the availability of n + 1 processors at our disposal, we run the master
program on one processor and we run one slave program on each of the remain-
ing n processors. We discuss details of implementations in Section 3. But first,
we discuss tools built for the parallel implementations.

2. Parallel Implementation Tools

Paralleling the GB algorithm and the CS method is a nontrivial undertaking.
Tools for symbolic mathematical manipulation, inter-process communication,
and controlling parallel/distributed tasks are needed. For these purposes, we
used SACLIB, GRÖBNER, CSETLIB, PVM, SaclibPvm, PvmJobs, and a set
of PVM enhancements.

2.1. The SaclibPvm Interface

SaclibPvm is a simple software package interfacing SACLIB to PVM. Although
there are different paradigms for performing parallel processing, all have one
thing in common: processes need to exchange data. For our work, we need paral-
lel tasks to exchange mathematical data such as large integers and polynomials
in one or more variables. PVM provides mechanisms for exchanging basic data
types such as integers, float numbers, and strings. A parallel implementation
that uses SACLIB, however, needs to exchange SACLIB data. The SaclibPvm
is an interface we built that enables any parallel tasks to transfer SACLIB data
via PVM. The routines were written in C using basic PVM and SACLIB func-
tions and provide mechanisms for packing, unpacking, sending, receiving, and
multicasting SACLIB data.

2.2. The PvmJobs Mechanism

PvmJobs (6) is a generic parallel jobs library for PVM. It is a general bag-of-
jobs library that works with any user created job structure in a master/slave
paradigm. PvmJobs also provides a simple job scheduling mechanism to dis-
tribute jobs among the slave processes. It allows the user to substitute PvmJobs’s
scheduling scheme with any users-defined priority-driven scheduling. Early ver-
sions of PvmJobs was written by the authors. Recently, Hong Ong (6) has ex-
tended PvmJobs by adding new features and making the library more general
and easier to use. The library is written in C and has a set of user level functions
which provide a flexible API.

3. Parallel Implementations

Parallel implementations have been conducted on a network of workstations.
Details of the implementations of the GB algorithm and the CS method are

16

I. A. Ajwa

presented in Section 3.2 and Section 3.3 respectively. But first, we present the
sequential versions of the GB and CS algorithms.

3.1. Sequential Algorithms

Input: A set of multivariate polynomials F

Output: A Gröbner Basis, G

Method:
G := F

Pairs := {{fi, fj}|fi, fj ∈ G and fi 6= fj}
Repeat

{p, q} := a pair in Pairs

Pairs := Pairs − {{p, q}}
S := S-polynomial(p, q)
h := NormalForm(S, G)
IF h 6= 0 THEN

Pairs := Pairs
⋃
{{g, h}∀g ∈ G}

G := G
⋃
{h}

Until Pairs = ∅.

Figure 1: Sequential Gröbner Bases

Input: A set of multivariate polynomials F

Output: A Characteristic Set, CS

Method:
QS := F ;
RS := F ;
Repeat

CS := BasicSet(QS);
IF CS is contradictory then

RS := φ

ELSE
RS := {r | r = PseudoRemainder(q, CS), r 6= 0, q ∈ QS − CS};
QS := QS

⋃
RS;

Until RS = φ

Figure 2: Sequential Characteristic Sets

17

High Performance GB and CS

3.2. Parallel GB

We now describe concrete implementation schemes for parallelizing the GB al-
gorithm based on the strategies discussed in Section 1.1.3.

The master process performs a special task: coordinating the work of the slave
processes. The slave processes all perform the same task: the actual computations
and reductions. Each slave communicates only with the master in a star topol-
ogy. Slaves and master processes communicate data via PVM and SaclibPvm as
explained earlier.

of
polys

pair

new
polynomial

of
polys

PVM

new

Manager
Maintain Pairs and Basis

Send pairs of polynomials to Reducers
Receive new polynomials from Reducers
Update Basis and Pairs

Reducer
Receive pair from Manager
Compute & Reduce S-poly
Send new poly to Manager

Reducer
Receive pair from Manager
Compute & Reduce S-poly
Send new poly to Manager

polynomial

pair

SaclibPvm

Figure 3: Parallel Gröbner Bases

3.2.1. Parallel GB: Master Process

The master program performs control functions: spawning slave processes and
setting up the bag-of-jobs; a loop of sending jobs to slave processes, receiving
answers from slave processes, and updating bag-of-jobs, basis, and the set of
pairs; and a cleanup process including freeing space reserved for SACLIB and
exiting PVM.

The master process, gb_master.c, and the slave process, gb_slave.c, both
begin by including the necessary header files followed by their own variable
declarations, initializing SACLIB, and then enrolling in PVM.

The first step taken by the master process is spawning the slave task, by calling
PvmJobs library function job_init and getting input which consists of a set of
polynomials.

The master program then initializes Gröbner basis, forms the set of pairs, and
sets up the bag-of-jobs.

18

I. A. Ajwa

The master program is now ready to begin computing Gröbner basis for the
given set of polynomials. The program enters a loop of sending pairs of polyno-
mials to slave processes who are up and ready. It receives returning polynomials
which will be either zero or non-zero polynomials. In case returning answer is a
non-zero polynomial, the master program updates the Basis, by adjoining the
new polynomial to Basis, and the set of pairs, by forming new pairs of polyno-
mials as described above. The bag-of-jobs is also updated by adding new jobs.
The loop does not terminate till all jobs farmed out to slave processes have come
back and the master program is out of jobs to farm out.

When the loop terminates, the master program stops the timer, displays the
computed Gröbner Basis and timing data. It then does cleanup, exits PVM,
exits SACLIB freeing reserved space, and terminating any slave processes who
are still up and waiting for jobs.

3.2.2. Parallel GB: Slave Process

The slave program begins with enrolling in PVM and requesting its first job.
Then the program enters an infinite loop of receiving a pair of polynomials from
the master program, computing and reducing the S-polynomial of the pair, and
sending the normal form of the computed S-polynomial back to the master. The
slave process breaks out of the loop and terminates itself when a special NULL
job is received from the master process.

3.3. Parallel CS

The basic operation in the CS method is the pseudo division of polynomials as
discussed in Section 3.1. Analysis and experiments have shown that many costly
pseudo divisions are needed. The formation of the set RS is thus the most time
consuming task, especially when the intermediate polynomials become large.
The inner loop of the main loop performs the computations to form RS and is
a prime candidate for parallelization.

In each iteration of the inner loop, a polynomial from the set QS−CS is picked
and a pseudo reduction with respect to CS is carried out. If the pseudo remainder
is non-zero, it is adjoined to the set RS. The inner loop terminates when all
polynomials from QS − CS are pseudo reduced. During the pseudo reduction
process, QS and CS remain unchanged. The strategy is to divide QS −CS into
several disjoint subsets of polynomials. All subsets are then pseudo reduced in
parallel.

3.3.1. Load Balancing and Scalability

Balancing the loads of slave processes is a major concern in parallel processing.
Ideally, all slaves are kept busy doing useful work all the time till the entire
computation is finished. Perfection is hard to achieve, but a good load balancing
scheme is important for the efficiency of any parallel algorithm. Load imbalance
in parallel CS computations could occur due to the following reasons.

19

High Performance GB and CS

of

polys

of

polys

set

of

prems

PR

set

of

prems

PRsubset subset

SS

Reducer
Maintain current CS
Receive group S
For every f in S

r=prem(f,CS)Compute
Adjoin

Receive PseudoRemainders from Reducers

r to PR
Send PR to Manager

Reducer
Maintain current CS
Receive group S
For every f in S

Compute r=prem(f,CS)
Adjoin r to PR

Send PR to Manager

SaclibPvmPVM

Q

RForm the set

Manager
Update the set

Send subsets of polynomials from
P=Q-CS
CS = BasicSet(Q)Compute

Compute
P to Reducers

Figure 4: Parallel Characteristic Sets

• If the number of polynomials to be pseudo reduced in parallel is less than
the number of slaves, then some slaves will be idle. This situation only arises
for small problems where parallelism at this level helps little anyway.

• Different polynomials take different amounts of time to be pseudo reduced.
As a result, one or several slaves can be idle while other slaves are busy
although they all received the same number of polynomials from the master
process.

A flexible load balancing scheme is required in order to achieve good perfor-
mance. We have considered the following three approaches:

1. A totally dynamic scheduling would send one polynomial from the set QS−
CS to each slave when it is ready. This can reduce idle time but may incur
too much communication overhead and may cause a bottleneck specially
when many slave processes are used.

2. A completely static scheduling scheme would partition the set QS − CS
into equally-sized subsets of polynomials and send each subset to a different
slave. This approach reduces communication time but may result in unac-
ceptably high idle time since it is hard to predict which polynomials are
harder to pseudo-reduce.

3. A hybrid approach would farm out several (s) polynomials at once using
technique (2) and hold the remaining (r) polynomials to dish out using
technique (1). The ratio s/r to use depends on the number of slave processes
(n) and the total number (t) of polynomials to be pseudo-reduced. The value

20

I. A. Ajwa

of (t) depends on how many intermediate polynomials are generated in the
algorithm and is not easily predicted. More experimentation can provide
some basis for heuristic values of s/r.

Based on analysis and experiments, we have adopted the third approach for load
balancing. Let t be the number of polynomials to be reduced and let n be the
number of slave processes. Then the size of each job s to be sent to each slave is
t / n using integer division. Hence, the number of jobs to be done is n. Now, the
number of remaining polynomials is m = t MOD n. Each polynomial of these
m polynomials makes-up a job by itself. Hence, the total number of jobs to be
performed is n + m. It should be noted here that load balancing is applied every
time a new set of jobs is formulated. i.e., at the beginning of each iteration of
the outer loop.

Before we describe the master and slave programs of the CS method, we
present a description of the data structures used in the master and slave pro-
cesses.

3.3.2. Parallel CS: Master Process

The master program computes and maintains the basic sets, sends copies of
the current basic set to slave processes, sends subsets of polynomials to slave
processes, receives pseudo-remainders from slave processes, maintains the set
QS, and forms the set RS. The job of the master process terminates when
forming a new set RS fails.

The master process, pcs_master.c, and the slave process, pcs_slave.c, both
begin by including the necessary header files followed by their own variable
assignments, initializing SACLIB, and then enrolling in PVM.

If the input set is not trivial, the master program proceeds to compute the
Characteristic Set for the given set of polynomials. The program enters a loop.
The first step is to spawn slave processes. The master program then computes the
basic set, determines which polynomials need to be pseudo-reduced, initializes
the bag-of-jobs according to the load balancing scheme discussed above, and then
enters the inner loop for forming the RS set. The inner loop consists of sending
subsets of polynomials to the slave processes who are up and ready. It receives
returning polynomials which will be either zero or non-zero polynomials. In case
a returned answer is non-zero, the master program adjoins those polynomials
to RS. The loop does not terminate till all jobs farmed out to slave processes
have come back and the master program is out of jobs to farm out. That is
when the inner loop exits and a new iteration of the outer loop begins. When
the loop terminates, the master program stops the timer, displays the computed
Characteristic Set together with timing data. It then does cleanup,exits PVM,
exits SACLIB freeing reserved space, and terminating any slave processes who
are still up and waiting for jobs.

21

High Performance GB and CS

3.3.3. Parallel CS: Slave Process

Each slave maintains a copy of the current basic set. A slave computes the
pseudo-remainders of an assigned set of polynomials with respect to the current
basic set (the pseudo-reduction). Once done, the slave sends the computed set of
pseudo-remainders back to the master and may receive a new set of polynomials
to process. A slave terminates when the master program gives it no more jobs.

4. Conclusion

In this paper, new parallel implementations for the GB algorithm and the CS
method have been presented. The performance of the programs varies depending
on the size of the problem and lead to the conclusion that the implementations
presented in this paper exploit reasonable parallelism and have achieved good
speedups.

References

1. I. Ajwa, “Parallel Algorithms and Implementations for the Gröbner Bases Al-
gorithm and the Characteristic Sets Method,” Ph.D. Dissertation, Kent State
University, Kent, Ohio, December 1998.

2. B. Amrhein, O. Gloor, and W. Küchlin, “A Case Study of Multi-Threaded
Gröbner Basis Computation,” Proceedings of the 1996 International Sympo-
sium on Symbolic and Algebraic Computation (ISSAC ’96), Y. N. Lakshman
(editor), pp. 95-102, Zurich, Switzerland, July 24-26, 1996.

3. B. Buchberger, “The Parallel L-Machine for Symbolic Computation,” EURO-
CAL ’85, European Conference on Computer Algebra, B. F. Caviness (editor),
Lecture Notes in Computer Science 204, Springer-Verlag, pp. 541-542, Linz,
Austria, April 1-3, 1985.

4. B. Buchberger et al, SACLIB 1.1 User’s Guide, RISC-Report No. 93-19, Linz,
Austria (1993).

5. J. Faugère, “Parallelization of Gröbner Basis,” Proceedings of the First In-
ternational Symposium on Parallel Symbolic Computation (PASCO ’94), H.
Hong (editor), Lecture Notes Series in Computing, vol. 5, World Scientific,
Linz, Austria, September 1994.

6. H. Ong, I. Ajwa, and P. Wang, “PvmJobs: A generic parallel jobs library
for PVM,” Proceedings of the 1997 IEEE National Aerospace and Electronics
Conference (NAECON’97), (editors), pp. - , Dayton, Ohio, USA, July 14-18,
1997.

7. D. Wang, “On the Parallelization of the Characteristic-Set-Based Algo-
rithms,” Proceedings of the 1st International Conference ACPC, 1991.

22

I. A. Ajwa

8. W. Windsteiger and B. Buchberger, “GRÖBNER: A Library for Computing
Gröbner Bases Based on SACLIB,” RISC-Linz Technical Report No. 93-72,
Johannes Kepler University, Linz, Austria, 1993.

9. L. H. Zhi, “Polynomial Factorization over Algebraic Field and Its Applica-
tions,” Ph.D. Thesis, Institute of Systems Science, Academia Sinica, China
(1996).

23

Solving For Functions

Michael Beeson

San Jose State University

Math & Computer Science

San Jose, CA 95192

Abstract

Buchberger has emphasized that automated deduction involves computa-
tion, proving, and solving. When the object to be “solved for” is a func-
tion, second-order unification can be a very powerful and general solution
tool. An algorithm for second-order unification was given in (8). This algo-
rithm is now being implemented in the source code of Otter; this algorithm
differs from the earlier algorithm given by Pietrzykolski (22). Several ex-
amples are given to illustrate the wide range of potential applications
of this algorithm and its implementation in a powerful clausal theorem
prover, including the ability to manipulate quantifiers at the clausal level,
so that definitions involving quantifiers can be conveniently used in proofs.
Since predicates are considered as Boolean-valued functions, solving for
functions includes solving for predicates, and second-order unification can
help first-order provers with proofs by induction. Other examples show
proofs in which the function to be solved for is a one-to-one correspon-
dence (in set theory) or a group isomorphism. There is also a detailed
comparison of the new second-order unification algorithm with the older
one.∗

KEYWORDS: automated deduction, computer proofs, unification, second-
order, Otter

Introduction

In previous work (4; 7), the author has focused attention on the relation be-
tween computation and logic in automated deduction. In the development of
Theorema, Buchberger (13) was guided by his vision that mathematics involves
three essential components: logic (proving), computation, and solving. Solving

∗Research supported by NSF grant number CCR-0204362.

24

Solving For Functions

means finding an x with certain desired properties. Often the “solving” step of
a proof is the “key” step, the one that seems to demand “creativity”. Buch-
berger emphasizes the importance of adding (many) special-purpose “solvers”
to a computerized mathematical system. In this paper, by contrast, we wish to
focus on general solution techniques, as opposed to special algorithms that apply
to a specific mathematical theory.

Solving refers to techniques for instantiating a variable. The traditional method
of instantiating variables used in automated deduction is unification. It is known
that, with respect to first-order logic, this method is “universal”, in the sense
that there are completeness theorems for various systems of inference in which
unification is used to instantiate the variables. For example, binary resolution
with unification is complete, and backwards application of the Gentzen sequent-
calculus rules, guided by unification, is complete. But when we go to mathemat-
ics, unification does not seem to do the job. For example, if we want an x such
that x2 + ax + b = 0, we need the quadratic theorem, not unification. Therefore,
as Buchberger has emphasized, special-purpose solvers are required to deal with
the different specialized branches of mathematics.

Our focus in this paper is on situations where we need to “solve for” a function,
rather than an element or object. We will exhibit a number of examples of proofs
of this kind, to illustrate the claim that “solving for a function” is a theme that
permeates different branches of mathematics. Just as this is a general theme
in mathematics, there is a general tool in logic to help with this kind of proof.
There is a well-known “unification algorithm” which can be thought of as solving
equations between terms denoting objects. There is also λ-calculus, which lets us
define terms for denoting functions. There is a way (in fact, more than one way)
to generalize the unification algorithm so that it can be thought of as solving
equations between terms denoting functions, rather than objects. This is known
as second-order unification.

Our motivation in this paper is to show that, even though special-purpose
solvers are useful for specialized mathematics, we can get some surprising (and
in some cases unexpected) results from general methods based on second-order
unification.

The problems addressed here are: How are the existing notions of second-
order unification related? Can second-order unification be fruitfully used in a
first-order theorem-prover? Which is the best notion of unification to use in
automated deduction? Is it feasible to add second-order unification to an existing
prover (Otter), which already has a large group of users? How can we expect
this capability to be useful in automated deduction?

These questions have not been answered until now. One reason for this is
that the majority of work in automated deduction has been done (so far) by
first-order theorem provers, but second-order unification has so far been (incor-
rectly) viewed as incompatible with first-order provers. Another reason is that
serious automated deduction has so far been done in theories with a single short
list of axioms, referring to only one kind of mathematical objects, rather than in
more complex mathematical environments, where second-order unification might

25

M. J. Beeson

prove helpful. A third reason is that second-order unification is considered in-
efficient (it produces infinitely many unifiers, it necessarily produces redundant
unifiers, it involves an exponential search, etc.)

The main points of the paper are
(i) Second-order unification can be thought of as “solving for a function”, that

is, finding a term that defines a function with desired properties to complete a
proof.

(ii) Some mathematical problems that may not appear to have the form of
“solving for a function” can be recast in that form, so that second-order unifi-
cation can be used on them. Others are naturally of that form. A very general
“solver” can be useful, because solving for functions occurs generally in mathe-
matics.

(iii) Second-order unification can be implemented and used in Otter, a first-
order theorem-prover already widely used (19). There is nothing strange or diffi-
cult about using λ-calculus and “second-order” unification in a first-order prover.
Sample proofs produced by the new implementation in Otter are exhibited.

(iv) Technical difficulties concerning efficiency, non-termination, redundancy,
etc., are minimized if we use the notion of unification introduced in (8) rather
than the one in (22; 18). These notions are compared here.

(v) Quantification can be defined in terms of λ-calculus, and second-order
unification makes it possible to use quantifiers in Otter proofs at the clausal
level. This is very important as it will enable Otter to work with definitions
involving quantifiers, such as the relation “u divides v” on the natural numbers.

(vi) Set theory too is naturally treated as a branch of λ-calculus. This is not
an original idea but goes back to Church.

We shall give a motivating example. In undergraduate courses in algebra, what
is taught as “group theory” usually involves the study of groups and subgroups.
See e.g. the first 45 pages of (15) for the mathematics in question. The notation
an is introduced, where n is a natural number, and one of the early theorems is
Lagrange’s theorem, according to which the order of a subgroup H of a finite
group G divides the order of G. This theorem involves groups, subgroups, and
natural numbers. Its proof begins by showing that each coset Ha is in one-to-one
correspondence with H. That is, there exists a function f mapping H one-to-
one onto Ha. That function, of course, is λx.xa. The proof therefore involves a
small amount of set theory to deal with cosets and one-to-one correspondences,
as well as enough number theory to deal with “divides”. We will show in the last
section of this paper that second-order unification can instantiate the variable f

properly to do the key step of this proof automatically.
Buchberger’s aim in developing Theorema has been to develop an interactive

environment in which humans can develop computer-checked proofs in a math-
ematical context like this, in which (elements of) several different branches of
mathematics are available at the same time. One difficulty in such an enterprise
is that the proof-checker may require an unacceptably large level of detail. Peo-
ple refer to the “expansion factor”, by which a page of proof written by and
for humans expands to ten or more pages of computer-checkable proofs. If the

26

Solving For Functions

details could be taken care of automatically, that would advance the subject. On
the other hand, some researchers in automated deduction have focused on the
attempt to have the computer prove results not previously proved by humans.
So far, these efforts have been successful only in areas that can be axiomatized
by a few simple axioms, and studied in isolation from the rest of mathematics.
We view our work as directed towards opening up wider horizons to automated
deduction in the future, not necessarily just as support for proof-checking.

Solving for functions in mathematics

In this section, we will illustrate the theme that “solving for functions” occurs
across the board in different branches of mathematics. We have already given the
example of Lagrange’s theorem in algebra. The context of Lagrange’s theorem is
typical of a great deal of mathematics: a little set theory, a little number theory,
sometimes a little calculus. Two kinds of objects are considered (numbers and
elements of the group), along with sets of objects (subgroups), functions from
objects to objects (isomorphisms, etc.), and functions from objects to numbers
(the order of an element), and even functions from sets of objects to numbers (the
order of a group, the index of a subgroup). Objects of greater complexity than
that are not required. The recently announced polynomial-time primality test
(1), for example, which was hailed in the New York Times (Aug. 8, 2002) as the
best result in computer science in the past ten years, is actually mathematics of
the sort just described. One needs integers, integers mod p, and polynomials over
Zp, groups and their orders, but nothing more complicated. Fermat’s conjecture
and its long and complex proof notwithstanding, if automated deduction could
deal successfully with the simple kinds of contexts just described, the subject
would advance rapidly.

We begin with set theory. Consider S = {n : P (n)}, where P is some property
of integers. For simplicity let us just consider sets of integers. The characteristic
function χS is defined by χS(n) = 1 if n ∈ S, 0 if n 6∈ S. What is the relation
between χS and S? The logician Alonzo Church suggested that in fact the set is

just its characteristic function. (See the Appendix of (2).) According to Church,
any set is a boolean-valued function, and n ∈ S is just an abbreviation for
χS(n) = true. If we take this view, sets are functions, and can be defined by
λ-terms. Finding a set with certain desired properties becomes a special case of
solving for functions. The “list notation” {a, b, c} for a finite set can be regarded
as an abbreviation for a function defined by cases: if x is a,b, or c, the value is
true, else it is false.

One can also use tuple notation 〈x, y〉 and define Cartesian products. Since our
interest is not foundational, we ignore the issue of whether and how tuples can be
defined in terms of sets. We assume that p0 and p1 are pairing functions such that
〈p0z,p1z〉 = z. We say A ∼= B if there is a one-to-one correspondence between A

and B. A simple theorem in this subject (just about the simplest set-theoretical
theorem I can think of) is that A × B ∼= B × A. (“∼=” is read “equipollent”).
How do we prove that theorem? By solving for a function f that maps A × B

27

M. J. Beeson

one-to-one onto B×A. We might like to write that function as λ〈x, y〉.〈y, x〉, but
according to the usual notation for λ-terms, that is not a syntactically correct
term. What we want would be formally written as λz.〈p1(z),p0(z)〉. This term
arises naturally as the solution to a certain second-order unification problem,
but there is no space here for the details.

Turning to number theory, let us consider the relation n|m. To define this
set (or its characteristic function), we need an existential quantifier: n|m means
∃k(n ∗ k = m). We shall take up this example in a subsequent section, and show
that when the existential quantifier is defined using λ-calculus, second-order
unification can use this definition to verify that 2|6 automatically.

Consider a related but more difficult example, the theorem that two positive
integers n and m have a greatest common divisor. That is, there exists a number
k such that k divides both n and m, and any other integer j that divides both n

and m also divides k. We know, from our mathematical education, two different
ways to instantiate k: as the least number of the form λn + µm, where λ and
µ are (positive or negative) integers; or as the result of the Euclidean algorithm
E(n,m). It seems that neither definition of k will be produced by unification,
even though the existence of gcd’s follows in first-order logic from the first-order
version of Peano’s axioms. Is that a slight mystery, since unification is complete
for first-order logic? It should not be: Let us abbreviate by Q(n,m, e) the formula
that says e is the gcd of n and m. Then there are certain instances of induction
(say for simplicity there is just one)

I := ∀n(P (n) → P (n + 1)) → ∀mP (m)

such that in first order logic, I ∧ Z− > ∀m, n∃eQ(n, m, e). Here Z is the con-
junction of the non-induction axioms of arithmetic. Once the proper formula or
formulas P is discovered, then resolution driven by unification can, of course,
find the proof. Our point here is that finding this proof involves as its main task
the discovery of the appropriate instance of induction to use. Now the property
P is just a boolean-valued function, and therefore second-order unification can
(potentially) find it. We would try to unify the conclusion of the instance of in-
duction, P (m), with the theorem to be proved, in order to find an instantiation
of P . Here P would be regarded as a variable (for a function).

We seem to need two sorts or types: numbers and functions. But several sorts
(or even infinitely many) can be reduced to first-order, using in this case a unary
predicate N(x) for the numbers. We could, if we liked, use another predicate for
functions from numbers to booleans, etc.†

†The distinction between first-order and higher-order logics is not as important as many
people assume. Syntactically the two are intertranslatable, using unary predicates to distin-
guish the types. The difference arises in the semantics. The second-order Peano axioms, for
example, have an instance of induction for each subset of the integers, of which there are
uncountably many. The first-order version of the Peano axioms has induction only for those
subsets that can be defined by first-order formulas in a fixed language. Many instances of
induction are thus omitted–hence there are non-standard models. There are no non-standard
models of the second-order Peano axioms, as Peano himself proved: these axioms characterize

28

Solving For Functions

People say that Otter “can’t do induction”. But induction, with respect to
first-order formulae, just involves deduction from first-order axioms, and Otter
is as good at that as at any other kind of first-order logic. If the user is willing
to specify what instances of induction are required, those instances can be given
as axioms to Otter, suitably Skolemized, and Otter can find the proof, at least
in some examples I have tried. What Otter cannot do is find the correct instance
of induction. This is a problem in “solving for functions”, since the instance of
induction to be found is a boolean-valued function. In some cases, second-order
unification can find the required instance.

One problem here is that we often want to prove a quantified statement
by induction. For example in the case of the existence of gcds, the conclusion
Q(n,m, e) involves a quantifier. The general plan in automated deduction has
been to replace quantifiers by functions. Usually this is done by using symbols for
Skolem functions. But if λ-terms are in use, it is possible to deal with quantifiers
more directly, using second-order unification to guide the proof. We amplify this
point in detail in a subsequent section.

Second-order unification

We focus on the attempt to extend unification to instantiate variables for func-
tions by means of λ-terms. This is loosely known as higher-order unification. It
has been pursued in the past in the context of formal systems based on typed
λ-calculus, so that functions and functionals of any “finite type” can be consid-
ered. We call our unification “second-order” since, formally, we prefer a frame-
work without types. This is not essential; our work can be embedded in several
different formalisms. In (22), Pietrzykolski gave an algorithm for second-order
unification, which we here call λ-unification. This was extended to type theory in
(23). Huet showed in (18) that λ-unifiability is more efficient than λ-unification,
and subsequently λ-unifiability was used in the implementation of Coq. Huet
proved a completeness theorem for λ-unification relative to typed λ-calculus.

λ-unification, and the completeness theorem for it, are for typed λ-calculus
without definition by cases. If we try to use λ-unification to find an f such that
f(0) = 0, it will give us two answers: f = λx.0 and f = λx.x. If we then ask for
an f such that f(0) = 0 and f(1) = 2, neither of these solutions will do, and
indeed no solution is given by a pure λ-term. However, if we look for solutions
involving if-then-else, it is easy to define such a function. This example is a fairly
representative one, illustrating the two methods “projection” and “imitation”
used in the definition of λ-unification.

In (8), a notion of second-order unification is given that allows the construction
of functions using definition by cases. Here we call this notion D-unification, to
distinguish it from λ-unification. We use cases(n, m, x, y) to mean “if n = m then
x, else y”. This unification involves making the “minimal commitment” needed
to meet the conditions. Thus, if we use it to solve the problem of finding f such

the integers up to isomorphism. But semantics are not important for automated deduction,
which is an inherently syntactic enterprise.

29

M. J. Beeson

that f(0) = 0, the answer we get is f = λx.cases(x, 0, 0, Y (x)), where Y is a
fresh variable. Intuitively this means, “if x = 0 then 0, else undetermined”. Here
“undetermined” is different from “undefined”, but the idea is similar to “not yet
defined”. It means that further values of f can be specified by instantiating the
new variable Y . This answer is “more general” than the two answers λx.0 and
λx.x given by Huet’s algorithm, in the sense that they can be obtained from it by
instantiating Y in different ways. In (8), a most-general-unifier theorem is proved,
according to which, if terms t and s (say in typed λ-calculus with definition
by cases) unify at all, then they have a unique most general unifier. This is
a satisfying generalization of the most-general-unifier property of Robinson’s
“ordinary” unification.

An important idea in D-unification is that of restrictions on a variable. A
restriction is a pair consisting of a variable and a (possibly empty) list of con-
stants. Note that if a problem expressed in first-order logic using quantifiers
is converted to clausal form, some of the originally-bound variables are con-
verted to constants, so the concept “constant” here includes what sometimes
are called “object variables”, and the concept “variable” here includes what is
sometimes called “metavariable”. The idea is that the list of constants paired
with x are forbidden to x.‡ Unification is not allowed to assign a variable x a
value that contains a constant forbidden to x. To make this sensible, the input
to the unification algorithm has to include an environment, which is a finite list
of restrictions. Since D-unification can introduce new variables, not mentioned
in the input environment, the output of the unification algorithm is not only a
substitution but also an output environment. The substitution σ unifies t and s

relative to environment E if for some substitution χ whose restriction to E is
the identity, we have tσχ = sσχ. That is, it is possible to extend σ to give the
new variables values such that, under the extended substitution, t and s become
equal.

We will state the most-general-unifier theorem, which is the nicest property
of D-unification. Before the theorem can be stated, the notion of “most general
substitution” must be defined. Here are the definition and the theorem, taken
from (8).

Definition: Given an environment E, θ is more general than µ, relative to E, if
there is a substitution β such that θβ = µ on E. That is, for all variables X in
the environment E, we have Xθβ ∼= Xµ. Here p ∼= q means px = qx, where x is
a variable not in p or q.

Remark. In this definition, the phrase “px = qx” means that px = qx is provable
in the λ-calculus with definition by cases (be it a typed version or the untyped
theory λ-D considered in (8)).

‡Technically, one has to decide whether x in λx.t is a variable or a constant. Conceptually
it is constant, since unification cannot assign it a value. But if one takes that seriously, one
must constantly be replacing variables by constants and vice-versa when β-reduction removes
λ. In the Otter implementation we do not do this.

30

Solving For Functions

Theorem 0.1: [Most general unifier] Let E be an environment and p and q

normal terms. Suppose that for some substitution θ legal for E, pθ and qθ are

identical. Then D-unification terminates successfully on inputs E,p, and q, and

the answer substitution is legal for E, and more general than θ.

Comparison of D-unification and λ-unification

The uniqueness of the result of D-unification, and the most-general-unifier theo-
rem, may seem puzzling in view of the many-valuedness of λ-unification. As the
author of (8), I received a number of inquiries about this point. Is λ-unification
many-valued only because of examples like the one above (in which it seems that
the reason is over-specification of the unifier), or also for other, possibly more
fundamental reasons? How do the two theorems (completeness of Huet’s algo-
rithm and most-general-unifier theorem) avoid contradicting each other? The
purpose of this section is to answer these questions.

Let us consider the statement of the theorems carefully. The hypothesis of the
most-general-unifier theorem of (8) is that t and s are given normal terms, and
there is a substitution θ such that tθ and sθ are identical. In that case, says the
theorem, there is a most general unifier. The terms t and s, as well as the unifier,
can involve definition by cases. What if we replace the hypothesis that tθ and sθ

are identical by the weaker requirement that tθ and sθ are provably equal (i.e.,
in view of Church-Rosser, they have the same normal form)? Is the theorem still
true? Also, if t and s are provably equivalent in λd-calculus, are they necessarily
unifiable? These questions are not answered in (8).

The completeness theorem for λ-unification has the weaker hypothesis, that
tθ and sθ have the same normal form, but neither the terms t and s nor θ can
involve cases. The conclusion is that there is a complete set of unifiers (a CSU)
for t and s, i.e. every unifier is more general than some substitution in the CSU.
The CSU can be infinite.

It will be instructive to consider an example from (22), which was also con-
sidered in (18), and compare how the example is treated by λ-unification and
D-unification. The example is the unification of F (F (X)) with a(a(b)). Here F

and X are variables and a and b are constants. cases-unification finds (only)
the solution {F := a, X := b}. λ-unification finds this solution, and also the
solution {F := λu.a(a(b)), X := b} (here F is a constant function) and the so-
lution {F := λu.u,X := a(b)} (here F is the identity function). The details of
the calculation for λ-unification are on p. 42 of (18).§ The example brings to the
fore the fact that D-unification has no clause in its definition that applies to the
case of F (t), where t is a compound term containing variables forbidden to F ,
such as (in this case) F itself. Therefore only the “Robinson clause” (which is
the same as first-order unification) applies to this example, which is why we get
only the first solution.

§There is a technicality about whether η-reduction is used in λ-unification or not. It is used
in (22). If it is not used, as in (18), we get one more solution, {F := λu.a(u), X := b}, which
is η-equivalent to {F := a,X := b}.

31

M. J. Beeson

This example shows that the most general unifier theorem for D-unification
depends critically on the hypothesis that tσ and sσ are identical, not just β-
convertible. To see this, take t to be F (F (X)) and s to be a(a(b)). Take σ to be
the second solution substitution above. Then tσ and sσ are beta-convertible, but
it is not the case that σ is more general than {F := a, X := b}; indeed since this
substitution has constants on the right, it is not more general than any other
substitution.

An even simpler example can be given to show that the most general unifier
theorem fails if we change the hypothesis to “tσ and sσ are β-convertible” instead
of “identical”. Consider the unification problem X(t) = t, where t is a compound
term. Then D-unification does not succeed, as there is no clause in the definition
that applies. But if we take θ to be the substitution {X := λx.x}, then X(t)θ
is β-convertible to tθ. This would be a counterexample to the theorem with the
changed hypothesis.

Implementation in Otter

D-unification has earlier been implemented in a backwards-Genzten theorem
prover (9). However, that prover is not as strong or robust as Otter, and the
well-known powers of Otter should work well in combination with D-unification.
Implementation of this algorithm in the source code of the theorem-prover Otter
is well under way at the time of writing (August 2002). There are some additional
factors: Otter already has a large user community, so implementation in Otter
will make D-unification readily available, without anyone having to learn a new
system. Also, Fitelson and Harris have written a Mathematica interface to Otter
(private communication), which can be used to connect Theorema to Otter.

The implementation had to begin with adding λ-calculus to Otter. Reserved
words lambda and ap (or synonymously Ap) are used for this purpose. One uses
lambda(x,ap(f,x)) to enter the term λx.f(x). Beta-reduction has been imple-
mented in the framework Otter uses for demodulation. Technicalities necessary
to avoid clash of bound variables have been successfully dealt with. The following
Otter proof shows a beta-reduction combined with an ordinary demodulation,
given the demodulator x ∗ x = x. The theorem proved is

(λx.x ∗ x)c = c.

Of course the proof is trivial: it is only meant to demonstrate the successful
implementation of β-reduction working more or less the same way as ordinary
demodulation in a first-order theorem-prover. Line 3 of the proof is the nega-
tion of the goal. The first two lines are axioms. The proof completes with the
derivation of a contradiction.

1 [] x=x.

2 [] x*x=x.

3 [] ap(ap(lambda(x,lambda(y,x)),c*c),y)!=c.

4 [3,demod,2,beta,beta] c!=c.

5 [binary,4.1,1.1] .

32

Solving For Functions

Quantification in a clausal theorem-prover

In this section we show how to treat quantification in Otter, at the clause level,
based on the machinery of λ-calculus and second-order unification. An example
proof will be worked through in detail.

One can regard ∃ as a boolean-valued functional, whose arguments are boolean
functions (defined, for simplicity, on the integers, let’s say). Then ∃n.P (n) is
an abbreviation for ∃(λn.P (n)), or more explicitly, Ap(∃, λn.P (n)). It is then
possible to work with quantified statements directly in Otter–that is, in the
version of Otter that is enhanced with λ-calculus.

We will show exactly how this is done. In the presence of λ-calculus, ∃ is
treated as a constant. The rule for dealing with ∃ in Otter is

-Ap(Z,w) | exists(lambda(x, Ap(Z,x))

This works in Otter as follows: if Z(t) can be proved for any term t, then
the literal −Ap(Z, x) will be resolved away, using the substitution x := t. Then
∃(λx.Z(x)) is deduced, which can be abbreviated to ∃x.Z(x). No machinery is
added to Otter to accomplish this, other than what has already been added for
λ-calculus.

This will permit the use of definitions that explicitly involve a quantified for-
mula in the definition. For example, we could define

divides(u,v) = exists(lambda(x,u*x = v)).

Now, given the clause 2 ∗ 3 = 6, Otter can deduce divides(2,6) as follows:
First, the negated goal -divides(2,6) will rewrite to
-exists(lambda(x,2*x = 6)).
This will unify with exists(lambda(x,Ap(Z,x)) if 2*x=6 will unify with unify

with Ap(Z,x). Second-order unification (with x forbidden to Z) will find

Z = λw.(2 ∗ w = 6 ∨ Y (w))

where Y is a new variable. Resolution of the two clauses containing exists will
then generate a new clause containing the single literal −Ap(Z,w) with this
value of Z. Specifically,

−Ap(λw.(2 ∗ w = 6 ∨ Y (w)), w).

That will be β-reduced to −(2 ∗ w = 6 ∨ Y (w)) so the clause finally generated
will be -or(2*w = 6, Y(w)). Demodulation can apply to a negated literal under
these circumstances and produce two new clauses, -(2*w = 6) and −Y (w).¶ The
first of these resolves with 2 ∗ 3 = 6, producing a contradiction that completes
the proof.

¶Demodulation technically leads from term to term, or clause to clause. We refer here to
a generalized version of demodulation which treats certain functors, such as or, specially. It
also incorporates β-reduction.

33

M. J. Beeson

Two simple examples

The first example is the following theorem: If a 6= b, there exists a predicate
which is true on a and false on b. The input file contains some equations for
cases as well as the clauses a != b and -Ap(X,a) | Ap(X,b), which is the
way we write ¬X(z) ∨ X(b) in Otter. The inference rules are binary reso-
lution and paramodulation. The binary resolution rule has been modified so
that a term X(a) or its negation can always be unified with the constant $F,
which is Otter’s name for falsity. Unifying -Ap(X,a) with $F Otter finds X =

lambda(x,cases(x,a,$T,Ap(Y,x)) , where Y is a new variable. The result of
the binary resolution step is Ap(lambda(x,cases(x,a,$T,Ap(Y,x)),b). This
beta-reduces to cases(b,a,$T,Ap(Y,b)). But before this, Otter has already de-
duced cases(b,a,x,y) = y. Since we have set the option knuth-bendix, which
turns on paramodulation, this previously-deduced equation is used as a demodu-
lator, and our new clause demodulates to Ap(Y,b). This clause then unifies with
$F, producing Y = lambda(y,cases(y,b,$F,Ap(Z,y)). The resolvent is the
empty clause, completing the proof. The value of the function found is, after beta-
reduction, X = lambda(x,cases(x,a,$T,cases(x,b,$F, Ap(Z,x)))). Intuitively,
this function is true on a, false on b, and elsewhere undetermined.

Our second example is to prove the existence of the identity function. The
goal is ∃F∀x(x = Ap(F, x)). Traditionally, to formulate a problem of the form
∃x∀yP (x, y) for Otter, one would introduce a Skolem function g, and write the
negated goal as ¬P (x, g(x)). By comparison, in a backwards Gentzen prover
(such as was used in (9)), one would change y to a constant forbidden to x,
and the negated goal (which one does not have to negate in such a prover, but
we negate it for comparison to Otter) would be ¬P (x, c), with c forbidden to
x. Intuitively, these two goals are similar, since g(x) functions more or less the
same as a constant forbidden to x. It is like an arbitrary constant because the
Skolem function is not further specified–g(x) could be any arbitrary value–and
it is “forbidden to x” by the occurs check in unification.

We take the negated goal in the form ¬P (x, c), with c forbidden to x. In our
example this is c 6= Ap(F, c). We resolve this with the equality axiom x = x.
First x is given the value c. Then we have to unify Ap(F, c) with c, where c is
forbidden to F . The definition of D-unification tells us F := λx.(x∨ Y x), where
Y is a new variable. The succesful unification derives a contradiction by binary
resolution and completes the proof of the theorem.

On the other hand, if we take the Skolemized version of the negated goal, we
have to unify Ap(F, g(F)) with g(F), where g is a Skolem function. We have
discussed this shortcoming (being unable to unify X(t) with t) in an earlier
section. Until this difficulty is overcome, we use constants forbidden to F when
converting a theorem to clausal form.

34

Solving For Functions

A more mathematical example: Lagrange’s theorem

In this section we use D-unification to work out the most important details of the
proof of the algebraic part of Lagrange’s theorem: the existence of a one-to-one
correspondence between H and the coset Ha, where a ∈ G.

To prepare this for Otter, we use a unary predicate G(x) for the group G, a
unary predicate H(x) for the subgroup H, and include the axioms that assert
that G is a group under ∗ with identity e and inverse i(x), and that H is closed
under ∗ and inverse, and H(x) implies G(x). We also include the following:

-Ap(Z,w) | exists(lambda(x,Ap(Z,x))).

G(a).

Now consider how to formalize the coset Ha. We have

Ha = {ha|h ∈ H}

= {w : ∃h.(h ∈ H ∧ h ∗ a = w}

= λw.(∃h.(h ∈ H ∧ h ∗ a = w)

= λw.(∃(λ(h,H(h) ∧ h ∗ a = w)))

We put this into Otter using a function symbol ha, as follows:

ha(w) = exists(lambda(h, and(H(h), h*a = w))).

We use this as a demodulator, so that it will be used to rewrite any literal
-ha(t) that arises. Such a literal would then resolve with existential axiom, using
D-unification, and the resulting substitution would yield

Z:= lambda(h, or(and(H(h),h*a = t), Ap(Y,h)))

where Y is a new variable.
Now, for simplicity, we begin by proving that there is a function F from H to

Ha, without worrying about the one-to-one and onto part yet. The goal is then

∃F∀x(x ∈ H → Ap(F, x) ∈ Ha)

Instead of Skolemizing x = g(F), we replace x by a constant that is forbidden
to F . The negated goal becomes the two clauses

H(c).

-ha(Ap(F,c)).

As shown above, the literal -ha(Ap(F,c)) demodulates and resolves with the
existential axiom; the unification produces the substitution

Z:= lambda(h, or(and(H(h),h*a = Ap(F,c)), Ap(Y,h)))

35

M. J. Beeson

and the resolution produces the unit clause

-Ap(lambda(h,or(and(H(h),h*a = Ap(F,c)), Ap(Y,h))),w).

This clause however is not stored yet, because it β-reduces to

-or(and(H(w),w*a = Ap(F,c)),Ap(Y,w))).

Demodulators are used to implement de Morgan’s laws, so this will demodulate
to the two clauses -H(w) | w*a != Ap(F,c) and -Ap(Y,w). Now we’re getting
somewhere! The literal -H(w) resolves with H(c). The inferred clause is c ∗ a! =
Ap(F, c). The single literal in this clause can be unified with the equality axiom
x = x. This results in unifying c ∗ a with Ap(F, c). Since c is forbidden to F ,
the answer substitution is F := λx.x ∗ a ∨ Y (x). If we take Y = λx.false we
have F = λx.x ∗ a (since u∨ false = u, even if u is not Boolean). λx.x ∗ a is the
desired map from H to the coset Ha. The proof that it is one-to-one and onto
is relatively straightforward.

Related work

The pioneer of the actual use of second-order unification was Huet (18). It has
been implemented in Coq, which is described in (3) as well as numerous docu-
ments available from the Coq web page. There are many existing implementa-
tions of higher-order logic, including: λ-prolog (20); PVS, which is being used
at SRI under the direction of N. Shankar (21); HOL-Light, which was written
by John Harrison (16; 17) and is currently being used by him at Intel’s Port-
land facility; NuPrl, developed at Cornell under the direction of Constable (14);
and the French system Coq developed at INRIA, which is also being used in
Nijmegen. These systems (if they implement higher-order unification at all) use
λ-unification, rather than D-unification, and they are primarily proof-checkers,
not proof-finders. We believe that D-unification offers greater power and effi-
ciency, as does the use of the industrial-strength clausal theorem prover Otter.
A proof of Lagrange’s theorem has been checked by the use of Nqthm (25).

Some years ago, Quaife used Otter to formalize set theory using a finite ax-
iomatization due in essence to Gödel-Bernays. He then used set theory to formu-
late Peano arithmetic, and he succeeded in proving the fundamental theorem of
arithmetic (24). Belinfante, building on Quaife’s beginning, has carried forward
the formal development of set theory from first principles, proving thousands of
theorems in Otter (10; 11); see also Belinfante’s web site.

References

1. Agrawal, M., Saxena, N., and Kayal, N., PRIME is in P, available from
http://www.cse.iitk.ac.in/news/primality.html

2. Barendregt, H., The Lambda Calculus: Its Syntax and Semantics, Studies
in Logic and the Foundations of Mathematics 103, Elsevier Science Ltd.
Revised edition (October 1984).

36

Solving For Functions

3. Barendregt, H., and Geuvers, H., Proof-Assistants Using Dependent Type
Systems, in: Robinson, A., and Voronkov, A. (eds.), Handbook of Automated

Reasoning, vol. II, pp. 1151-1238. Elsevier Science (2001).

4. Beeson, M., Some applications of Gentzen’s proof theory to automated de-
duction, in P. Schroeder-Heister (ed.), Extensions of Logic Programming,
Lecture Notes in Computer Science 475 101-156, Springer-Verlag (1991).

5. Beeson, M., Mathpert: Computer support for learning algebra, trigonom-
etry, and calculus, in: A. Voronkov (ed.), Logic Programming and Auto-
mated Reasoning, Lecture Notes in Artificial Intelligence 624, Springer-
Verlag (1992).

6. Beeson, M., Mathpert Calculus Assistant. This software product was
published in July, 1997 by Mathpert Systems, Santa Clara, CA. See
www.mathxpert.com to download a trial copy.

7. Beeson, M., Automatic generation of epsilon-delta proofs of continuity, in:
Calmet, Jacques, and Plaza, Jan (eds.) Artificial Intelligence and Symbolic

Computation: International Conference AISC-98, Plattsburgh, New York,

USA, September 1998 Proceedings, pp. 67-83. Springer-Verlag (1998).

8. Beeson, M., Unification in Lambda Calculus with if-then-else, in: Kirch-
ner, C., and Kirchner, H. (eds.), Automated Deduction-CADE-15. 15th In-

ternational Conference on Automated Deduction, Lindau, Germany, July

1998 Proceedings, pp. 96-111, Lecture Notes in Artificial Intelligence 1421,
Springer-Verlag (1998).

9. Beeson, M., A second-order theorem prover applied to circumscription, in:
Gor, R., Leitsch, A., and Nipkow, T. (eds.), Automated Reasoning, First In-

ternational Joint Conference, IJCAR 2001, Siena, Italy, June 2001, Proceed-

ings, Lecture Notes in Artificial Intelligence 2083, Springer-Verlag (2001).

10. Belinfante, J., Computer proofs in Gödel’s class theory with equational def-
initions for composite and cross, J. Automated Reasoning 22, No. 3 (1988),
pp. 311-339.

11. Belinfante, J., On computer-assisted proofs in ordinal number theory, J.

Automated Reasoning 22, No. 3, pp. 341-378.

12. Boyer, R. S., and Moore, J. S., A Computational Logic Handbook, Academic
Press, Boston (1988).

13. Buchberger, B., et. al. Theorema: An Integrated System for Computation
and Deduction in Natural Style, in: Proceedings of the Workshop on Inte-

gration of Deductive Systems at CADE-15, Lindau, Germany, July 1998

14. Constable, R. L. et. al., Implementing Mathematics with the Nuprl Proof

Development System, Prentice-Hall, Englewood Cliffs, New Jersey (1986).

37

M. J. Beeson

15. Hall, Marshall, Jr., The Theory of Groups, Macmillan, New York (1959).

16. Harrison, J., and Théry, L.: Extending the HOL theorem prover with a
computer algebra system to reason about the reals, in Higher Order Logic

Theorem Proving and its Applications: 6th International Workshop, HUG

’93, pp. 174–184, Lecture Notes in Computer Science 780, Springer-Verlag
(1993).

17. Harrison, J., Theorem Proving with the Real Numbers, Springer-Verlag,
Berlin/Heidelberg/New York (1998).

18. G. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer

Science 1 27–52, 1975.

19. McCune, W.: Otter 2.0, in: Stickel, M. E. (ed.), 10th Interna-

tional Conference on Automated Deduction pp. 663–664, Springer-Verlag,
Berlin/Heidelberg (1990).

20. D. Miller and G. Nadathur. An Overview of λ-Prolog In Proceedings of

the Fifth International Symposium on Logic Programming, Seattle, August

1988.

21. Owre, S., Rushby, J. M., Shankar, N., PVS: A Prototype Verification Sys-
tem, in: Kapur, D. (ed.), Automated Deduction–CADE-11, 11th Interna-

tional Conference on Automated Deduction, 748–752, LNCS 607, Springer-
Verlag (1992).

22. Pietrzykowski, T., and Jensen, D., A complete mechanization of second order
logic, J. Assoc. Comp. Mach. 20 (2) pp. 333-364, 1971.

23. Pietrzykowski, T., and Jensen, D., A complete mechanization of ω-order
type theory, ASsoc. Comp. Math. Nat. Conf. 1972, Vol. 1, 82–92.

24. Quaife, A., Automated Development of Fundamental Mathematical Theo-

ries, Automated Reasoning, Vol.2, Kluwer Academic Publishers, Dordrecht
(1992).

25. Yuan Yu, Computer proofs in group theory, J. Automated Reasoning 6(3)
pp. 251–286, 1990.

38

Computing restrictions of ideals in finitely
generated k-algebras by means of

Buchberger’s algorithm

Thomas Beth, Jörn Müller-Quade and

Rainer Steinwandt

Institut für Algorithmen und Kognitive Systeme, Fakultät für Informatik,

Am Fasanengarten 5, Universität Karlsruhe, 76128 Karlsruhe, Germany

Abstract

Gröbner bases can be used to solve various algorithmic problems in the
context of finitely generated field extensions. One key idea is the com-
putation of a certain kind of restriction of an ideal to a subring. This
contribution generalizes this approach to allow the computation of the
restriction of an arbitrary ideal to a subring.

It is tempting to hope that this technique can be used to compute a
generating set for the intersection of finitely generated extension fields; in
fact, in (Müller-Quade Beth 1998a) such an algorithm has been sketched.
Here we give a (counter-)example which shows that this algorithm does
not work in general. Even though we show that Gröbner bases can be
used to compute a significantly more general kind of ideal restrictions
than considered in the context of finitely generated field extensions, the
application of these methods to the field intersection problem remains an
interesting open problem.

KEYWORDS: Gröbner bases, finitely generated function fields

1. Introduction

Buchberger’s algorithm allows in particular for a constructive theory of ideals
in polynomial rings, that led to a multitude of applications to which parts of
this conference is devoted. Many computational problems, especially concerning
finitely generated field extensions, can be solved by the restriction of specific
ideals to rings defined over a subfield. This paper presents a novel algorithm
which allows to restrict an arbitrary ideal I = 〈f1, . . . , fs〉 in a residue class ring

The material in this paper was presented in part at the Seventh Rhine Workshop on
Computer Algebra (Steinwandt Müller-Quade 2000).

39

Computing restrictions of ideals in finitely generated k-algebras. . .

k(~x)[Z1, . . . , Zn]/〈~q〉 to a subring k(~g)[Z1, . . . , Zn]/〈~q〉 defined over a subfield
k(~g) of k(~x), where ~q ∈ k(~g)[Z1, . . . , Zn]. So for the special case ~q = ~0 we are
dealing with a question on subalgebras of the polynomial ring k(~x)[Z1, . . . , Zn].
However, in difference to (Kapur Madlener 1989, Robbiano Sweedler 1990), for
instance, here we do not focus on k(~x)-subalgebras of the form k(~x)[a1, . . . , ar]
with a1, . . . , ar ∈ k(~x)[Z1, . . . , Zn]; instead we are interested in k-subalgebras
k(~g)[Z1, . . . , Zn] that are obtained by restricting the field of coefficients k(~x).

Given finitely many generators f1, . . . , fs for an ideal I ⊆ k(~x)[Z1, . . . , Zn]/〈~q〉,
our algorithm computes generators for the ideal I ∩ k(~g)[Z1, . . . , Zn]/〈~q〉; here
we identify k(~g)[Z1, . . . , Zn]/〈~q〉 with its image under the natural embedding of
k(~g)[Z1, . . . , Zn]/〈~q〉 into k(~x)[Z1, . . . , Zn]/〈~q〉.

An instructive example are minimal polynomials: if one restricts the ideal
〈Z − α〉 ⊆ k(α)[Z] to k[Z] then 〈Z − α〉 ∩ k[Z] is a principal ideal and a monic
generator of this ideal is the minimal polynomial of α over k.

This work is motivated by the implications of Buchberger’s algorithm to
finitely generated field extensions. Apart from the so-called tag variable ap-
proach (Sweedler 1993, Kemper 1993) many problems concerning field extensions
can be solved by means of ideal restriction. One can employ a correspondence
between the lattice of subfields k(~g) of a finitely generated field k(~x) and a lattice
of restricted ideals P(~x)/k(~g) := 〈Z1−x1, . . . , Zn−xn〉∩k(~g)[Z1, . . . , Zn]. This cor-
respondence allows to solve many problems concerning field extensions by means
of constructive ideal theory and Buchberger’s algorithm (Müller-Quade Stein-
wandt 1999, 2000). Many characteristic properties of subfields directly translate
to properties of the restricted ideals. E. g., the transcendence degree of the ex-
tension k(~g) ≤ k(~x) equals the dimension of the ideal P(~x)/k(~g), the polynomial

n(Z1, . . . , Zn) − n(~x)
d(~x)

d(Z1, . . . , Zn) reduces to zero modulo a Gröbner basis of

P(~x)/k(~g) iff n(~x)
d(~x)

is contained in k(~g), field extensions correspond to ideal inclu-
sions, and the coefficients of a reduced Gröbner basis of P(~x)/k(~g) yield a canonical
generating set of the field k(~g).

For the specific ideals used in the above correspondence the restriction prob-
lem was solved in (Müller-Quade Steinwandt 1999, 2000). But the more general
question of restricting an arbitrary ideal I to a finitely generated subfield was
posed in (Müller-Quade Beth 1998a). In an approach to solve the field inter-
section problem the constructive restriction of more general ideals was used as a
subroutine. The purpose of this paper is twofold. First we will solve the general
ideal restriction problem and second we will show that the algorithm of (Müller-
Quade Beth 1998a) cannot in all cases calculate the intersection of two finitely
generated fields.

Even though the general ideal restriction problem can be solved by Gröbner
basis techniques, including computing the field of definition of an ideal, ideal
saturation, primary decomposition, and ideal membership, the general field in-
tersection problem remains an interesting open problem to solve.

40

Th. Beth, J. Müller-Quade, R. Steinwandt

2. Restricting ideals in finitely generated k-algebras

To avoid ambiguities, we start by summarizing the notation that we use in the
sequel:

• For K a field we write K[~Z] := K[Z1, . . . , Zn] for the polynomial ring in
the indeterminates Z1, . . . , Zn over the field (of coefficients) K.

• For K a field, I ⊆ K[~Z] an ideal, and q ∈ K[~Z] we denote by I : q∞ the
saturation of I w. r. t. q, i. e.,

I : q∞ = {p ∈ K[~Z] : qµ · p ∈ I for some µ ∈ N}.

• For indeterminates X1, . . . , Xu we denote by T(~X) the set of terms in ~X,
i. e., the set of all products

∏u
i=1 Xi

νi with ν1, . . . , νu ∈ N0.

• k(~x) := k(x1, . . . , xn) denotes a finitely generated extension field of some
ground field k. We assume computations in k(~x) to be effective and that
k(~x) is represented as the quotient field of k[X1, . . . , Xn]/〈b1 . . . , bt〉 where
~b is a finite system of generators of the ‘ideal of relations’

P(~x)/k :=
{

a(~X) ∈ k[~X] : a(~x) = 0
}

.

• k(~g) := k(g1, . . . , gr) denotes a subfield of k(~x) generated over the ground
field k by g1, . . . , gr ∈ k(~x).

• For an ideal I ⊆ k(~x)[~Z] we denote by kI the minimal field of definition of
I. In other words, kI is the field generated over the prime field of k by the
coefficients occurring in a reduced Gröbner basis of I (cf. (Müller-Quade
Rötteler 1998, Robbiano Sweedler 1998)).

• Q := 〈q1, . . . , qv〉 ∈ k(~x)[~Z] denotes an ideal whose minimal field of defi-
nition kQ is contained in k(~g). As by computing a reduced Gröbner basis

of Q a generating set B ⊆ kQ[~Z] of Q can be derived, we assume w. l. o. g.

q1, . . . , qv ∈ kQ[~Z] ⊆ k(~g)[~Z].

• By πg : k(~g)[~Z] −→ k(~g)[~Z]/〈~q〉 and πx : k(~x)[~Z] −→ k(~x)[~Z]/〈~q〉 we denote
the canonical residue class epimorphisms.

• ι : k(~g)[~Z]/〈~q〉 −→ k(~x)[~Z]/〈~q〉 denotes the natural k(~g)-algebra monomor-
phism that maps πg(Zi) to πx(Zi) (i = 1, . . . , n). In particular, we can

identify k(~g)[~Z]/〈~q〉 with the subring ι(k(~g)[~Z]/〈~q〉) of k(~x)[~Z]/〈~q〉.

With this notation we can summarize the computational task to be solved in
this section as follows:

Given a finite basis f1, . . . , fs of an ideal I = 〈f1, . . . , fs〉 ⊆ k(~x)[~Z]/〈~q〉,

compute a finite generating set of the restricted ideal I∩ ι(k(~g)[~Z]/〈~q〉).

41

Computing restrictions of ideals in finitely generated k-algebras. . .

To compute this restriction, in a first step we determine a finite basis ~p ⊆ k(~g)[~X]
of the ideal

P(~x)/k(~g) :=
{

a(~X) ∈ k(~g)[~X] : a(~x) = 0
}

= 〈Z1 − x1, . . . , Zn − xn〉 ∩ k(~g)[~Z].

This task can be accomplished by means of the following result (see (Müller-
Quade et al. 1998, Proposition 1)):

Lemma 2.1: With the above notation let gi = ni(~x)/di(~x) with ni, di ∈ k[~X] and
di(~x) 6= 0 (1 ≤ i ≤ r). Then

P(~x)/k(~g) =
〈

n1(~X) − g1·d1(~X), . . . , nr(~X) − g1·dr(~X), b1, . . . , bt

〉

:
(r∏

i=1

di(~X)
)∞

.

For effectively computing the saturation in Lemma 2.1 we can apply (Becker
Weispfenning 1993, Proposition 6.37), for instance. Next, we fix for each genera-

tor fi of the ideal I a representative fi(~X, ~Z) ∈ k(~X)[~Z], i. e., for i = 1, . . . , s we

have fi = πx(fi(~x, ~Z)). By ‘clearing denominators’ we may select polynomials

d̃i(~X) ∈ k[~X] such that for i = 1, . . . , s both d̃i(~x) 6= 0 and

Fi = Fi(~X, ~Z) := d̃i(~X) · fi(~X, ~Z) ∈ k[~X, ~Z]

hold. Now the essential tool we will use both for characterizing and for computing
the restricted ideal I ∩ ι(k(~g)[~Z]/〈~q〉) is the ideal

H :=
∑

h∈k(~g)[~X]\P(~x)/k(~g)

(

〈~F , ~p, ~q〉 : h∞
)

⊆ k(~g)[~X, ~Z].

Exploiting the fact that k(~g)[~X, ~Z] is noetherian, it is not difficult to see that H

can in fact be written as a simple saturation:

Remark: With the above notation, there is a polynomial h0 ∈ k(~g)[~X]\P(~x)/k(~g)

such that H = 〈~F , ~p, ~q〉 : h0
∞.

Proof: As k(~g)[~X, ~Z] is noetherian, there is a finite subset P ⊆ k(~g)[~X] with

H =
∑

h∈P

(

〈~F , ~p, ~q〉 : h∞
)

. For a finite sum one easily checks the inclusion

∑

h∈P

(

〈~F , ~p, ~q〉 : h∞
)

⊆ 〈~F , ~p, ~q〉 :

(
∏

h∈P

h

)∞

. (1)

Thus, setting h0 :=
∏

h∈P h ∈ k(~g)[~X], we have h0 6∈ P(~x)/k(~g), because of the
latter being a prime ideal. Moreover, from Equation (1), we also know that

H ⊆ 〈~F , ~p, ~q〉 : h0
∞. Equality follows from h0 ∈ k(~g)[~X] \P(~x)/k(~g), i. e., h0 is one

of the summands occurring in the defining sum of H. 2

42

Th. Beth, J. Müller-Quade, R. Steinwandt

By means of the ideal H, the restricted ideal I ∩ ι(k(~g)[~Z]/〈~q〉) can now be
characterized as follows:

Lemma 2.2: With the above notation we have

I ∩ ι(k(~g)[~Z]/〈~q〉) = (ι ◦ πg)(H ∩ k(~g)[~Z]).

Proof: ‘⊇’: From the above remark we know that there exists a polynomial
h0 ∈ k(~g)[~X] \ P(~x)/k(~g) with H = 〈~F , ~p, ~q〉 : h0

∞.

Now let a ∈ (ι ◦ πg)(H ∩ k(~g)[~Z]) and a(~Z) ∈ (ι ◦ πg)
−1(a), i. e., for a suitable

µ ∈ N we have h0
µ · a(~Z) ∈ 〈 ~F , ~p, ~q〉 ⊆ k(~g)[~X, ~Z]. Then, as h0 6∈ P(~x)/k(~g), by

specializing Xi 7→ xi we obtain a(~Z) ∈ 〈~f(~x, ~Z), ~q〉 ⊆ k(~x)[~Z] resp.

πx(a(~Z)) ∈ 〈~f〉 ⊆ k(~x)[~Z]/〈~q〉.

From a(~Z) ∈ k(~g)[~Z] we conclude a = (ι ◦ πg)(a(~Z)) = πx(a(~Z)) ∈ 〈~f〉 = I. By

assumption a is contained in (ι ◦ πg)(k(~g)[~Z]), so we have a ∈ I∩ ι(k(~g)[~Z]/〈~q〉)
as required.

‘⊆’: Let b ∈ I ∩ ι(k(~g)[~Z]/〈~q〉), and fix a representation b(~X, ~Z) ∈ k(~X)[~Z] of

b = (ι◦πg)(b(~x, ~Z)). In particular, b(~X, ~Z)− b(~x, ~Z) is contained in the kernel of

the specialization Xi 7→ xi, and because of T(~Z)\{1} being linearly independent

over k(~x), there is a polynomial s(~X) ∈ k[~X] with s(~x) 6= 0 and

s(~X) · (b(~X, ~Z) − b(~x, ~Z)) ∈ 〈~p〉 · k(~g)[~X, ~Z] ⊆ H. (2)

As b is contained in the ideal I, there are ai ∈ k(~x)[~Z]/〈~q〉 such that b =
∑

aifi,
and by passing to representatives we can conclude

b(~x, ~Z) =
∑

ai(~x, ~Z) · fi(~x, ~Z) + p0

for some p0 ∈ 〈~q〉 · k(~x)[~Z] and ai(~x, ~Z) ∈ k(~x)[~Z]. Writing p0 =
∑v

j=1 cj(~x, ~Z)qj

with cj(~X, ~Z) ∈ k(~X)[~Z] and choosing t(~X) ∈ k[~X] \ P(~x)/k appropriately we
obtain

t(~X) ·
(

b(~X, ~Z) −
(∑

ai(~X, ~Z)Fi +
∑

cj(~X, ~Z)qj

))

∈ P(~x)/k(~g)
︸ ︷︷ ︸

⊆k(~g)[~X]

·k(~g)[~X, ~Z].

From P(~x)/k(~g) · k(~g)[~X, ~Z] being prime and t(~x) 6= 0 we may conclude that

b(~X, ~Z) −
(∑

ai(~X, ~Z) · Fi +
∑

cj(~X, ~Z) · qj

)

∈ P(~x)/k(~g) · k(~g)[~X, ~Z] ⊆ H.

Because of ~F , ~q being contained in H, now also b(~X, ~Z) ∈ H must hold.

From (2) we therefore obtain s(~X)·b(~x, ~Z) ∈ H, and as H is saturated w. r. t. all

polynomials in k(~g)[~X] \ P(~x)/k(~g), we have b(~x, ~Z) ∈ H. Since b(~x, ~Z) ∈ k(~g)[~Z]
this yields

b = (ι ◦ πg)(b(~x, ~Z)) ∈ (ι ◦ πg)(H ∩ k(~g)[~Z])

as required. 2

43

Computing restrictions of ideals in finitely generated k-algebras. . .

From a computational point of view the characterization of I∩ ι(k(~g)[~Z]/〈~q〉) in
Lemma 2.2 is not really satisfying, as it does not give a hint on how to determine
a basis of the ideal H. For computing such a finite set of generators for H, we
can make use of the following remark:

Remark: We keep the notation from Lemma 2.2. Let 〈~F , ~p, ~q〉 =
⋂w

i=1 Qi be an
irredundant primary decomposition. Then

H =
⋂

1≤i≤w

Qi∩k(~g)[~X]⊆P(~x)/k(~g)

Qi.

Proof: According to (Eisenbud 1995, Exercise 2.3) we have

H = k(~g)[~X, ~Z] ∩
(

〈~F , ~p, ~q〉 · k(~g)[~X, ~Z]k(~g)[~X]\P(~x)/k(~g)

)

where as usual k(~g)[~X, ~Z]k(~g)[~X]\P(~x)/k(~g)
denotes the localization of k(~g)[~X, ~Z] at

k(~g)[~X] \ P(~x)/k(~g). So the claim follows from (Zariski Samuel 1979, Chapter IV,
Theorem 17). 2

The condition Qi∩k(~g)[~X] ⊆ P(~x)/k(~g) in the previous remark can be verified ef-
fectively my means of standard Gröbner basis techniques (cf., e. g., (Buchberger
1965, Trinks 1978, Buchberger 1985) and (Becker Weispfenning 1993, Proposi-

tions 5.38 & 6.15)). Moreover, if the required computations in k(~g)[~X, ~Z] can be

performed effectively then an irredundant primary decomposition of 〈~F , ~p, ~q〉 can
be computed by means of the techniques described in (Seidenberg 1974, Gianni
et al. 1988, Decker et al. 1999), for instance. Finally, computing the elimination

ideal H∩ k(~g)[~Z] in Lemma 2.2 is a standard application of Gröbner basis tech-
niques again, and as applying ι◦πg does not provide any difficulties, in summary
we have

Theorem 2.1: We keep the above notation. Moreover, assume that an irredun-
dant primary decomposition of 〈~F , ~p, ~q〉 ⊆ k(~g)[~X, ~Z] can be computed effectively.

Then a finite generating set of I ∩ ι(k(~g)[~Z]/〈~q〉) can be computed effectively.

We want to illustrate the method just described through a simple example:

Example: Let x be transcendental over Q, and consider the principal ideal

I := 〈Z3 + Z2 − x3 − x2〉 ⊆ Q(x)[Z].

We want to compute the restriction I ∩ Q(x2)[Z]. For this we first have to
determine a basis of the ideal P(x)/Q(x2): obviously the minimal polynomial p :=
Z2 − x2 of x over Q(x2) can be used here. Denoting the given generator of I by
f1, the corresponding polynomial F1 computes to Z3 + Z2 − X3 − X2. As we

44

Th. Beth, J. Müller-Quade, R. Steinwandt

are dealing with a polynomial ring we have Q = 〈0〉, and so in our example the

ideal 〈~F , ~p, ~q〉 is generated by

{
Z3 + Z2 − X3 − X2, X2 − x2

}
.

E. g., by means of a computer algebra system like MAGMA (see (Bosma et al.
1997)) one can determine the following irredundant primary decomposition of

〈~F , ~p, ~q〉 ⊆ Q(x2)[Z]:

〈~F , ~p, ~q〉 = 〈Z − X, X2 − x2〉
︸ ︷︷ ︸

=:Q1

∩ 〈Z2 + ZX + Z + X + x2, X2 − x2〉
︸ ︷︷ ︸

=:Q2

By looking at the corresponding lexicographical Gröbner basis with Z > X we
see that Qi∩Q(x2)[X] ⊆ P(x)/Q(x2) holds for i = 1, 2. So in our example we have
H = Q1∩Q2, namely H = 〈F1, p〉. Computing the elimination ideal H∩Q(x2)[Z]
with a lexicographic Gröbner basis provides no further difficulties and yields

I ∩ Q(x2)[Z] = 〈Z6 + 2 · Z5 + Z4 − 2x2 · Z3 − 2x2 · Z2 − x6 + x4〉.

3. A (counter-)example: intersecting fields

As described in (Müller-Quade Beth 1998a), an ideal restriction can be used to

compute generators of the intersection k(~g) ∩ k(~h) of two subfields k(~g), k(~h) ⊆
k(~x): it is sufficient to find a basis of the ideal

P(~x)/k(~g)
︸ ︷︷ ︸

⊆k(~g)[~X]

∩k(~h)[~X] ⊆ (k(~g) ∩ k(~h))[~X]. (3)

Unfortunately, the method discussed in the previous section does not allow the
computation of the intersection (3), as in general k(~h) is not a subfield of k(~g).
In (Müller-Quade Beth 1998a) an algorithm for accomplishing this task was
proposed, but a more detailed analysis shows that it actually computes the ideal
P(~x)/k(~g) ·k(~x)[~X]∩k(~h)[X] which in general does not coincide with the ideal (3):

Example: Consider the two subfields k(~g) := Q(x3 + x2) and k(~h) := Q(x2) of
k(~x) := Q(x). Then we know from the example in the previous section that

P(~x)/k(~g) · k(~x)[~X]∩ k(~h)[X] = 〈X6 +2 ·X5 +X4 − 2x2 ·X3 − 2x2 ·X2 −x6 +x4〉.

As adjoining the coefficients of a reduced Gröbner basis of this ideal to Q yields
the field Q(x2), the algorithm from (Müller-Quade Beth 1998a) yields Q(x3 +
x2) ∩ Q(x2) = Q(x2), which is clearly wrong.

So it remains an interesting open question whether the techniques described here
can be extended in such a way that they allow the computation of a system of
generators of the intersection of arbitrary finitely generated extension fields.

45

Computing restrictions of ideals in finitely generated k-algebras. . .

References

Becker, T. Weispfenning, V. (1993), Gröbner Bases: A Computational Approach
to Commutative Algebra, Vol. 141 of Graduate Texts in Mathematics, Springer,
New York. In cooperation with Heinz Kredel.

Bosma, W., Cannon, J. Playoust, C. (1997), ‘The Magma Algebra System I:
The User Language’, Journal of Symbolic Computation 24, 235–265.

Buchberger, B. (1965), ‘Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal, (An algorithm
for finding a basis for the residue class ring of a zero-dimensional polynomial
ideal)’, Dissertation Math. Inst. Universität Innsbruck, Austria.

Buchberger, B. (1985), Multidimensional Systems Theory, D. Reidel, Dordrecht,
chapter Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory,
pp. 184–232.

Decker, W., Greuel, G.-M. Pfister, G. (1999), Primary Decomposition: Algo-
rithms and Comparisons, in B. H. Matzat, G.-M. Greuel G. Hiss, eds, ‘Algo-
rithmic Algebra and Number Theory’, Springer, pp. 187–220.

Eisenbud, D. (1995), Commutative Algebra with a View Toward Algebraic Ge-
ometry, Vol. 150 of Graduate Texts in Mathematics, Springer, New York.

Gianni, P., Trager, B. Zacharias, G. (1988), ‘Gröbner Bases and Primary Decom-
position of Polynomial Ideals’, Journal of Symbolic Computation 6, 149–167.

Kapur, D. Madlener, K. (1989), A Completion Procedure for Computing
a Canonical Basis for a k-subalgebra, in ‘Computers and Mathematics’,
Springer, pp. 1–11.

Kemper, G. (1993), ‘An Algorithm to Determine Properties of Field Extensions
Lying over a Ground Field’, IWR Preprint 93-58, Heidelberg.

Müller-Quade, J. Beth, T. (1998a), ‘Computing the Intersection of Finitely Gen-
erated Fields’, Poster presented at the International Symposium on Symbolic
and Algebraic Computation, ISSAC’98. Abstract available in (Müller-Quade
Beth 1998b).

Müller-Quade, J. Beth, T. (1998b), ‘Computing the Intersection of Finitely
Generated Fields’, SIGSAM Bulletin 32(2), 62–62. Abstract.

Müller-Quade, J. Rötteler, M. (1998), Deciding Linear Disjointness of Finitely
Generated Fields, in O. Gloor, ed., ‘Proceedings of the 1998 International
Symposium on Symbolic and Algebraic Computation’, The Association for
Computing Machinery, Inc. (ACM), pp. 153–160.

46

Th. Beth, J. Müller-Quade, R. Steinwandt

Müller-Quade, J. Steinwandt, R. (1999), ‘Basic Algorithms for Rational Func-
tion Fields’, Journal of Symbolic Computation 27(2), 143–170.

Müller-Quade, J. Steinwandt, R. (2000), ‘Gröbner bases applied to finitely gen-
erated field extensions’, Journal of Symbolic Computation 30(4), 469–490.

Müller-Quade, J., Steinwandt, R. Beth, T. (1998), An application of Gröbner
bases to the decomposition of rational mappings, in B. Buchberger F. Winkler,
eds, ‘Gröbner Bases and Applications’, Vol. 251 of Lecture Note Series, London
Mathematical Society, Cambridge University Press, pp. 448–462.

Robbiano, L. Sweedler, M. (1990), Subalgebra bases, in W. Bruns A. Simis, eds,
‘Commutative Algebra’, Vol. 1430 of Lecture Notes in Mathematics, Springer,
pp. 61–87.

Robbiano, L. Sweedler, M. (1998), ‘Ideal and Subalgebra Coefficients’, Proc.
Am. Math. Soc. 126(8), 2213–2219.

Seidenberg, A. (1974), ‘Constructions in Algebra’, Trans. Am. Math. Soc.
197, 273–313.

Steinwandt, R. Müller-Quade, J. (2000), On restricting ideals in finitely gener-
ated k-algebras, in T. Mulders, ed., ‘Proceedings of the Seventh Rhine Work-
shop on Computer Algebra RWCA’00’, pp. 119–124.

Sweedler, M. (1993), Using Groebner Bases to Determine the Algebraic and
Transcendental Nature of Field Extensions: return of the killer tag variables,
in G. Cohen, T. Mora O. Moreno, eds, ‘Applied Algebra, Algebraic Algo-
rithms and Error-Correcting Codes 10th International Symposium, AAECC-
10’, Vol. 673 of Lecture Notes in Computer Science, Springer, Berlin; Heidel-
berg, pp. 66–75.

Trinks, W. (1978), ‘Über B. Buchbergers Verfahren, Systeme algebraischer Glei-
chungen zu lösen’, Journal of Number Theory 10, 475–488.

Zariski, O. Samuel, P. (1979), Commutative Algebra — Volume I, Graduate
Texts in Mathematics, second edn, Springer, New York; Heidelberg; Berlin.

47

New rewriting system for the braid group B4

Leonid Bokut1 and Andrei Vesnin1,2

1Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
2School of Mathematical Sciences, Seoul National University, Seoul 151-747,

Korea

To 60-th birthday of a pioneer of Gröbner bases Prof. B. Buchberger

Abstract

Using presentations of the braid groups B3 and B4 as towers of HNN
extensions of the free group of rank 2, we obtain normal forms, Gröbner
bases and rewriting systems for these groups.

KEYWORDS: braid group, normal form, Gröbner basis

1. Introduction

In this note we obtain Gröbner bases as well as rewriting systems for braid groups
B3 and B4. Braid groups are subject of the intensive studding in group theory and
low-dimensional topology. We refer to (Birman 1974) for the basic properties of
braid groups. It was shown by P. Dehornoy that braid groups are left-orderable
(Dehornoy 2000), and different kinds of normal forms and rewriting systems for
braid groups can be found in (Birman et al. 1998, Elrifai Morton 1994, Garside
1969, Garber et al. 2002, Hermiller Meier 1999, Markov 1945, Thurston 1992).

Our interest in Gröbner bases for braid groups is motivated by the close re-
lation between non-commutative Gröbner bases and rewriting systems for semi-
groups. This relation is a kind of a folklore, and was fully described, for example,
in (Heyworth 2000). As an introduction to string rewriting we refer to (Book
Otto 1993). The basis facts about Gröbner bases will be presented in Section 2.

One of aims of this note is to develop and to demonstrate a method of con-
structing of Gröbner bases, normal forms, and rewriting systems for groups,
presented as towers of HNN extensions of free groups. We realize this method
for braid groups B3 and B4.

∗Authors were supported in part by the Russian Foundation for Basic Research (grants 01–
01–00630 and 02–01–01118).

48

New rewriting system for the braid group B4

In Section 3, applying the Magnus-Moldovanski rewriting procedure (see Lyn-
don Schupp (1977)) for B3 and B4 (which is 3-relator group rather than to
1-relator classical case) we obtain presentations of these groups as towers of
HNN extensions of the free group of rank 2. Obtained presentations are closely
related to the presentations of commutators B′

3 and B′

4 which have been find
by E. Gorin and V. Lin (see Gorin Lin (1969)) using the Reidemeister-Shreier
method. So, we will refer to the generators as Gorin-Lin generators.

These presentations lead to the standard normal forms in B3 and B4, and
to the standard rewriting systems for them in the sense of (Bokut 1966, 1967,
1980). We show it in Section 4, using the Gröbner–Shirshov bases technic unlike
of a group-theoretic technic of (Bokut 1966, 1967). More precisely, we give the
Gröbner–Shirshov basis of B4 (and as a corollary, for B3) in Gorin-Lin generators
and relative to an appropriate order of group words, the tower order. This order
was implicitly used in (Bokut 1966, 1967). The applications of similar technique
to Coxeter groups and Novikov and Boon groups can be found in (Bokut Shiao
2001, 2002).

From the normal form, it readily follows some known properties of B4 proved
in the above mentioned paper by E. Gorin and V. Lin, in particular, the presen-
tation of the commutator group B′

4 and its description as the semidirect product
of two free groups of rank two. Moreover, the relation of obtained presentations
of braid groups with cyclically presented groups, such as Sieradski groups and
Fibonacci groups is discussed.

This work was done during the first author visit to the KIAS, Seoul. We thank
Dr. Sang-Jin Lee for very helpful discussions.

2. Non-Commutative Gröbner bases

In this section we recall some facts about non-commutative Gröbner bases which
are also known in the literature as Gröbner–Shirshov bases (see, for example,
Ufnarovski (1998)).

Let X be a linearly ordered set, k a field, k〈X〉 the free associative algebra
over X and k. On the set X∗ of words we impose a well order “>” that is
compatible with the concatenations of words. For example, it may be the deg-
lex order (compare two words first by degrees and then lexicographically) or the
tower order below. Any polynomial f ∈ k〈X〉 has the leading word f̄ relative to
“>”.

We say that f is monic if f̄ occurs in f with coefficient 1. By a composition of

intersection (f, g)w of two monic polynomials relative to some word w, such that
w = f̄ b = aḡ, deg(f̄) + deg(ḡ) > deg(w), one means the following polynomial

(f, g)w = fb − ag.

By composition of including (f, g)w of two monic polynomials, where w = f̄ =
aḡb, one means the following polynomial

(f, g)w = f − agb.

49

L. Bokut, A. Vesnin

In the last case the transformation

f → (f, g)w = f − agb

is called the elimination of the leading word (ELW) of g in f.
A composition (f, g)w is called trivial relative to some R ⊂ k〈X〉 and w (we

write it as (f, g)w ≡ 0mod (R,w)) if

(f, g)w =
∑

αiaitibi,

where αi ∈ k, ti ∈ R, ai, bi ∈ X∗, and ¯aitibi < w. In particular, if (f, g)w goes to
zero by the ELW’s of R then (f, g)w is trivial relative to R.

For two polynomials f1 and f2 we write

f1 ≡ f2 mod (R,w)

if and only if
f1 − f2 ≡ 0mod (R,w).

A subset R of k〈X〉 is called Gröbner–Shirshov basis if any composition of
polynomials from R is trivial relative to R.

By 〈X|R〉, the algebra with generators X and defining relations R, we will
mean the factor-algebra of k〈X〉 by the ideal generated by R.

The following lemma goes back to the Poincare-Birkgoff-Witt theorem, the
Diamond Lemma of M.H.A. Newman (Newman 1942), the Composition Lemma
of A.I. Shirshov (Shirshov 1962) (see also Bokut (1972, 1976), where this Com-
position Lemma was formulated explicitly and in a current form), the Buch-
berger’s Theorem (Buchberger (1965), published in Buchberger (1970)), the Di-
amond Lemma of G. Bergman (Bergman 1978) (this lemma was also known to
P.M. Cohn (see, for example, Cohn (1966)) and some historical comments to
Chapter “Gröbner basis” in (Eisenbud 1995)):

Composition–Diamond Lemma. R is a Gröbner–Shirshov basis if and
only if the set

PBW (R) = {u ∈ X∗ | u 6= af̄b, for any f ∈ R}

of R-reduced words consists of a linear basis of the algebra 〈X|R〉.

The set PBW (R) will be called the PBW-basis of 〈X|R〉 relative to a Gröbner–
Shirshov basis R.

If a subset R of k〈X〉 is not a Gröbner–Shirshov basis then one can add to
R all non trivial compositions of polynomials of R, and continue this process
(infinitely) many times in order to have a Gröbner–Shirshov basis Rcomp that
contains R.

A Gröbner–Shirshov basis R is called reduced if any s ∈ R is a linear com-
bination of R \ {s}–reduced words. Any ideal of k〈X〉 has a unique reduced
Gröbner–Shirshov basis.

50

New rewriting system for the braid group B4

If R is a set of “semigroup relations” (that is, polynomials of the form u − v,
where u, v ∈ X∗), then any non trivial composition will have the same form. As
the result the set Rcomp consists of semigroup relations too.

Let A = smg〈X|R〉 be a semigroup presentation. Then R is a subset of k〈X〉
and one can find a Gröbner–Shirshov basis Rcomp. The last set does not depend
of k, and consists of semigroup relations. We will call Rcomp to be a Gröbner–
Shirshov basis of A. It is the same as a Gröbner–Shirshov basis of the semigroup
algebra kA = 〈X|R〉.

The same terminology is valid for any group presentation meaning that we
include in this presentation all trivial group relations of the form

xx−1 = 1, x−1x = 1, x ∈ X.

3. Presentations of groups B3 and B4

In this section we will obtain presentations of braid groups as towers of HNN
extensions of the free group of rank two.

We start from the consideration of the 3-strand braid group B3 with the fol-
lowing presentation:

B3 = 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉. (1)

Let us denote t = σ1 and consider y2 such that σ2 = y2t, i.e. y2 = σ2σ
−1
1 . Then

we have
B3

∼= 〈y2, t | y2tty2 = ty2t〉.

Introducing notation y2(i) = tiy2t
−i for i = 1, 2, we get

B3
∼= 〈y2, y2(1), y2(2), t | y2y2(2) = y2(1), y2(1)t = ty2, y2(2)t = ty2(1)〉.

Eliminating y2(2) using the first relation, we will obtain:

B3
∼= 〈y2, y2(1), t | y2(1)t = ty2, y−1

2 y2(1)t = ty2(1)〉

and finally,
B3

∼= 〈y2, y2(1), t | y2(1)t = ty2, y2t = ty2y
−1
2(1)〉,

where we used the first relation to modify the second.
Let us rewrite this relation using notations y2 = t2 and y2(1) = t1:

B3
∼= 〈t1, t2, t | t1t = tt2, t2t = tt2t

−1
1 〉. (2)

Thus, we have the following extension:

〈t1, t2〉 ⊂ B3 = 〈t1, t2, t〉, (3)

that can be regarded as an HNN-extension (by the conjugation automorphism
t) of the free group with two generators. The relation of these generators with
the standard generators of B3 is the following: t2 = σ2σ

−1
1 and t1 = σ1σ2σ

−2
1 .

Braids corresponding to t, t1, and t2 are presented in the following figure.

51

L. Bokut, A. Vesnin

t : t1 : t2 :

As the result, the kernel of the homomorphism from B3 to 〈t〉 defined by
t 7→ t, t1 7→ 1, t2 7→ 1, is the free group 〈t1, t2〉. This kernel coincides with
the commutant B′

3, that was also shown in (Gorin Lin 1969) by using of the
Reidemeister–Schreier method. So, we will refer to t, t1 and t2 as Gorin-Lin

generators of B3.

From the defining relations (2) and their inverses we obtain relations:

t2t = tt2t
−1
1 , t1t

−1 = t−1t−1
2 t1,

t1t = tt2, t2t
−1 = t−1t1,

where we used

t2t = tt2t
−1
1 ⇔ t2t = t1tt

−1
1 ⇔ t−1

1 t2t = tt−1
1 ,⇔ t1t

−1 = t−1t−1
2 t1.

In the next section we will prove that the following transformations give rise
the rewriting system for B3 (that will follows from the rewriting system for B4

and embedding B3 ⊂ B4):

(t2)
±1t −→ t(t2t

−1
1)±1, (t1)

±1t−1 −→ t−1(t−1
2 t1)

±1,

(t1)
±1t −→ t(t2)

±1, (t2)
±1t−1 −→ t−1(t1)

±1.

It gives the following normal form for B3:

tnV (t1, t2)

where n ∈ Z and V (t1, t2) denotes a group word in t1, t2.

We would like to point out the following relation of the braid group presenta-
tion (2) with cyclically presented groups (in sense of Johnson (1980)).

Consider the conjugation action of t on the group B′

3 = 〈t1, t2〉. Let us denote
a0 = t2 and ai = tia0t

−i for i ∈ Z. In particular, we get a1 = t1 and a−1 =
t2t

−1
1 = a0a

−1
1 . Therefore, for each i we have aiai+2 = ai+1, and the following

group presentation with infinite number of generators naturally arises:

G∞ = 〈ai, i ∈ Z | aiai+2 = ai+1, i ∈ Z〉

For a reader convenience we recall the expression of ai in terms of the Artin
generators (1):

ai = σi
1σ2σ

−(i+1)
1 .

Remark that the “truncated” version of this group, i.e.

Gn = 〈a1, . . . , an | aiai+2 = ai+1, i = 1, . . . , n〉,

52

New rewriting system for the braid group B4

where all suffices are taken by mod n, is known as the Sieradski group (see, for
example, Cavicchioli et al. (1998)) and is the fundamental group of the n-fold
cyclic branched covering of the 3-sphere, branched over the trefoil knot.

Now let us consider the 4-strand braid group B4 with the following presenta-
tion:

B4 = 〈σ1, σ2, σ3 | σ2σ1σ2 = σ1σ2σ1, σ3σ2σ3 = σ2σ3σ2, σ3σ1 = σ1σ3〉. (4)

Let us denote t = σ1. Consider y3 such that σ3 = y3t, i.e. y3 = σ3σ
−1
1 , and y2

such that σ2 = y2t, i.e. y2 = σ2σ
−1
1 . Then we have

B4
∼= 〈y2, y3, t | y2tty2 = ty2t, y3ty2ty3 = y2ty3ty2, y3t = ty3〉.

As well as above, let us introduce yj(i) = tiyjt
−i for j = 2, 3 and i ∈ Z. Then

B4
∼= 〈y2, y2(1), y2(2), y3, t| y2y2(2) = y2(1), y3y2(1)y3 = y2y3y2(2),

y3t = ty3, y2(1)t = ty2, y2(2)t = ty2(1)〉,

where we used that t and y3 commute. Eliminating y2(2) using the first defining
relation, we will obtain:

B4
∼= 〈y2, y2(1), y3, t | y3y2(1)y3 = y2y3y

−1
2 y2(1), y3t = ty3,

y2(1)t = ty2, y−1
2 y2(1)t = ty2(1)〉.

Denoting t1 = y2(1), t2 = y2 and b = y3 we get

B4
∼= 〈t1, t2, t, b | bt1b = t2bt

−1
2 t1, bt = tb, t1t = tt2, t−1

2 t1t = tt1〉,

and so,

B4
∼= 〈t1, t2, t, b | t1b = b−1t2bt

−1
2 t1, bt = tb, t1t = tt2, t2t = tt2t

−1
1 〉,

where we used the third relation to modify the forth relation. Denoting a =
t1bt

−1
1 , we get

B4
∼= 〈a, b, t1, t2, t | t1t = tt2, t2t = tt2t

−1
1 , bt = tb, (5)

at1 = t1b, a = b−1t2bt
−1
2 〉.

Generators t, t1, t2, a, b will be referred to as Gorin-Lin generators of B4.
Using above defining relations we have

at = t1bt
−1
1 t = t1btt

−1
2 = t1tbt

−1
2 = tt2bt

−1
2 = tba. (6)

Let us multiply both sides of the relation

t1b = b−1t2bt
−1
2 t1

53

L. Bokut, A. Vesnin

from the left by t, and remark that after that the left part can be modified as

tt1b = t−1
2 tt2b = t−1

2 t1tb = t−1
2 t1bt = t−1

2 at1t,

and the right part can be modified as

tb−1t2bt
−1
2 t1 = b−1tt2bt

−1
2 t1 = b−1t1tbt

−1
2 t1 = b−1t1btt

−1
2 t1

= b−1t1bt
−1
1 tt1 = b−1at−1

2 tt2 = b−1at−1
2 t1t.

Thus,
t−1
2 a = b−1at−1

2 ,

that gives us
at2 = t2b

−1a. (7)

Using this result we have

a = b−1t2bt
−1
2 ⇐⇒ bat2 = t2b ⇐⇒ bt2b

−1a = t2b ⇐⇒ bt2 = t2ba
−1b. (8)

Now let us conjugate both sides of the obtained relation by t. Then from the
left part of the relation we will get

tbt2t
−1 = btt2t

−1 = bt1,

and from the right part of the relation we will get

tt2ba
−1bt−1 = t1tba

−1t−1b = t1bta
−1t−1b = t1ba

−1tbt−1b = t1ba
−1b2.

Hence
bt1 = t1ba

−1b2. (9)

Summarizing (5), (6), (7), (8) and (9) we get

Lemma 3.1: The following relations are valid for Gorin-Lin generators of B4:

t2t = tt2t
−1
1 t1t = tt2, bt = tb, at = tba,

at1 = t1b, bt1 = t1ba
−1b2, at2 = t2b

−1a, bt2 = t2ba
−1b,

and for their inverses:

t1t
−1 = t−1t−1

2 t1, t2t
−1 = t−1t1, bt−1 = t−1b, at−1 = t−1b−1a,

bt−1
1 = t−1

1 a, at−1
1 = t−1

1 a2b−1a, bt−1
2 = t−1

2 ba, at−1
2 = t−1

2 ba2.

Therefore, we have the description of B4 as a tower of HNN extensions of the
free group of rank two:

〈a, b〉 ⊂ 〈a, b, t1, t2〉 ⊂ B4 = 〈a, b, t1, t2, t〉.

The correspondence between Gorin-Lin generators and the standard genera-
tors of B4 is the following:

t = σ1, t1 = σ1σ2σ
−2
1 , t2 = σ2σ

−1
1 , a = σ1σ2σ

−1
1 σ3σ

−1
2 σ−1

1 , b = σ3σ
−1
1 .

Remark that t, t1 and t2 generate such a subgroup of B4 with the presentation
(2) that gives us B3. Braids corresponding to t, t1, t2, a and b are presented in
the following figure.

54

New rewriting system for the braid group B4

t : t1 : t2 : a : b :

In the next section we will find a rewriting system for B4. As the result, a
normal form for B4 is given by expression

tnV (t1, t2)W (a, b),

where n ∈ Z, and V (t1, t2), W (a, b) are free group words in alphabets {t1, t2}
and {a, b}, respectively. The commutant B′

4, the kernel of the homomorphism
from B4 to 〈t〉, defined by

t 7→ t, t1 7→ 1, t2 7→ 1, a 7→ 1, b 7→ 1

is the semi-direct product of free groups 〈t1, t2〉 and 〈a, b〉. Here 〈t1, t2〉 is the
commutant of B3. The kernel of the homomorphism of B4 to B3, defined by

σ1 7→ σ1, σ2 7→ σ2, σ3 7→ σ1,

that is by

t 7→ t, t1 7→ t1, t2 7→ t2, a 7→ 1, b 7→ 1,

is the free group 〈a, b〉. Remark that in (Gorin Lin 1969) all these facts were
proved using the Reidemeister-Shreier method, where t−1at and b were chosen
as the generators of this free group.

Now let us point out the connection of relations from Lemma 3.1 with Fi-
bonacci groups F (2, n) studied by many authors.

Consider the conjugation action of t1 on 〈a, b〉:

t−1
1 at1 = b, t−1

1 bt1 = ba−1b2.

Let us denote z0 = b and zi = t−i
1 z0t

i
1 for i ∈ Z . Thus, we get a = z−1 and

z1 = z0z
−1
−1z

2
0 . Therefore for i ∈ Z we have

zi+1z
−1
i z2

i+1 = zi+2,

and the following group with infinite number of generators naturally arise:

H∞ = 〈zi, i ∈ Z | zi+1z
−1
i z2

i+1 = zi+2, i ∈ Z〉.

Remark that this group presentation coincides with the presentation of the com-
mutator subgroup of the figure-eight knot group obtained in (Burde Zieschang
1985, p. 35) and action of t1 on a and b corresponds to the presentation of the
figure-eight knot as a fibred knot (Burde Zieschang 1985, p. 73).

55

L. Bokut, A. Vesnin

Similar to (Kim et al. 2000), rewrite the defining relations as

(z−1
i zi+1) zi+1 = (z−1

i+1zi+2), i ∈ Z

and denote x2i−1 = zi and x2i = z−1
i zi+1 for i ∈ Z. Then the above relations can

be rewritten as x2i = x−1
2i−1x2i+1 and x2ix2i+1 = x2i+2. Then

H∞
∼= 〈x2i−1, x2i, i ∈ Z | xixi+1 = xi+2, i ∈ Z〉.

For a reader convenience we recall the expression of xi in terms of the Gorin-Lin
generators:

x2i−1 = t−i
1 bti1, x2i = t−i

1 b−1t−1
1 bt1t

i
1, i ∈ Z.

Thus, relations x2i−1x2i = x2i+1 follow immediately, and relations x2ix2i+1 =
x2i+2 follow from the relation bt1 = t1bt1b

−1t−1
1 b2.

The “truncated” version of this group is well-known as the Fibonacci group:

F (2, 2n) = 〈x1, . . . , x2n | xixi+1 = xi+2, i = 1, . . . , 2n〉

where all indices are taken by mod 2n. For any n ≥ 2 the group F (2, 2n) is the
fundamental group of a 3-dimensional manifold (see Helling et al. (1998)) which
can be described as the n-fold cyclic branched cover of the 3-sphere branched
over the figure-eight knot. From the above considerations one can easy obtain
expressions of generators of Fibonacci groups in terms of Artin generators of B4.

4. Rewriting systems for B3 and B4

With each of the relations of B4 from Lemma 3.1 we associate another relation
in the natural way shown below. Thus, we will get pairs of relations as follows:

t2t = tt2t
−1
1 and t−1

2 t = tt1t
−1
2 (10)

t1t = tt2 and t−1
1 t = tt−1

2 (11)

bt = tb and b−1t = tb−1 (12)

at = tba and a−1t = ta−1b−1 (13)

at1 = t1b and a−1t1 = t1b
−1 (14)

bt1 = t1ba
−1b2 and b−1t1 = t1b

−2ab−1 (15)

at2 = t2b
−1a and a−1t2 = t2a

−1b (16)

bt2 = t2ba
−1b and b−1t2 = t2b

−1ab−1 (17)

t1t
−1 = t−1t−1

2 t1 and t−1
1 t−1 = t−1t−1

1 t2 (18)

t2t
−1 = t−1t1 and t−1

2 t−1 = t−1t−1
1 (19)

bt−1 = t−1b and b−1t−1 = t−1b−1 (20)

at−1 = t−1b−1a and a−1t−1 = t−1a−1b (21)

bt−1
1 = t−1

1 a and b−1t−1
1 = t−1

1 a−1 (22)

at−1
1 = t−1

1 a2b−1a and a−1t−1
1 = t−1

1 a−1ba−2 (23)

bt−1
2 = t−1

2 ba and b−1t−1
2 = t−1

2 a−1b−1 (24)

at−1
2 = t−1

2 ba2 and a−1t−1
2 = t−1

2 a−2b−1 (25)

56

New rewriting system for the braid group B4

Let S be the set of above listed relations (10) – (25) together with trivial
relations xx−1 = 1, and x−1x = 1 for x ∈ {a, b, t1, t2, t}.

We will prove that S is the Gröbner–Shirshov basis of B4 relative to the
following tower order of words. Let us order group words in a, b by the deg-
lex order. Any group word in a, b, t2 has a form

u = u0t
ε1

2 · · · ukt
εk

2 uk+1,

where ui ∈ 〈a, b〉, k ≥ 0, εi = ±1. Define

wt(u) = (k, u0, t
ε1

2 , . . . , uk, t
εk

2 , uk+1).

Let us order wt’s lexicographically assuming t−1 < t. Let us define the tower
order

u >tow v if and only if wt(u) >lex wt(v).

In the same way we can define the tower order for group words with the extra
letter t1 and then for group words with the extra letter t.

Theorem 4.1: The above described set S is the reduced Gröbner–Shirshov basis

for B4 in the Gorin-Lin generators relative to the tower order of group words.

Proof: To proof the statement we need to check that all compositions (in the
sense of Section 2) of pairs of elements of S are trivial. Here we will do it for few
of them. For all others similar considerations are used, but we omit them here.

Let us consider the composition (10`)∧ (16`) of an intersection of left relations
in (10) and (16) relative to a word w = at2t. We have g = t2t − tt2t

−1
1 with

the leading word ḡ = t2t and f = at2 − t2b
−1a with the leading word f̄ = at2.

Therefore w = aḡ = f̄ t. Then

(10`) ∧ (16`) = (f, g)w = ft − ag = (at2 − t2b
−1a)t − a(t2t − tt2t

−1
1)

= att2t
−1
1 − t2b

−1at ≡ tbat2t
−1
1 − t2b

−1tba

≡ tbt2b
−1at−1

1 − t2tb
−1ba ≡ tt2ba

−1bb−1at−1
1 − t2ta

≡ tt2bt
−1
1 − tt2t

−1
1 a ≡ tt2t

−1
1 a − tt2t

−1
1 a ≡ 0,

where we used relations from the set S for the ELW’s of S.
Now, let us check that the composition (10r) ∧ (24`) of right relation of (10)

and left relation of (24) is trivial with respect to S and w = bt−1
2 t. We have

g = t−1
2 t − tt1t

−1
2 with the leading word ḡ = t−1

2 t and f = bt−1
2 − t−1

2 ba with the
leading word f̄ = bt−1

2 . Therefore w = bḡ = f̄ t. Then

(10r) ∧ (24`) = (f, g)w = ft − bg = (bt−1
2 − t−1

2 ba)t − b(t−1
2 t − tt1t

−1
2)

= btt1t
−1
2 − t−1

2 bat ≡ tbt1t
−1
2 − t−1

2 btba

≡ tt1ba
−1b2t−1

2 − t−1
2 tb2a ≡ tt1ba

−1bt−1
2 ba − tt1t

−1
2 b2a

≡ tt1ba
−1t−1

2 baba − tt1t
−1
2 b2a ≡ tt1bt

−1
2 a−2b−1baba − tt1t

−1
2 b2a

≡ tt1t
−1
2 baa−1ba − tt1t

−1
2 b2a ≡ tt1t

−1
2 b2a − tt1t

−1
2 b2a ≡ 0,

57

L. Bokut, A. Vesnin

where we used relations from the set S for the rewriting process. By the similar
considerations for other compositions, the statement of the theorem holds.

It easy to see, that any s ∈ S is a difference of S \ {s} –reduced words. It
means that S is a reduced Gröbner–Shirshov basis. 2

The above Gröbner–Shirshov basis of B4 gives rise to the rewriting system
(semi-Thue system) for B4 that is defined by rules:

t±1
2 t −→ t(t2t

−1
1)±1, t±1

1 t −→ tt±1
2 ,

b±1t −→ tb±1, a±1t −→ t(ba)±1,

a±1t1 −→ t1b
±1, b±1t1 −→ t1(ba

−1b2)±1,

a±1t2 −→ t2(b
−1a)±1, b±1t2 −→ t2(ba

−1b)±1,

t±1
1 t−1 −→ t−1(t−1

2 t1)
±1, t±1

2 t−1 −→ t−1t±1
1 ,

b±1t−1 −→ t−1b±1, a±1t−1 −→ t−1(b−1a)±1,

b±1t−1
1 −→ t−1

1 a±1, a±1t−1
1 −→ t−1

1 (a2b−1a)±1,

b±1t−1
2 −→ t−1

2 (ba)±1, a±1t−1
2 −→ t−1

2 (ba2)±1,

xx−1 −→ 1, x−1x −→ 1,

where x ∈ {a, b, t1, t2, t}.
As a particular case, we get the rewriting system for the braid group B3.

References

Bergman, G. (1978), ‘An Algorithmical Criterion for the Solvability of Algebraic
Systems of Equations (German)’, Adv. in Math. 29, 178–218.

Birman, J. (1974), Braid groups and mapping class groups, Vol. 82 of Annals of

Math. Studies, Princeton University Press.

Birman, J., Ko, K.-H. Lee, S.-J. (1998), ‘A new approach to the word and
conjugacy problem in the braid groups ’, Adv. Math. 139, 322–353.

Bokut, L. (1966), ‘On a property of the Boone groups’, Algebra i Logika Sem.

5(5), 5–23.

Bokut, L. (1967), ‘On a property of the Boone groups. II’, Algebra i Logika Sem.

6(1), 15–24.

Bokut, L. (1972), ‘Unsolvability of the word problem, and subalgebras of finitely
presented Lie algebras’, Izv. Akad. Nauk SSSR Ser. Mat. 36, 1173–1219.

Bokut, L. (1976), ‘Imbeddings into simple associative algebras’, Algebra i Logika

15, 117–142, 245.

Bokut, L. (1980), Malcev’s problem and groups with a normal form, in ‘Stud.
Logic Foundations Math., Word problems, II (Conf. on Decision Problems
in Algebra, Oxford, 1976)’, Vol. 95, North-Holland, Amsterdam-New York,
pp. 29–53. With the collaboration of D.J. Collins.

58

New rewriting system for the braid group B4

Bokut, L. Shiao, L.-S. (2001), ‘Gröbner–Shirshov bases for Coxeter groups’,
Comm. Algebra 29(9), 4305–4319.

Bokut, L. Shiao, L.-S. (2002), ‘Gröbner–Shirshov bases for Novikov and Boon
groups’, Algebra Colloquium . (to appear).

Book, R. Otto, F. (1993), String-rewriting systems, Springer-Verlag, New York.

Buchberger, B. (1965), An Algorithm for Finding the Bases Elements of the
Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal (German),
Phd thesis, Univ. of Innsbruck (Austria).

Buchberger, B. (1970), ‘An Algorithmical Criterion for the Solvability of Alge-
braic Systems of Equations (German)’, Aequationes Mathematicae 4(3), 374–
383.

Burde, G. Zieschang, H. (1985), Knots, de Gruyter.

Cavicchioli, A., Hegenbarth, F. Kim, A. (1998), ‘A geometric study of Sieradski
groups’, Algebra Colloquium 5(2), 203–217.

Cohn, P. (1966), ‘Some remarks on the invariant basis property’, Topology 5, 215–
228.

Dehornoy, P. (2000), Braids and self-distributivity, Vol. 192 of Progress in Math.,
Birkhäuser.

Eisenbud, D. (1995), Commutative algebra. With a view toward algebraic geom-

etry, Vol. 150 of Graduate Texts in Mathematics, Springer-Verlag, New York.

Elrifai, E. Morton, H. (1994), ‘Algorithms for positive braids’, Quart. J. Math.

Oxford 45, 479–497.

Garber, D., Kaplan, S. Teicher, M. (2002), ‘A new algorithm for solving the
word problem in braid groups’, Adv. Math. 167, 142–159.

Garside, F. (1969), ‘The braid group and other groups’, Quart. J. Math. Oxford

20, 235–254.

Gorin, E. Lin, V. (1969), ‘Algebraic equations with continuous coefficients and
some problems in the algebraic theory of braids (Russian)’, Mat. Sbornik

78(4), 579–610.

Helling, H., Kim, A. Mennicke, J. (1998), ‘A geometric study of Fibonacci
groups’, J. Lie Theory 8, 1–23.

Hermiller, S. Meier, J. (1999), ‘Artin groups, rewriting systems and three-
manifolds’, J. Pure Appl. Algebra 136, 141–156.

59

L. Bokut, A. Vesnin

Heyworth, A. (2000), Rewriting as a special cases of non-commutative Gröbner
basis, in ‘Computational and geomteric aspects of modern algebra (Edinburg,
Lecture Note Series’, Vol. 275, Cambridge Univ. Press, pp. 101–105.

Johnson, D. (1980), Topics in the theory of group presentations, Vol. 42 of London

Math. Soc. Lect. Notes Series, Cambridge University Press.

Kim, A., Kim, Y. Vesnin, A. (2000), On a class of cyclically presented groups,
in Y. Baik, D. Johnson A. Kim., eds, ‘Groups Korea’98’, de Gruyter, pp. 211–
220.

Lyndon, R. Schupp, P. (1977), Combinatorial group theory, Vol. 89 of Ergebnisse

der Mathematik und ihrer Grenzgebiete, Springer-Verlag.

Markov, A. (1945), Foundations of the algebraic theory of braids (Russian), in

‘Trudy Steklov Mat. Inst.’, Moscow, pp. 1–54.

Newman, M. (1942), ‘On theories with a combinatorial definition of “equiva-
lence”’, Ann. of Math. 43, 223–243.

Shirshov, A. (1962), ‘Some algorithm problems for Lie algebras (Russian)’,
Sibirsk. Mat. Z. 3, 292–296. Translated in ACM SIGSAM Bull. Commu-
nications in Computer Algebra 33 (1999), no. 2, 3–9.

Thurston, W. (1992), Finite state algorithm for the braid group, in D. Epstein
al, eds, ‘Words processing in groups’, Jones and Barlett, Boston and London.

Ufnarovski, V. (1998), Introduction to noncommutative Gröbner theory, in

B. Buchberger F. Winkler, eds, ‘Gröbner bases and applications’, Cambridge
University Press, pp. 259–280.

60

Gröbner Bases Property on Elimination
Ideals in Finite Group Theory

Miguel Angel Borges-Trenard1, Hebert Pérez-Rosés2

and Mijail Borges-Quintana1

1Departamento de Matemática, Facultad de Matemática y Computación,

Universidad de Oriente, Santiago de Cuba, Cuba
2Departamento de Computación, Facultad de Matemática y Computación,

Universidad de Oriente, Santiago de Cuba, Cuba

E-mail: mborges@mabt.uo.edu.cu, hp@hrpc.uo.edu.cu, mijail@mbq.uo.edu.cu

Abstract

The Gröbner bases property on elimination ideals is one of the nice at-
tributes of those bases that allow them to be a powerful tool for solving a
great variety of algorithmic problems. The purpose of this note is to show
how that property can be used in order to solve three computational group
theoretical problems: computing discrete logarithms, computing inverses,
and change of generators.

KEYWORDS: Gröbner bases, elimination ideals, group presentations,
discrete logarithm problem.

Introduction

The Gröbner bases property on elimination ideals allows to obtain immediately a
Gröbner basis of an elimination ideal if a Gröbner basis of the ideal has been com-
puted. It has been widely used, particularly in commutative polynomial rings.
The reader can see in (Buchberger Winkler 1998), and other works quoted there,
applications of that property in different settings. In (Borges Borges 1998), that
property was generalized for ideals in free associative algebras over a field. Here
we are going to show how that generalization can be used for solving three pro-
blems in finite group theory:

1. The Discrete Logarithm Problem (DLP), see Section 3.1.

2. Given a finite group presentation, with generating set A, and an element
w of the group (expressed in terms of A):
Find the inverse of w (Section 3.2).

61

Gröbner Bases Property on Elimination Ideals in Finite Group Theory

3. Given a finite group presentation, with generating set A, and a finite subset
S of the group (expressed in terms of A):
Find (if they exist) formulas that express A in terms of S (Section 3.3).

Of course, these problems have not trivial solution; for example, the complexity
of finding a solution to the DLP is the base for the design of many systems
in Cryptography. That problem has been extensively studied on some groups;
for instance, multiplicative groups of finite fields and the group of points on an
elliptic curve defined over a finite field (see (Koblitz 1998) for an overview). The
solution presented here assumes that the group is given by a presentation, which
is not typical in the cases mentioned before; however, in (Borges et al. 2000) an
algorithm is presented for computing a complete presentation of a finite group
when it is given by a concrete representation that allows to multiply elements,
e.g. a permutation group.
On the other hand, the solution of the third problem allows to recognize whether
a set of elements of a given group generates the whole group, which is also a well
known difficult problem.

This paper does not intend to be self-contained. We recommend (Mora 1994)
for an introduction to noncommutative Gröbner Bases and (Book Otto 1993) for
string rewriting system technology. However, in Section 1 we shortly review the
Gröbner bases property on elimination ideals and, in Section 2, the adaptation
of that property for group presentations. We hope that those sections can be
understood in essence, even without a very specialized knowledge of the theories.
Section 3 and Remark 2.2 are the main contributions of this work.

1. Gröbner bases property on elimination ideals

Let X := {x1, . . . , xn} be a finite alphabet, 〈X〉 the free monoid on X, and
K〈X〉 the free associative algebra over X and the field K. On the other hand,
let K〈X〉/I be the residue class algebra of K〈X〉 modulo the two-sided ideal I
and let [f]I be the image of f ∈ K〈X〉 in K〈X〉/I. Let F := {f1, . . . , fm} be a
finite subset of K〈X〉 and let Ideal(F) be the two-sided ideal of K〈X〉 generated
by F . Finally, let K〈[F]I〉 := K〈[f1]I ,. . . , [fm]I〉 be the K-subalgebra of K〈X〉/I
generated by the image of F .

For the reader’s convenience, we write here the definition of term ordering
with the elimination property that is given in (Borges Borges 1998).

Definition 1.1: (Term ordering with the elimination property)
The term ordering ≺ has the elimination property at the position k (k ∈ [1, n−1])
if:

For every s, t ∈ 〈X〉, s ≺ t and t ∈ 〈Xk〉 implies s ∈ 〈Xk〉,

where Xk stands for the subset of X composed by the first k letters.

That definition is equivalent to the following one:

For j ∈ (k, n] and for s ∈ 〈Xk〉, s ≺ xj.

62

M. A. Borges-Trenard, H. Pérez-Rosés, and M. Borges-Quintana

The problem below was solved in (Borges Borges 1998):

Problem 1.1: (Algebra Membership Problem)
Given H, F finite subsets of K〈X〉, and f ∈ K〈X〉 :
Decide whether [f]I ∈ K〈[F]I〉, where I := Ideal(H).

The solution method, that solves the Algebra Membership Problem by means of
an Ideal Membership Test, can be summarized in the following algorithm:

Algorithm 1.1: (Deciding whether [f]I ∈ K〈[F]I〉)

1. Introduce a set of new letters Y := {y1, . . . , ym} for tagging the elements
of F .

2. Choose a term ordering ≺ on 〈Y ∪ X〉, with the elimination property at
the position m, so that Y ≺ X (i.e. for each y ∈ Y , and for every x ∈ X,
y ≺ x).

3. Compute the reduced Gröbner basis∗ of J with respect to ≺ (rGb(J,≺)),
where

J := Ideal({y1 − f1, . . . , ym − fm} ∪ H) ⊂ K〈Y ∪ X〉.

4. Compute h := Can(f, rGb(J,≺)), that is the canonical form† of f w.r.t.
rGb(J,≺).

5. Then [f]I ∈ K〈[F]I〉 if and only if there exists q ∈ K〈Y 〉 such that h = q;
moreover, in such a case: f([x1]I , . . . , [xn]I) = q([f1]I , . . . , [fm]I).

A straightforward consequence of the previous algorithm is the following one.

Algorithm 1.2: (Deciding whether [f]I ∈ K〈[F]I〉: An alternative)

1. Introduce a set of new letters Y := {y1, . . . , ym} for tagging the elements
of F and z for referring to f .

2. Choose a term ordering ≺ on 〈Y ∪{z}∪ X〉, with the elimination property
at the position m, so that Y ≺ {z} ∪ X.

3. Compute the reduced Gröbner basis of J with respect to ≺, where

J := Ideal({y1 − f1, . . . , ym − fm} ∪ {z − f} ∪ H) ⊂ K〈Y ∪ {z} ∪ X〉.

4. Then [f]I ∈ K〈[F]I〉 iff there exists q ∈ K〈Y 〉 such that z − q ∈ rGb(J,≺).

∗In fact, it is not mandatory to use the rGb, any G-basis would be enough.
†also called normal form.

63

Gröbner Bases Property on Elimination Ideals in Finite Group Theory

Remark 1.1:

1. To call the two procedures given above “algorithms”, one has to be sure
that the reduced Gröbner basis is finite; it would be the case, for instance,
when the ideal is zero-dimensional.

2. One has to introduce another letter in Algorithm 1.2; however, as a reward,
the execution of the algorithm could be stopped as soon as a polynomial
appears having the form z − q′, where q′ ∈ K〈Y 〉. It is necessary to wait
until the end of the algorithm just if the interest were in the “minimal”
polynomial q such that z − q is in the G-basis and q ∈ K〈Y 〉.

Another problem studied in (Borges Borges 1998) was the following one:

Problem 1.2: (Algebras Equality Problem)
Given F, H, and f as in Problem 1.1:
Decide whether K〈[F]I〉 = K〈X〉/I,

which can be solved in a way similar to the problem above. Summarizing:
K〈[F]I〉 = K〈X〉/I if and only if, for each xi ∈ X, there exists qi ∈ K〈Y 〉
such that

rGb(J,≺) \ K〈Y 〉 = {x1 − q1, . . . , xn − qn}.

2. Particular case of group presentations

Let 〈A | σ〉 be a group presentation, then one can obtain at once a monoid
presentation of the same group by setting X := A ∪ A−1 and adding to σ the
trivial relations that define the inverses‡.

There is a clear connection between congruences generated by subsets of 〈X〉×
〈X〉 and ideals generated by certain kind of binomials in K〈X〉. That relation is
essential for interactions between the theories of Gröbner bases on the one side
and String Rewriting Systems (SR-Systems) on the other side; namely:

∀ σ ⊂ 〈X〉 × 〈X〉 (s, t) ∈ 〈σ〉 ⇐⇒ s − t ∈ Ideal(P (σ)), (1)

where 〈σ〉 denotes the congruence generated by σ and P (σ) := {s−t | (s, t) ∈ σ}.
In particular, any Gröbner basis G of Ideal(P (σ)) is composed by bino-

mials of the form mentioned above and, if one goes back by means of the set
Σ(G) := {(s, t) | s − t ∈ G}, then another presentation of the same group is
obtained; in addition, Σ(G) is a complete SR-System (see, for instance, (Borges
Borges 1998) and other references cited there).

For the sake of simplicity, we will denote by the same symbol a word s ∈ 〈X〉
and its image in some quotient ([s]I or, what is the same, [s]σ). As usual, it will
be clear from the context when we are referring to the word or its image.

‡We will also denote by σ the new set.

64

M. A. Borges-Trenard, H. Pérez-Rosés, and M. Borges-Quintana

Some people could ask, why one has to use Gröbner bases where SR-Systems
are enough? Well, a possible answer (not the only one) could be that the link
between those theories allows to apply results from one of them in the framework
of the other one. That is the case -for example- of the present work, where we
show how the powerful elimination property of the Gröbner bases can be used
in finite group theory.

Remark 2.1: One crucial point for applying results of Section 1 to the context
of Section 3 is that the normal form of a word s ∈ 〈X〉, modulo a Gröbner basis of
Ideal(P (σ)), is also a word (cf. (Borges Borges 1998)). With this observation in
mind, the problems of Section 3 can be easily solved by means of specializations
of Algorithms 1.1 and 1.2, which shows the strength of the method.

Remark 2.2: It is also worthy of consideration the possibility of simplifying
the Gröbner basis associated with the group. It is based on the following result
of (Borges Borges 1998):

Proposition 2.1: Let us suppose that a−1 − w ∈ Ideal(P (σ)), where a ∈ A
and w ∈ 〈A ∪ A−1 \ {a−1}〉, let ≺ be a term ordering on 〈A ∪ A−1〉 for which
w ≺ a−1, and let β be obtained from σ by the replacement for w whenever a−1

appears. Then§:

rGb(P (β),≺) = rGb(P (σ),≺) \ {a−1 − Can(w, rGb(P (σ),≺))},

where rGb(P (β),≺) stands for the reduced Gröbner basis of the ideal of K〈A∪
A−1 \ {a−1}〉 generated by P (β).

Consequently, if a term ordering with the elimination property is chosen in such
a way that A ≺ A−1, and the group is finite, then it can be possible to eliminate
all the inverses (and their relations) from the Gröbner basis rGb(P (σ),≺) and
obtain a set that characterizes the group as a monoid generated by A. We will
denote this set by G(σ,≺). To compute it will be the first step in the solution
of the problems studied in this paper. This method leads to a complete monoid
presentation¶ that represents the group in a simpler way. Now we will exhibit a
detailed example.

Example 2.1: (Simplifying G-bases associated with finite groups)

1. Let 〈a|σ〉 be a group presentation, where σ := {a3 = a2}. Then, taking
into consideration the inverse of a, we get a monoid presentation of that
group, with generating set {a, a−1} and set of defining relations σ := {a3 =
a2, aa−1 = 1, a−1a = 1}. It is easy to obtain that rGb(P (σ)) = {a−1, a−1−
1}, hence, G(σ,≺) = {a − 1}.

§rGb(P (γ)) represents, as usual, rGb(Ideal(P (γ))).
¶Σ(G(σ,≺)).

65

Gröbner Bases Property on Elimination Ideals in Finite Group Theory

2. Let us now consider the group A4 given by σ := {a3

1
= 1, a3

2
= 1,

a1a2a1a2 = 1}. Then, after adding the inverses (and their relations) and
computing the corresponding Gröbner basis, we obtain:

rGb(P (σ),≺) = {a3

1
− 1, a2

2
− a1a2a1, a2a1a2 − a2

1
, a2a

2

1
a2 − a2

1
a2a

2

1
,

a−1

1
− a2

1
, a−1

2
− a1a2a1}.

Therefore, G(σ,≺) is formed by the relations in the first line above. This
set will be the input in the examples of Section 3.
The reader can see, at the beginning of the next section, some details about
the Alternating Group presentation and the term ordering that we have
used.

3. Three problems

From now on, we consider 〈A | σ〉 to be a finite presentation of a finite group
(where A := {a1, . . . , an}). Those finiteness conditions guarantee us that we can
compute finite Gröbner bases of Ideal(P (σ)) (see Remark 1.1, item 1).

The examples of this section have been computed by using an implementation
in GAP (Schönert et al. 1995) of Mora’s procedure for computing Gröbner bases.
The package was implemented in (Castellanos-Garzón 2002) and is available
upon request to the first author of this paper.

The term ordering that we have used, with the elimination property, can be
seen in (Borges Borges 1998). The selected group is An, which has the following
presentation (Coxeter Moser 1972):

σ := {a3

i = 1, (aiaj)
2 = 1 | 1 ≤ i < j ≤ n − 2}.

A Gröbner basis for Ideal(P (σ)) has been found in (Castellanos-Garzón 2002).
We are going to work mainly with the particular case n := 4.

3.1. Discrete Logarithm Problem for finite groups

Problem 3.1: (DLP to the base b)
Given: 〈A | σ〉, b ∈ 〈A〉 (base element), and c ∈ 〈A〉 :
Find: a positive integer k such that bk = c (if such k does exist).

In fact, our method -for solving the problem above- solves first the associated
decision problem.

Algorithm 3.1: (Solution to the Problem 3.1)

1. Do in Algorithm 1.1: F := {b}, H := G(σ,≺), f := c.

2. Then, k exists if and only if Can(c, rGb(J,≺)) ∈ 〈b〉 and, if so, k is the
positive integer that satisfies the relation Can(c, rGb(J,≺)) = bk. 2

66

M. A. Borges-Trenard, H. Pérez-Rosés, and M. Borges-Quintana

Of course, there are infinite possibilities for k, but the method leads to the mi-
nimal one, because normal forms are minimal with respect to the term ordering.

Example 3.1: Let us set

σ := {a3

1
= 1, a3

2
= 1, a1a2a1a2 = 1}, b := a2a1a2, c := a2a1a2a2a1a2.

It is obvious that this example has solution, our intention is that the reader
can understand easily and verify the result by himself. The set G(σ,≺) was al-
ready built in Example 2.1. The GAP session leads immediately to the following
reduced Gröbner basis:

rGb(J,≺) := {b3 − 1, a1 − b2, a2

2
− a1a2a1, a2ba2 − ba2b, a2b

2a2 − b}.

Now, it is possible to check by hand that Can(a2a1a2a2a1a2, rGb(J,≺)) = b2.

3.2. Finding of the inverse

Problem 3.2:

Given: 〈A | σ〉, w ∈ 〈A〉 :
Find: s ∈ 〈A〉 so that s = w−1.

Algorithm 3.2: (Solution to the Problem 3.2)

1. Introduce a new letter y for representing the inverse of w.

2. Choose a term ordering ≺ on 〈A ∪ {y}〉 with the elimination property so
that A ≺ y.

3. Compute rGb(J,≺), where

J := Ideal(G(σ,≺) ∪ {yw − 1, wy − 1}) ⊂ K〈A ∪ {y}〉.

4. Get the binomial of rGb(J,≺) whose maximal term is y.

5. Then s is the second term of that binomial.

In regard to the foundation of this algorithm, we can proceed as follows: It is clear
that the relations {yw−1, wy−1} do not alter the group under study and define
the inverse of w. As the group is finite, there exists t ∈ 〈A〉 such that y and t
are equal words in the group, thus, y − t ∈ J (see equivalence 1 in Section 2).
Consequently, if one takes into consideration that we are using a term ordering
with the elimination property (compare Definition 1.1 and the remark below
that definition) then one can be sure that y−Can(t, rGb(J,≺)) ∈ rGb(J,≺). 2

Example 3.2: Let us take σ as in the Example 3.1, and w := a2a1a2. Then:

rGb(J,≺) := {a3

1
− 1, a2

2
− a1a2a1, a2a1a2 − a2

1
, a2a

2

1
a2 − a2

1
a2a

2

1
, y − a1};

therefore, s := a1.

67

Gröbner Bases Property on Elimination Ideals in Finite Group Theory

3.3. Conversion Formulas

Problem 3.3:

Given: 〈A | σ〉, S := {s1, . . . , sm} ⊂ 〈A〉 :
Decide: whether S generates the given group and, in the affirmative case, com-
pute {w1, . . . , wn} ⊂ 〈S〉 such that, for i ∈ [1, n], ai = wi.

This situation can be interpreted as a particular case of the one given in Problem
1.2, where one also has to take into account Remark 2.1.

Example 3.3: Let σ be as in the previous examples and let s1 := a2

1
a2a1, s2 :=

a2

1
a2a

2

1
. Now we are going to apply the first three steps of Algorithm 1.1 by taking

H := G(σ,≺), and F := {a2

1
a2a1, a

2

1
a2a

2

1
}. Hence:

rGb(J,≺) := {s3

1
− 1, s2

2
− 1, s2s1s2 − s2

1
s2s

2

1
, s2s

2

1
s2 − s1s2s1,

a1 − s2

1
s2, a2 − s1s2};

therefore‖, rGb(J,≺) \ K〈S〉 = {a1 − s2

1
s2, a2 − s1s2}.

Consequently, the method responds affirmatively.

Remark 3.1: Experiment in GAP

We have computed the same example on the more complicated group A6.
The general form of G(σ,≺), for the presentation of An given above, has been
obtained in (Castellanos-Garzón 2002). For n := 6, G(σ,≺) has 23 binomials.
It took 14 minutes to compute the new Gröbner basis, which had 21 binomials.
The relations between the sets {a1, a2} and {s1, s2} were kept in A6, which was
expected. Computation was made on a small Pentium of 300 MHz.

Conclusion

This paper contributes to show that the strength of the Gröbner bases property
on elimination ideals can be successfully extended to non-commutative algebras.
We also intend to encourage the reader to find new applications of that property
in the context of Group Theory. Particularly, it would be interesting to find other
group classes, different from the finite groups, where it could be possible to deal
with problems similar to the ones exhibited here; it is strongly related to the
finiteness of Gröbner bases.

‖See Problem 1.2.

68

M. A. Borges-Trenard, H. Pérez-Rosés, and M. Borges-Quintana

Acknowledgement

The authors are indebted to Bruno Buchberger for ever. Particularly, Borges-
Trenard and Borges-Quintana (father and son) discussed their Doctoral Thesis
on Gröbner bases Theory with him and received Buchberger’s support at every
time and, which is more important, his influence as a very remarkable scientist
and wonderful person.
Our gratitude to anonymous referees, their valuable suggestions contributed to
improve this paper.

References

Book, R. V. Otto, F., eds (1993), String Rewriting Systems, Texts and Mono-
graphs in Computer Science, Berlin: Springer-Verlag.

Borges, M. A. Borges, M. (1998), Gröbner Bases Property on Elimination Ideal

in the Noncommutative Case, Cambridge University Press, pp. 323–337 in
(Buchberger Winkler 1998).

Borges, M. A., Borges, M. Mora, T. (2000), ‘Computing Gröbner Bases by
FGLM Techniques in a Non-commutative Setting’, Journal of Symbolic Com-

putation 30(4), 429–449.

Buchberger, B. Winkler, F., eds (1998), Gröbner Bases and Applications, Vol.
251 of London Mathematical Society Series, Cambridge University Press. Proc.
of the International Conference “33 Years of Gröbner Bases”.

Castellanos-Garzón, J. A. (2002), On the use of GAP for computing Gröbner
Bases (Spanish), Master thesis, Univ. of Oriente (Cuba).

Coxeter, H. S. M. Moser, W. O. J., eds (1972), Generators and Relators for

Discrete Groups, Springer-Verlag, third edn.

Koblitz, N., ed. (1998), Algebraic Aspects of Cryptography, Vol. 3 of Algorithms

and Computation in Mathematics, Springer-Verlag, New York.

Mora, T. (1994), ‘An Introduction to Commutative and Noncommutative
Gröbner Bases’, Theoretical Computer Science (134), 131–173.

Schönert, M. et al. (1995), GAP – Groups, Algorithms, and Programming, fifth
edn, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hoch-
schule, Aachen, Germany.

69

Hilbert Polynomials in Two Variables and

Bifiltered Ideals ∗

GIUSEPPA CARRA’ FERRO

Department of Mathematics and Computer Science, University of Catania,

Viale Andrea Doria 6, 95125 Catania, Italy

Abstract

In this paper it is shown a generalization of the Buchberger’s algorithm,

that allows to find a Levin’s characteristic set of a bifiltered and bigraded

ideal in a polynomial ring by using the notion of L-reduction. Such char-

acteristic set allows to find the Hilbert polynomial in two variables of the

corresponding bifiltered and bigraded quotient algebra of polynomials.

KEYWORDS: bidegree preserving term ordering, L-reduction, character-

istic set, bivariate Hilbert polynomials

1. Introduction

Bifiltered and bigraded rings R, bifiltered and bigraded ideals and R-modules
are useful tools for the study of Segre products of K-algebras, tensor products of
graded algebras, Rees rings and symmetric algebras associated to homogeneous
ideals in graded rings (blow-up algebras), affine and projective elimination the-
ory, Weyl algebras and linear partial differential equations with coefficients in a
polynomial ring.

Recently (Levin 1999) has studied Hilbert polynomials in two variables of a
bifiltered submodule of a free module of finite rank over a bifiltered commutative
ring of polynomials with coefficients in a field K, while (Robbiano Valla 1998)
have studied Hilbert-Poincare’ series in two variables of a bigraded K-subalgebra
of a bigraded commutative ring of polynomials with coefficients in a field K.

Levin has shown that given a bifiltered submodule M of a free module E of
finite rank p over a bifiltered commutative ring of polynomials K[X1, . . . , Xm, Y1,
. . . , Yn] with coefficients in a field K and a set of generators {f1, . . . , fr} of
the relation module R(M) of M it is possible to find a characteristic set G of
R(M), e.g. another set of generators G={g1, . . . , gs} of R(M), such that the

∗1991 Mathematics Subject Classification 13P99.

70

Hilbert Polynomials in Two Variables and Bifiltered Ideals

Hilbert polynomial in two variables of M is the numerical polynomial in two
variables associated to the set of pairs of maximal terms {(ug1 , vg1), . . . , (ugs

, vgs
)}

with respect to two term orderings, that are respectively degree preserving with
respect to the sets of variables {X1, . . . , Xm} and {Y1, . . . , Yn}. Definitions and
results in (Levin 1999) are different from the ones in (Robbiano Valla 1998).

The existence of such set of generators is proved by using the Ritt’s charac-
teristic set theory as in (Ritt 1950) and a notion of reduction, which is similar
to the one used in Gröbner bases theory as in (Buchberger 1976), while the in-
variants of such polynomial with respect to the excellent bifiltrations are used
for studying some properties of the corresponding linear systems of PDE’s.

Let σX and σY be term orderings on the set of terms in K[X1, . . . , Xm, Y1, . . . ,
Yn], that are respectively degree preserving with respect the sets of variables
{X1, . . . , Xm} and {Y1, . . . , Yn}, and let I be an ideal with an excellent bifil-
tration in the bifiltered ring K[X1, . . . , Xm, Y1, . . . , Yn]. The author shows an
algorithm for a characteristic set G={g1, . . . , gs} of I, that allows to find the
Hilbert polynomial in two variables of the bifiltered and bigraded K-algebra
K[X1, . . . , Xm, Y1, . . . , Yn]/I.

This algorithm can be easily extended to the case of bifiltered submodules of
free modules of finite rank p over bifiltered rings of polynomials.

2. Preliminaries

Let K be a field and let R=K[X1, . . . , Xm, Y1, . . . , Yn] be the polynomial ring in
m + n variables with coefficients in K. Let N0 = {0, 1, . . . , n, . . .}.

Definition: TX={ Xa1
1 · · ·Xam

m : (a1, . . . , am) ∈ Nm
0 } is the set of terms in R in

the variables X1, . . . , Xm.
TY ={ Y b1

1 · · ·Y bn
n : (b1, . . . , bn) ∈ Nn

0 } is the set of terms in R in the variables
Y1, . . . , Yn.
TXY ={ Xa1

1 · · ·Xam
m Y b1

1 · · ·Y bn
n : (a1, . . . , am, b1, . . . , bn) ∈ Nm+n

0 } is the set of
terms in R in the variables X1, . . . , Xm, Y1, . . . , Yn.

TXY is a monoid and it is the product of the monoids TX and TY .

If t ∈ TXY , then degXt =
∑

i=1,...,m ai, degY t =
∑

j=1,...,n bj, while deg(t) =
∑

i=1,...,m ai +
∑

j=1,...,n bj.

If r, s ∈ Z, then T (r, s)={t ∈ TXY : degXt ≤ r and degY t ≤ s}.

2.1. Bifiltered and Bigraded Rings

Here some basic properties of bifiltered and bigraded rings are introduced.

Definition: Let R=K[X1, . . . , Xm, Y1, . . . , Yn]. A bisequence
(Rrs)r,s∈Z of vector K-subspaces of R is called a bifiltration of R if:
(i) Rrs = 0 if either r or s is negative.

71

GIUSEPPA CARRA’ FERRO

(ii) ∪{Rrs : r, s ∈ Z}=R.
(iii) Rrs ⊆ Rr+1,s and Rrs ⊆ Rr,s+1 for all r and s.
(iv) RrsRhk = Rr+h,s+k for all r, s, h, k.

R=K[X1, . . . , Xm, Y1, . . . , Yn] is bifiltered by taking Rrs equal to the vector K-
space generated by T (r, s).

Definition: Let R=K[X1, . . . , Xm, Y1, . . . , Yn] and let M be a
R-module. A bisequence (Mrs)r,s∈Z of vector K-subspaces of M is called a bifil-
tration of M if:
(i) Mrs = 0 if either r ≤ r0 or s ≤ s0 and ∪{Mrs : r, s ∈ Z}=M .
(ii) Mrs ⊆ Mr+1,s and Mrs ⊆ Mr,s+1 for all r and s.
(iii) RrsMhk ⊆ Mr+h,s+k for all r, s, h, k.
A bifiltration is called excellent if :
(iv) Mrs is a finitely generated vector K-space for all r ed s.
(v) RrsMhk = Mr+h,s+k for all r ≥ r∗, s ≥ s∗ and all h and k nonnegative.

An ideal I of R is bifiltered if it is bifiltered as R-module. If I=(f1, . . . , fp), then
(Irs=

∑

i=1,...,p Rrsfi)(r,s)∈Z2 is a excellent bifiltration of I.

Definition: Let R=K[X1, . . . , Xm, Y1, . . . , Yn]. A bisequence
(R′

rs)r,s∈Z of vector K-subspaces of R is called a bigraduation of R if:
(i) R′

rs = 0 if either r or s is negative.
(ii)

⊕

{R′

rs : r, s ∈ Z}=R.
(iii) R′

rsR
′

hk ⊆ R′

r+h,s+k for all r, s, h, k.

R=K[X1, . . . , Xm, Y1, . . . , Yn] is bigraded by taking R′

rs equal to the vector K-
space generated by T ′(r, s)={t ∈ T (r, s): degXt = r and degY t = s }.

If R is bigraded with the bigraduation (R′

rs)(r,s)∈Z2 , then R is bifiltered with the
bifiltration (Rrs)(r,s)∈Z2 defined by Rrs=

⊕

{R′

hk : h ≤ r, k ≤ s}.

If R is bifiltered with the bifiltration (Rrs)(r,s)∈Z2 , then R is bigraded with the
bigraduation (R′

rs)(r,s)∈Z2 , where R′

rs=Rrs/(Rr−1,s ∩ Rr,s−1).

2.2. Term Orderings

Here some basic properties of bidegree preserving term orderings are introduced.

Definition: A term ordering σ on TXY is a total order such that:

(i). 1 <σ t for all t ∈ TXY \ {1};

(ii). t1 <σ t2 implies t1t
′ <σ t2t

′ for all t′ ∈ TXY .

Definition: (Levin 1999). A term ordering σ on the set of terms TXY is X-
bidegree preserving if t1 <σ t2 when either degXt1 < degXt2 or degXt1 = degXt2
and degY t1 < degY t2.
A term ordering σ on the set of terms TXY is Y -bidegree preserving if t1 <σ t2
when either degY t1 < degY t2 or degY t1 = degY t2 and degXt1 < degXt2.

72

Hilbert Polynomials in Two Variables and Bifiltered Ideals

EXAMPLE 1: Let t1, t2 ∈ TXY . Let t1 = Xa1
1 · · ·Xam

m Y b1
1 · · ·Y bn

n and let t2 =
Xc1

1 · · ·Xcm
m Y d1

1 · · ·Y dn
n . If σ is defined by t1 <σ t2 if either (

∑

i=1,...,m ai,
∑

j=1,...,n bj) <lex (
∑

i=1,...,m ci,
∑

j=1,...,n dj) or (
∑

i=1,...,m ai,
∑

j=1,...,n bj) =
(
∑

i=1,...,m ci,
∑

j=1,...,n dj) and (a1, . . . , am, b1, . . . , bn) <τ (c1, . . . , cm, d1, . . . , dn),
where τ is a term ordering on TXY , then σ is a X-bidegree preserving term
ordering on TXY . In similar way if σ is defined by t1 <σ t2 if either (

∑

j=1,...,n bj,
∑

i=1,...,m ai) <lex (
∑

j=1,...,n dj,
∑

i=1,...,m ci) or (
∑

j=1,...,n bj,
∑

i=1,...,m ai) =
(
∑

j=1,...,n dj,
∑

i=1,...,m ci) and (b1, . . . , bn, a1, . . . , am) <τ (d1, . . . , dn, c1, . . . , cm),
where τ is a term ordering on TXY , then σ is a Y -bidegree preserving term
ordering on TXY .

Now let σX and σY be respectively a X-bidegree preserving term ordering and
a Y -bidegree preserving term ordering.

If f ∈ K[X1, . . . , Xm, Y1, . . . , Yn], then f =
∑

h=1,...,w aihtih =
∑

h=1,...,w ajhtjh
with ti1 >σX

ti2 >σX
. . . >σX

tiw and tj1 >σY
tj2 >σY

. . . >σY
tjw with nonzero

aih ∈ K and tih, tjh ∈ TXY for all h.

MσX
(f) = ai1ti1 is the leading σX-monomial of f with respect to σX and MσY

(f) =
aj1tj1 is the leading σY -monomial of f with respect to σY .

ai1 = lcσX
(f) and aj1 = lcσY

(f) are respectively the leading coefficients of f with
respect to σX and σY , while ti1 = TσX

(f) = uf and tj1 = TσY
(f) = vf are the

leading terms of f with respect to σX and σY .

3. L-Reduction

Here the definitions and properties following from the notion of reduction given
by Levin (1999) are introduced. Such reduction will be called L-reduction.

Definition: (Levin 1999). Let f, g ∈ K[X1, . . . , Xm, Y1, . . . , Yn] and let σX and
σY be respectively a X-bidegree preserving and a Y -bidegree preserving term
ordering on TXY . f is L-reduced with respect to g if f does not contain any term
tug, such that degY tvg ≤ degY vf .
A subset F of R = K[X1, . . . , Xm, Y1, . . . , Yn] is L-autoreduced if each element
of F is L-reduced with respect to the other ones.

EXAMPLE 2: Let R = K[X1, Y1]. Let σX and σY be as above with τ=lexicographic.
Let f = X2

1 − Y1 and g = X1 − Y 2
1 . uf = X2

1 , vf = Y1, ug = X1 and vg = Y 2
1 .

{f, g} is a L-autoreduced set.

In (Levin 1999) it is shown that each L-autoreduced subset F of R is finite and
each f ∈ R can be L-reduced in a finite number of steps with respect to an L-
autoreduced subset F={f1, . . . , fr} of R. Moreover f L-reduces to a polynomial
g with respect to F and there exist g1, . . . , gr ∈ R, such that f =

∑

i=1,...,r gifi+g

73

GIUSEPPA CARRA’ FERRO

and g is L-reduced with respect to F . g is called a L-normal form of f with
respect to F .

L-REDUCTION ALGORITHM (Levin)
Input f ∈ R, a positive integer r, F = {f1, . . . , fr}, where fi 6= 0 for all
i = 1, . . . , r.
Output g ∈ R and g1, . . . , gr ∈ R, such that f =

∑

i=1,...,r gifi + g and g is
L-reduced with respect to F .
Begin

g1 := 0, . . . , gr := 0, g := f
While there exists i, i = 1, . . . , r, and a term t, that appears in g with a
nonzero coefficient at, such that ufi

divides t and degY (t
ufi

vfi
) ≤ degY vf do

z:=the greatest (with respect to σX) of the terms t, that satisfy the above
conditions.
j:=the smallest number i for which ufi

is the greatest (with respect to σX)
leading σX-monomial of an element fi, such that ufi

divides z and
degY (z

ufi

vfi
) ≤ degY vg.

gj := gj + azz
lcσX

(fj)ufj

fj and g := g − azz
lcσX

(fj)ufj

fj.

End

Remark: The definition of L-reduction given by Levin is weaker than the one
used in Gröbner bases theory (Buchberger 1976). In fact given a X-bidegree
preserving term ordering if f is reduced with respect to g, then it is L-reduced.
The converse it is not true as in the above example.

In (Levin 1999) it is given also the definition of ranking on the set of all poly-
nomials, which is a pre-order, and the definition of ranking on the sets of all
L-autoreduced subsets of polynomials.

Definition: (Levin 1999). Let f, g ∈ K[X1, . . . , Xm, Y1, . . . , Yn] and let σX and
σY be respectively a X-bidegree preserving and a Y -bidegree preserving term
ordering on TXY . f has lower rank than g and write rk(f) < rk(g) if either
uf <σX

ug or uf = ug and vf <σY
vg. If uf = ug and vf = vg then f and g have

the same rank and write rk(f) = rk(g).

Let F={f1, . . . , fr} be a subset of R. We always suppose that rank(f1) ≤
rank(f2) ≤ . . . ≤ rank(fr).

Definition: (Levin 1999). Let F={f1, . . . , fr} and G={g1, . . . , gs} be L-auto-
reduced subsets of R. F has rank lower than G if one of the following cases
holds:
(1) there exists h ∈ N0 such that h ≤ min{r, s}, rk(fi) = rk(gi) for all i =
1, . . . , h − 1 and rk(fh) < rk(gh);
(2) r > s and rk(fi) = rk(gi) for all i = 1, . . . , s.
If r = s and rk(fi) = rk(gi) for all i = 1, . . . , s, then F has the same rank as G.

74

Hilbert Polynomials in Two Variables and Bifiltered Ideals

By using the same tools of Ritt’s theory, Levin shows that each family of L-
autoreduced sets has a minimal element with respect to the ranking. If the family
of all L-autoreduced subsets of an ideal I of R is considered, then a L-autoreduced
subset of I minimal with respect to the ranking is called a characteristic set of
the ideal I. Finally Levin shows that the polynomials in the characteristic set
are a set of generators of the ideal I. No algorithm is given in order to find such
characteristic set.

Now the relation between Gröbner bases and characteristic set will be investi-
gated.

Definition: Let I be an ideal in K[X1, . . . , Xm, Y1, . . . , Yn] and let σ be a term
ordering on TXY . Mσ(I)=(Mσ(f): f ∈ I). If G ⊆ I, then Mσ(G)=(Mσ(g):
g ∈ G).

The following definition is well known (Buchberger 1976).

Definition: Let I be an ideal in K[X1, . . . , Xm, Y1, . . . , Yn] and let σ be a term
ordering on TXY . G is a Gröbner basis of I with respect to σ if and only if
Mσ(I)=Mσ(G).

The existence and the minimality of a characteristic set of an ideal I with respect
to the ranking imply the following theorem.

Theorem 3.1: Let I be an ideal in K[X1, . . . , Xm, Y1, . . . , Yn] and let σX and σY

be respectively a X-bidegree preserving and a Y -bidegree preserving term ordering
on TXY . Let G={g1, . . . , gs} be a characteristic set of I.

(i). G is a Gröbner basis of I with respect to σX .

(ii). If f is a nonzero element of I and f=
∑

i=1,...,r aitigj(i) where ai ∈ K with
ai 6= 0, ti ∈ TXY , j(1) ∈ {1, . . . , s} for all i by L-reduction algorithm, then
degY vf ≥ degY tivgj(i)

for all i = 1, . . . , r and degY vf = degY tivgj(i)
for some

i.

(iii). Let d=min{degY f : f ∈ I, f 6= 0}. For every f ∈ I with degY f = d there
exists at least one g ∈ G, such that ug is a term of f and degY vg = d

(iv). Let g ∈ G with degY g = d. If F is a Gröbner basis of I with respect to
σY , then there exists f ′ ∈ F with degY f ′ = d, such that g = af ′ for some
nonzero a ∈ K.

Proof. (i). By (Levin 1999), thm.4.4. if f ∈ I, then f is L-reduced with re-
spect to G if and only if f=0. Since G ⊂ I, then MσX

(G) ⊆ MσX
(I). Now

let f be a nonzero element of I. Since f L-reduces to zero with respect to G,
then it reduces to zero with respect to G and with respect to σX . Therefore
MσX

(f)=lcσX
(f)uf=rtMσX

(g) for some r ∈ R, t ∈ TXY and g ∈ G. It follows
that MσX

(I) ⊆ MσX
(G) and then (i) follows by definition 11.

75

GIUSEPPA CARRA’ FERRO

(ii). Now let G = {g1, . . . , gs} with rk(f1) < . . . < rk(fs) and let f be a nonzero
element of I. By L-reduction algorithm f=

∑

i=1,...,r aitigj(i) where ai ∈ K with
ai 6= 0, ti ∈ TXY , j(i) ∈ {1, . . . , s} for all i and t1ugj(1)

≥σX
. . . ≥σX

trugj(r)
.

Furthermore uf = t1ugj(1)
. If r = 1, then vf = t1vgj(1)

and (ii) is proved.
Now suppose that r > 1. Let’s suppose that degY vf ≥ degY tivgj(i)

for all
i = 1, . . . , r′ and degY vf = degY tivgj(i)

for some i, whenever f=
∑

i=1,...,r′ aitigj(i)

and r′ ≤ r − 1. Let f1 = f − a1t1g1. f1 ∈ I and by induction hypothesys
degY vf1 = degY tivgj(i)

for some i = 2, . . . , r. Since f is L-reducible with respect
to G, then degY vf ≥ degY t1vgj(1)

. So either vf1 = vf , when t1vgj(1)
<σY

vf or
vf = t1vgj(1)

or vf1 = t1vgj(1)
, when degY vf = degY t1vgj(1)

and vf <σY
t1vgj(1)

.
Now (ii) follows by induction hypothesys.
(iii). By (ii) if f is a nonzero element of I and degY f = d, then f L-reduces
to zero with respect to G. So there exists a g ∈ G, such that tug is a term of
f and d = degY f = degY vf ≥ degY tvg = degY t + degY vg. So degY t = 0 and
degY vg = d, e.g. t ∈ TX .
(iv) If F is a Gröbner basis of I with respect to σY and f ∈ F with degY f =
degY vf = d, then by (iii) there exists at least one g ∈ G with degY g = degY vg =
d. Since g ∈ I, then there exists at least one f ′ ∈ F with degY f ′ = degY vf ′ =
d, such that vg = t′vf ′ and t′ ∈ TX . If lcσY

(f ′)g − lcσX
(g)t′f ′ 6= 0, then

degY (lcσY
(f ′)g − lcσY

(g)t′f ′) < d. So we have a contradiction by minimality

of d. If a =
lcσY

(g)

lcσY
(f)

, then g = at′f ′. By (iii) there exists g′ ∈ G, such that f ′ con-

tains a term tug′ with t ∈ TX and degY f ′ = degY tg′ = degY tvg′ = degY vg′ = d.
If g′ 6= g, then g is not L-reduced with respect to g′ and we have a contradiction
by definition of characteristic set. So g = g′ and then t = t′ = 1, e.g. g = af ′.

Remark: If F is a reduced Gröbner basis of I with respect to σX , then it is a
L-autoreduced subset of I by definition of L-reduction and rank(F) is greater
than or equal to rank(G), where G is a characteristic set of I, by (i) of the
theorem 1.

4. An Algorithm for the Characteristic Set

In this section it is presented an algorithm for the characteristic set of an ideal
I in R with respect to the L-reduction.

Since Levin’s theory is an extension of Ritt’s theory, then one can try proce-
dures analogous to Ritt’s procedure (Ritt 1950) for partial differential equations
by using Fourier transform. The usual Ritt’s procedures find a characteristic set
of a finite set and an extended characteristic set of an ideal. If only linear poly-
nomials are considered, then such extended characteristic set is a characteristic
set.
Furthermore the Ritt’s notions of reduction and characteristic sets in the case
of linear partial differential equations with constants coefficients coincide re-
spectively with the notions of reduction in Gröbner bases theory and reduced
Gröbner bases as in (Carra’-Ferro 2001, Kondratieva Levin Mikhalev Pankratiev

76

Hilbert Polynomials in Two Variables and Bifiltered Ideals

1999). So an algorithm similar to the Buchberger’s algorithm for Gröbner bases
with the new definition of L-reduction can be used in order to find such Levin’s
characteristic sets.

Definition: Let f, g ∈ K[X1, . . . , Xm, Y1, . . . , Yn] and let σX and σY be respec-
tively a X-bidegree preserving and a Y -bidegree preserving term ordering on
TXY . S(f, g) = lcσX

(g) l
TσX

(f)
f−lcσX

(f) l
TσX

(g)
g = lcσX

(g) l
uf

f−lcσX
(f) l

ug
g, where

l = l.c.m.(uf , ug).

BUCHBERGER’S ALGORITHM FOR L-REDUCTION

Input F = {f1, . . . , fr} a basis of the ideal I in R, a X-bidegree preserving term
ordering σX and a Y -bidegree preserving term ordering σY on TXY .
Output G = {g1, . . . , gs} is a L-autoreduced basis of I.
s := r
H := F
P := {(i, j) : 1 ≤ i < j ≤ r};
while P is nonempty
do Choose (i, j) ∈ P ;
Q := S(fi, fj);
P := P \ {(i, j)};
L-reduce Q with respect to H;
if Q 6= 0 then

P := P ∪ {(i, s + 1) : 1 ≤ i ≤ s};
fs+1 := Q;
H := H ∪ {Q};
s := s + 1;
return H;
begin G = ∅, H = E;
while E 6= ∅ do

select e0 from E;
E := E \ e0;
if e0 is L-reduced with respect to all e ∈ E and

e0 is L-reduced with respect to all g ∈ G then

G := G ∪ e0 end;
end

Theorem 4.1: Let F={f1, . . . , fr} ⊂ K[X1, . . . , Xm, Y1, . . . , Yn]. Let I=(f1, . . . ,
fr) be an ideal in K[X1, . . . , Xm, Y1, . . . , Yn] and let σX and σY be respectively
a X-bidegree preserving and a Y -bidegree preserving term ordering on TXY . Let
F1 be a Gröbner basis of I with respect to σX , given by the usual Buchberger
algorithm with input F . Let F2 be a Gröbner basis of I with respect to σY , given
by the usual Buchberger algorithm with input F1. Let G be the output of the
Buchberger algorithm for L-reduction with input F2. G is a characteristic set of
I.

77

GIUSEPPA CARRA’ FERRO

Proof. F ⊆ F1 ⊆ F2 by definition of Gröbner basis with respect to a term ordering
and I=(F)=(F1)=(F2). Moreover F2 is a Gröbner basis of I with respect to σX

and it contains every polynomial g in a characteristic set of I with degY vg = d
up to a nonzero element a ∈ K by (iv) of theorem 1. Let H be as in the
Buchberger algorithm for L-reduction with input F := F2. F2 ⊆ H and then
I=(H), because each element h of H is in I=(F2) by its own definition. Let G
be the output of the Buchberger algorithm for L-reduction with input F := F2.
G ⊆ H so (G) ⊆ I. On the other hand every h ∈ H \ G is in (G) by definition
of L-reduction. It follows that I = (H) ⊆ (G), e.g. I=(G). G is L-autoreduced
by its own definition. In order to prove that G is a characteristic set of I it is
sufficient to prove that each nonzero f ∈ I L-reduces to zero with respect to G
by (Levin 1999), thm.4.4. . If g, g′ ∈ G, then S(g, g′) ∈ H and it L-reduces to
zero with respect to H, by definition of Buchberger algorithm for L-reduction.
Since each h ∈ H \G L-reduces to zero with respect to G, then S(g, g′) L-reduces
to zero with respect to G. By repeating the proof in (Becker Weispfenning 1993),
lemma 5.44 p.210 and thm.5.48 p.211 ((iii) ⇒ (i))) for L-reduction each f ∈ I
L-reduces to a unique element f0 ∈ I, because the L-reduction is also a reduction
with respect σX . Finally we have to show that f0 = 0. Since I=(G), then by
repeating the proof in (Becker Weispfenning 1993), thm. 5.35 p.206 ((iv) ⇒ (v)))
and lemma 5.26 p.202) for L-reduction f and zero L-reduce to the same f0 ∈ I.
But zero L-reduces to zero and then f0 = 0, because each f ∈ I L-reduces to a
unique element of I. Now G is a characteristic set by (Levin 1999), thm.4.4. .

EXAMPLE 3: Let F={Y 2
1 −1, X1−Y1} and let I=(F). σX=lexicographic term

ordering with Y1 <σX
X1 and σY =lexicographic term ordering with X1 <σY

Y1. F is a reduced Gröbner basis of I with respect to σX and then F = F1.
F2={Y 2

1 − 1, X1 − Y1, X
2
1 − 1} is the Gröbner basis of I with respect to σY given

by the Buchberger algorithm with input F1. F1 ⊂ F2. G= {Y 2
1 −1, X1−Y1, X1Y1−

1, X2
1 − 1}, because S(X1 −Y1, X

2
1 − 1) L-reduces to X1Y1 − 1 with respect to F2.

Remark: Example 4 shows that it is necessary to have a Gröbner basis of I with
respect to σX and to σY as input of the Buchberger’s algorithm for L-reduction
in order to find a characteristic set of I. In fact the Buchberger’s algorithm for
L-reduction with input F := F = F1 has as output G = F = F1, that is not a
characteristic set of I.

5. Hilbert Polynomials in Two Variables

Here the notion of Hilbert polynomial in two variables given by Levin is intro-
duced and some properties are shown.

Theorem 5.1: (Levin 1999) Let I be an ideal in R = K[X1, . . . , Xm, Y1, . . . , Yn]
and let σX e σY be respectively a X-bidegree preserving and a Y -bidegree pre-
serving term ordering on TXY . Let G = {g1, . . . , gk} be a characteristic set of I
and let V = R/I.

78

Hilbert Polynomials in Two Variables and Bifiltered Ideals

(i). V is a bifiltered R-module with the bifiltration (Vrs)(r,s)∈Z2, where Vrs as
vector K-space is generated by Urs=U ′

rs ∪U ′′

rs, where U ′

rs= {t ∈ T : degXt ≤
r, degY t ≤ s and t is not a multiple of any ugj

j = 1, . . . , k} and U ′′

rs=
{t ∈ T : degXt ≤ r, degY t ≤ s e t = wugj

with degY wvgj
> s for all

w ∈ TXY e j = 1, . . . , k}.

(ii). (Vrs)(r,s)∈Z2 is an excellent bifiltration of V .

Theorem 5.2: (Levin 1999) Let I be an ideal in R = K[X1, . . . , Xm, Y1, . . . , Yn]
and let σX e σY be respectively a X-bidegree preserving and a Y -bidegree pre-
serving term ordering on TXY . Let G = {g1, . . . , gk} be a characteristic set of
I and let V = R/I. Then there exists a numerical polynomial ωI(t1, t2) in two
variables t1 and t2 such that:

(i). ωI(t1, t2) = dimK(Vt1t2) for all t1 ≥ t∗1 and t2 ≥ t∗2.

(ii). degt1(ωI(t1, t2)) ≤ m and degt2(ωI(t1, t2)) ≤ n, and ωI(t1, t2)) =
∑

i=0,...,m

∑

j=0,...,n aij

(

t1+i

i

)(

t2+j

j

)

, where aij ∈ Z for all i and j.

(iii). Let A={(i, j): i = 0, . . . ,m, j = 0, . . . , n and aij 6= 0}, let µ = (µ1, µ2)
ed ν = (ν1, ν2) the maximal elements in A respectively with respect to the
lexicographic and reverse-lexicographic term orderings on N2

0. µ, ν, amn,
aµ1µ2, aν1ν2 do not depend on the excellent bifiltration of V =R/I.

The Hilbert polynomial in two variables of I as in (Levin 1999) is the nu-
merical polynomial in two variables HI(t1, t2) = ωI(t1, t2) = dimK(Vt1t2) =
ω1(t1, t2) + ω2(t1, t2), where ω1(t1, t2) = card(U ′

t1,t2
) and ω2(t1, t2) = card(U ′′

t1,t2
),

when t1 ≥ t∗1 e t2 ≥ t∗2, while it is defined as ωI(t1, t2) = card(U ′

t1,t2
) in (Caboara

DeDominicis Robbiano 1996, Robbiano Valla 1998).

The Hilbert polynomial in two variables can be found by using either algorithms
in (Kondratieva Levin Mikhalev Pankratiev 1992, Levin 1999) or algorithms in
(Caboara DeDominicis Robbiano 1996).

EXAMPLE 4: (Levin 1999). I = (X1 + Y 2
1 + 1). ω1(t1, t2) =

(

t1+1
1

)(

t2+1
1

)

−
(

t1
1

)(

t2+1
1

)

= t2 + 1. ω2(t1, t2) =
(

t1
1

)

(
(

t2+1
1

)

−
(

t2−1
1

)

) = 2t1.
HI(t1, t2) = ω1(t1, t2) + ω2(t1, t2)=2(t1 + 1) + (t2 + 1) − 2.
A = {(1, 0), (0, 1), (0, 0)}. µ = (1, 0), ν = (0, 1), a11 = 0, a10 = 2 and a01 = 1.

EXAMPLE 5: Let X = {X1, X2} and let Y = {Y1}. Let σX and σY be as in
example 1 with X1 >σX

X2. Let I = (f1 = X2
1 −Y 2

1 , f2 = X2
2 −Y 2

1). {f1, f2} is L-
autoreduced but it is not a characteristic set of I. {f3 = X2

1 −X2
2 , f2 = X2

2 −Y 2
1)

is L-autoreduced and it is a characteristic set of I.
uf3 = X2

1 , uf2 = X2
2 , vf3 = X2

1 and vf2 = Y 2
1 . |U ′

t1,t2
| = 4t2 + 4 and |U ′′

t1,t2
| =

2
(

t1+2
2

)

− 4t1 − 2 when t1 ≥ 2 and t2 ≥ 0. So ω1(t1, t2) = 4t2 + 4 and ω2(t1, t2) =

2
(

t1+2
2

)

− 4t1 − 2.

HI(t1, t2) = ω1(t1, t2) + ω2(t1, t2)= 2
(

t1+2
2

)

+ 4(t2 + 1) − 4(t1 + 1) + 2.
A = {(2, 0), (1, 0), (0, 1), (0, 0)}. µ = (2, 0), ν = (0, 1), a21 = 0, a20 = 2 and
a01 = 4.

79

GIUSEPPA CARRA’ FERRO

References

BECKER, T., WEISPFENNING, V. (1993), Gröbner Bases, A Computational
Approach to Commutative Algebra, Springer-Verlag GTM 141, (1993).

BUCHBERGER, B. (1976), ’A theoretical basis for the reduction of polynomials
to canonical form’, ACM SIGSAM BULL. 10 (3), 19-29.

BUCHBERGER, B., (1976), ’Some properties of Gröbner bases for polynomial
ideals’, ACM SIGSAM BULL 10, 19-24.

CABOARA, M., DEDOMINICIS, G., ROBBIANO, L. (1996), ’Multigraded
Hilbert Functions and Buchberger Algorithm’, ACM Proceedings of ISSAC96,
pp.72-85

CARRA’ FERRO, G. (2001), ’Gröbner bases as Characteristic Sets’, Geometrical
and Combinatorial Aspects of commutative Algebra , Lec. Notes in Pure and
Applied Mathematics, Marcel Dekker, Inc., pp.99-110.

KONDRATIEVA, M.V., LEVIN, A.B., MIKHALEV, A.V., PANKRATIEV, E.V.
(1992), ’Computation of Dimension Polynomials’ Int. J. Algebra Comput., 117-
137.

KONDRATIEVA, M.V., LEVIN, A.B., MIKHALEV, A.V., PANKRATIEV, E.V.
(1999), Differential and Difference Dimension Polynomials, Kluwer Academic
Publishers, Dordrecht (1999).

LEVIN, A.B. (1999), ’Computation of Hilbert Polynomials in Two Variables’,
J. of Symb. Comp. (28), 681-710.

RITT, J. F. (1950),Differential Algebra, AMS Coll.Publ. vol.33 New York (1950).

ROBBIANO, L., VALLA, G. (1998), ’Hilbert Series of Bigraded Algebras’, Bol-
lettino U.M.I. (8) 1-B, 521-540.

80

Using Gröbner bases in D-modules theory∗

Castro-Jiménez, F.J.1 and Ucha, J.M.1

1Depto. Álgebra, Universidad de Sevilla, Apdo. 1160, E-41080 Sevilla, Spain

Abstract

Let D be a divisor in Cn. We present computational methods to compare
the D-module of the meromorphic functions with respect to D to some
natural approximations. By using the theory of Gröbner bases we show
how the analytic case can be treated with computations in the Weyl
algebra.

KEYWORDS: Gröbner basis, D-module.

1. Introduction

Let us denote by Rn = C[x1, . . . , xn] the complex polynomial ring in n variables
and by An the Weyl algebra of order n. An is the associative C-algebra generated
by 2n symbols x1, . . . , xn, ∂1, . . . , ∂n with relations

xixj = xjxi, ∂i∂j = ∂j∂i, ∂ixj = xj∂i + δij

where δij is the Kronecker’s symbol. An is isomorphic to the ring of linear dif-
ferential operators over the ring Rn.

In the same way let us consider the ring On = C{x1, . . . , xn} of convergent
power series in n variables and the ring Dn of linear differential operators with
coefficients in On. We have a natural inclusion An ⊂ Dn.

An element P in An (resp. Dn) is called a linear differential operator and it
can be written as a finite sum

P =
∑

β∈Nn

pβ(x)∂β

where β = (β1, . . . , βn), ∂β = ∂β1

1 · · · ∂βn
n and pβ(x) ∈ Rn (resp. On).

If no confusion is possible we drop the index n and simply write R, A, O and
D. Remember that A (resp. D) is a non-commutative, left and right noetherian

∗Partially supported by BFM2001-3164 and FQM-813.

81

Gröbner bases in D-modules

ring. Moreover, it is a simple ring (i.e. there are not non-trivial two-sided ideals
in An), (see Björk (1979)).

In this paper we will study some A-modules (and some D-modules) arising in
a natural way from Algebraic Geometry. The ring R is a left A-module for the
natural action defined as follows:

xi • f = xif, ∂i • f =
∂f

∂xi

for any f ∈ R. In fact, R is isomorphic, as an A-module, to the quotient of A
by the left ideal generated by ∂1, . . . , ∂n. In the same way O is a left D-module.

Let us consider f ∈ R. The localization ring Rf (i.e. the ring of rational
functions with poles along f) is the ring of quotients

Rf = {
g

fm
| g ∈ R, m ∈ N}.

Rf is a R-module and a left A-module in a natural way: the action ∂i •
g

fm is
just defined as the partial derivative of a rational function. Of course Rf is not
a finitely generated R-module.

We have an analogous situation in the analytic setting, i.e. starting from f ∈ O
and considering Of (the ring of meromorphic functions with poles along f) as a
left D-module.

One of the main results in D-module theory is the following theorem.

Theorem 1.1: (Bernstein (1972), Björk (1979)) For any f ∈ R or f ∈ O we
have:
i) Rf is a finitely generated left A-module. In fact, there exists a positive integer
number k such that Rf is the left A-module generated by the rational function
1
fk .

ii) Of is a finitely generated left D-module. In fact, there exists a positive inte-
ger number k such that Of is the left D-module generated by the meromorphic
function 1

fk .

The left A-module generated by 1
fk is just the set

A
1

fk
= {P •

1

fk
, P ∈ A} ⊂ Rf .

In computational D-modules theory a natural problem is the following (for
simplicity we only state the polynomial case):

Problem.- Given a polynomial f ∈ R:
a) Compute a positive integer number k such that Rf = A 1

fk and

b) Compute a system of generators of the annihilator AnnA(1/fk), i.e. compute
a presentation

Rf =
A

AnnA(1
fk)

.

82

Castro-Jiménez, F.J., Ucha, J.M.

The main ingredient in the proof of theorem 1.1 is the existence of the so called
b-function (or Bernstein-Sato polynomial) attached to f (see Bernstein (1972),
Björk (1979)), which is a non-zero polynomial bf (s) ∈ C[s] with the following
property: if −k is the least integer root of bf (s) then

Rf = A
1

fk
.

Bernstein proved (Bernstein (1972)) that the dimension of the characteristic
variety of Rf is n, so Rf is holonomic. Kashiwara (Kashiwara (1978)) proved an
analogous result for Of .

2. Gröbner bases in D-modules theory

It will not be necessary to make a comprehensive development of the theory
of Gröbner bases for D-modules. In Briançon Maisonobe (1984) and Castro-
Jiménez (1984, 1987) it is shown how the division and Buchberger’s algorithm
Buchberger (1965, 1970) can be adapted to the differential operators algebras A
and D. So the tools for computing Gröbner bases for left (and right) ideals and
submodules of free modules, syzygies and free resolutions are available in this
context. The book Saito et al. (2000) is an excellent introduction to Gröbner
bases in A and its application to the study of GKZ-hypergeometric systems.

In D the situation is analogous but, as the coefficients of the differential op-
erators can be convergent power series, the procedures are not algorithms in its
precise sense.

The papers (Oaku Takayama (2001)), (Oaku et al. (2000)) contain deep ap-
plications of Gröbner bases to the effective computation of the four fundamental
operations in D–modules theory (localization, local cohomology, restriction and
integration). These algorithms use as a main tool the effective computation of
b-functions (Oaku (1997)).

The theory of Gröbner bases for A or D is part, in fact, of a more general
theory of Gröbner bases in a certain family of non commutative rings, developed
in Kandri-Rody Weispfenning (1990) (see also Bueso et al. (1998)).

3. Logarithmic vector fields. Meromorphic functions

We will enunciate some results in the context of D-modules, but soon we will
return to our effective calculations in A.

In this section we recall K. Saito’s definition of logarithmic vector fields and
we define some D-modules–which are called logarithmic D-modules– related to
the D-module of meromorphic functions Of .

For each point p ∈ Cn let us denote by Op the ring of formal power series
convergent in a neighborhood of p. Let us consider Der(Op) the Op-module of
C-derivations of Op. The elements in Der(Op) are called vector fields.

Let D ⊂ Cn be the divisor (i.e. the hypersurface) defined by a polynomial

83

Gröbner bases in D-modules

f ∈ R and p ∈ D. A vector field δ ∈ Der(Op) is said to be logarithmic with
respect to D if δ(f) = af for some a ∈ Op. The Op-module of logarithmic
vector fields (or logarithmic derivations) is denoted by Der(log D)p. If there
exists a vector field δ such that δ(f) = f we will say that this divisor is Eu-
ler homogeneous. Quasi-homogeneous divisors (i.e. divisors defined by weighted
homogeneous polynomials) are Euler homogeneous.

From now on, we will suppose that the origin 0 ∈ Cn is in D and p = 0. We
will consider some D-modules associated to any divisor D (or more precisely to
the germ (D, 0)). We call these modules logarithmic D-modules.

• The (left) ideal I log D ⊂ D generated by the logarithmic vector fields Der(log D).

• The (left) ideal Ĩ log D ⊂ D generated by the set {δ+a | δ ∈ I log D and δ(f) =

af}. More generally, the ideals Ĩ(k) log D generated by the set

{δ + ka | δ ∈ I log D and δ(f) = af}

• The modules M log D = D/I log D, M̃ log D = D/Ĩ log D and more generally

M̃ (k) log D = D/Ĩ(k) log D.

3.1. Logarithmic D-modules and meromorphic functions

Logarithmic D-modules are related to the D-module of meromorphic functions
Of in the following way. The inclusion Ĩ(k) log D ⊂ AnnD(1/fk) yields to a natural

morphism φk
D : M̃ (k) log D → Of defined by φk

D(P) = P (1/fk) where P denotes

the class of the operator P ∈ D modulo Ĩ(k) log D. The image of φk
D is D 1

fk , i.e.

the D-submodule of Of generated by 1/fk.

Considering the general ideals Ĩ(k) log D is a suggestion of Prof. Tajima. The
point is the well known chain of inclusions

Df−1 ⊂ Df−2 ⊂ · · · ⊂ Df−k = Df−k−1 = · · · = Of ,

where −k is least integer root of the b-function attached to f .
Under a computational point of view the divisor D will be defined by a polyno-

mial f ∈ R (more generally D ⊂ Cn could be an analytic divisor locally defined
by germs of holomorphic functions, i.e. by convergent power series).

The b-function of the polynomial f is computable by Oaku’s algorithm Oaku
(1997) and there exists a direct method to give a presentation of the D-module
Of Oaku Takayama (2001). If the calculation is intractable –as sometimes hap-
pens in the examples– we present here an indirect method to deduce that Of

and the modules M̃ (k) log D do not coincide. The method is strongly based in the
following result of Mebkhout (1989):

Theorem 3.1: The vector space ExtiD(Of ,O) is zero for i ≥ 0.

84

Castro-Jiménez, F.J., Ucha, J.M.

More precisely, we prove that, under certain algorithmic conditions, some co-
homology groups are not zero. It is the strategy used in Ucha (1999), Castro-
Jiménez Ucha-Enŕıquez (2001) and Castro-Jiménez Ucha (2002).

Remark: It is important to underline that our methods manage the analytic
case. As the inclusion A ⊂ D is flat (due to the flatness of the inclusion R ⊂ O),
the computation of syzygies and free resolutions in the Weyl algebra yields to
the analogous computations in D.

4. Comparison algorithms

We propose in this section two methods to compare the logarithmic modules
presented above. It is important to remember that the computation of the an-
alytic Der(log D) can be made for a divisor D if its equation is defined by a
polynomial f ∈ R. Simply compute, using Gröbner basis, a system of generators
of the module of syzygies Syz(f1, . . . , fn, f) where fi = ∂f

∂xi
because the inclusion

of the Weyl algebra in D is flat.

4.1. Direct comparison

The first method is complete but needs the calculation of the b-function.
Experimental evidences show that if the divisor is not Euler homogeneous

(i.e. there is no δ ∈ Der(log D) such that δ(f) = f) the b-function is hard
to compute. More precisely, the problem seems to be the calculation of the
annihilator AnnD[s](f

s) and the use of certain elimination orders during the
calculation of Gröbner bases (here D[s] stands for the polynomial ring, with the
indeterminate s commuting with D).

The following algorithm uses Oaku’s algorithm Oaku (1997) for the compu-
tation of b-functions and Oaku-Takayama’s algorithm computing annihilators
Oaku Takayama (2001). The last two algorithms use different kinds of Gröbner
basis computations in the Weyl algebra.

Algorithm 4.1: INPUT: A polynomial equation f = 0 of a divisor D ⊂ Cn;

1. Compute the b-function of f . Let −α0 be the least integer root.

2. Compute the ideal AnnD(1/fα0).

3. Compute a set of generators {s1, . . . , sr} of Syz(f1, . . . , fn, f). The ideal

Ĩ(α0) log D is generated by the elements

sj




∂1
...

∂n

−α0


 ∈ D.

4. Compare AnnD(1/fα0) and Ĩ(α0) log D.

85

Gröbner bases in D-modules

OUTPUT: Of ' M̃ (α0) log D ⇔ AnnD(1/fα0) = Ĩ(α0) log D.

The correctness of the algorithm is obvious as

Of ' D
1

fα0

'
D

AnnD(1/fα0)
.

4.2. Indirect approach: a sufficient condition

This second method is the alternative way when the computation of the b-
function is intractable. Choose an integer α ≥ 1. To compare M̃ (α) log D with
Of we only need the computation of a free resolution of M̃ (α) log D. As the algo-
rithm looks for a technical condition in some step of the free resolution, in many
examples it is not necessary to compute the whole resolution†.

Definition: If

0 → Drs
ϕs
−→ · · · → Dr2

ϕ2

−→ Dr1
ϕ1

−→ Dr0
ϕ0

−→ M → 0

is a free resolution of a D-module M , we say that the Successive Matrices Condi-
tion (SMC) holds at level i if the two successive morphisms ϕi, ϕi+1 have matrices
verifying:

1. There exists a column j in the matrix of ϕi+1 whose elements are in the
(left) ideal generated by ∂1, . . . , ∂n.

2. The row j of the matrix of ϕi has all its entries of the form
∑

β pβ(x)∂β

with pβ(0) = 0 for any β. In particular, there are no “lonely constants” in
the operators.

We will say that SMC holds (for the given free resolution) if it holds at some
level i.

Algorithm 4.2: INPUT: A polynomial equation f = 0 of a divisor D ⊂ Cn;

1. Compute a set of generators {s1, . . . , sr} of Syz(f1, . . . , fn, f). For each

positive integer α, the ideal Ĩ(α) log D is generated by the elements

sj




∂1
...

∂n

−α


 ∈ D.

2. Compute a free resolution of M = M̃ (α) log D

0 → Drs
ϕs
−→ · · · → Dr2

ϕ2

−→ Dr1
ϕ1

−→ D
π

−→ M → 0.
†Taking into account that computing a complete free resolution can be a problem of great

complexity, this option is very interesting.

86

Castro-Jiménez, F.J., Ucha, J.M.

OUTPUT: IF SMC holds THEN Of 6= M̃ (α) log D.

We need a lemma to justify the algorithm. It explains the role of the SMC.

Lemma 4.1: Let D be a divisor, M a finitely generated left D-module and

0 → Drs
ϕs
−→ · · · → Dr2

ϕ2

−→ Dr1
ϕ1

−→ Dr0
π

−→ M → 0 (∗)

a free resolution of M that satisfies SMC at level i. Then

ExtiD(M,O) 6= 0.

Proof: To obtain the Ext groups, we have to apply the functor HomD(−,O) to
(∗). Using that

HomD(Dr,O) ' Or

we obtain the complex

0 → Or0
ϕt

1−→ Or1
ϕt

2−→ Or2 → · · ·
ϕt

s−1

−→ Ors−1
ϕt

s−→ Ors → 0,

where ϕt
i denotes the morphism with matrix the transposed of ϕi. The derivatives

now act naturally.
Then

ExtiD(M,O) = Kerϕt
i+1/Imϕt

i.

To finish the proof, the idea is obtaining an element in Kerϕt
i+1 that is not in

Imϕt
i. This element yields a non zero element of ExtiD(M,O).

If the matrix of ϕi+1 has no part in O in the j-th row, then e = (0, . . . , 1, . . . , 0)
–where 1 is in the j-th position– is in Kerϕt

i+1, as the derivatives applied to 1
are zero.

This element can not be in Imϕt
i if the matrix verifies the second condition in

SMC. Applying the operators of the matrix it is not possible to obtain constants.
2

We have the key to state the main result of this section: the correctness of the
algorithm 4.2.

Proposition 4.1: Let D ⊂ Cn be a divisor with a free resolution of M̃ (α) log D

that satisfies SMC at some level. Then Of 6= M̃ (α) log D.

Proof: Evident from lemma 4.1 (applied to M = M̃ (α) log D) and theorem 3.1. 2

87

Gröbner bases in D-modules

A special case of SMC appears when you have a free resolution of length n
(for a given D-module M). That is a free resolution of type

0 → Drn
ϕn
−→ · · · → Dr2

ϕ2

−→ Dr1
ϕ1

−→ Dr0
π

−→ M → 0

of length n. Then

ExtnD(M,O) =
Orn

Imϕt
n

,

and SMC means, at level n, that there exists in the matrix of ϕn a row with no
“lonely constants” (see 4.1).

Remark: Of course, natural generalizations of the SMC condition have to do
with finding explicit elements in some Kerϕt

i+1 with special properties and this
seems to be difficult. Nevertheless, perhaps the results of Tsai Walther (2001)
can be applied in this situation as follows:

Ext0A(Rf , R) 6= 0 ⇒ Ext0D(Of ,O) 6= 0.

5. Application to the Spencer case.

In this section we explain how to apply the sufficient condition to a special case
in which a specially tailored free resolution is provided.

Definition: (Saito (1980)) Let D ⊂ Cn be a divisor and suppose 0 ∈ D. D is
said to be free (at the origin) if the O-module Der(log D) is free.

Smooth divisors and normal crossing divisors are free. By Saito (1980) any
reduced germ of plane curve D ⊂ C2 is a free divisor. By Saito’s criterium
Saito (1980), D ≡ (f = 0) ⊂ Cn is free if and only if there exist n vector
fields δi =

∑n

j=1 aij∂j, i = 1, . . . , n, such that det(aij) = uf where det means
determinant and u is a unit in O (i.e u(0) 6= 0). Here ∂j is the partial derivative

∂
∂xj

and aij is a holomorphic function in O.

Definition: We say that a free divisor D is of Spencer type if the complex

D ⊗O ∧•Der(log D) → M log D → 0

(introduced in Calderón-Moreno (1999)) is a (locally) free resolution of M log D

and if this last D-module is holonomic.

There are analogous resolutions for the family of modules M̃ (k) log D.
For Spencer type divisors, the solution complex Sol(M log D) (that is, the

complex RHomD(M log D,O)) is naturally quasi-isomorphic to Ω•(log D) (as we
pointed in Castro-Jiménez Ucha (2002) as a deduction of Calderón-Moreno
(1999)). Here Ω•(log D) is the complex of logarithmic differential forms with
respect to D (see Saito (1980)). On the other hand, the duality (in the sense

of D-modules) (M log D)∗ ' M̃ log D proved in Castro-Jiménez Ucha (2002) has

important consequences comparing M̃ log D and Of , namely:

88

Castro-Jiménez, F.J., Ucha, J.M.

Theorem 5.1: (Ucha (1999), Castro-Jiménez Ucha-Enŕıquez (2001)) In di-

mension 2, the morphism φ1
D : M̃ log D → Of (see 3.1) is an isomorphism if and

only if D ≡ (f = 0) is a quasi-homogeneous plane curve.

Theorem 5.2: (Castro-Jiménez Ucha (2002)) Suppose the divisor D ⊂ Cn is

free and locally quasi-homogeneous. Then the morphism φ1
D : M̃ log D → Of (see

3.1) is an isomorphism (so, M̃ log D and Of are isomorphic as D-modules).

The methods presented in section 4 give us computational tools to check the
comparison between M̃ log D and Of .

Remark: Once you have the duality of Castro-Jiménez Ucha (2002), you also
have a strategy to test if the so called Logarithmic Comparison Theorem (LCT)
holds, that is, if the complex Ω•(?D) of meromorphic differential forms and the
complex Ω•(log D) of logarithmic differential forms (both with respect to D) are
quasi isomorphic (see Calderón Moreno et al. (2002) and Castro-Jiménez et al.
(1996)).

Remark: There are two interesting experimental suggestions:

• We don’t know examples of free divisors with integer roots of their b-
function less than -1.

• We only know free divisors of Spencer type.

6. Examples

It is very important to point out that all the calculations needed in this section
are calculations of Gröbner Bases, namely

• Computations of syzygies among a polynomial and its derivatives to present
I log D or Ĩ log D.

• Test if a divisor is Euler homogeneous: the property holds if the ideal of
first components of elements in Syz(f, ∂f

∂x1

, . . . , ∂f

∂xn
) is the whole ring.

• Computations of free resolutions (so syzygies again, essentially) of modules
over the correspondent Weyl algebra.

• Equality of left ideals in A.

• Calculation of AnnD(1/f) and b-function for a polynomial f : Gröbner bases
with elimination orders in the corresponding Weyl algebra with an addi-
tional variable s (see Saito et al. (2000) for example).

• Test holonomicity of a D-module, i.e. test if the attached characteristic
variety has dimension n (see Saito et al. (2000) too).

All over the section, the computations have been made with kan/sm1 and the
D-modules package of Macaulay 2 (respectively Takayama (1991) and Grayson
Stillman (1999)). Finally, some computations of syzygies among polynomials
have been made with CoCoA (see Capani et al. (1995)).

89

Gröbner bases in D-modules

6.1. Example 1: D ≡ (x(x2 − y3)(x2 − zy3) = 0) ⊂ C3

We treat here the divisor D ⊂ C3 whose local equation at (0, 0, 0) is given by
f = 0 with

f = x(x2 − y3)(x2 − zy3).

This example belongs to an interesting family: it is not locally quasi-homogeneous‡

but Euler homogeneous and verifies that AnnD(1/f) = Ĩ log D. Remember that in
dimension 2 the last equality and to be quasi-homogeneous are equivalent.

This divisor is free and δ1, δ2, δ3 form a (global) basis of Der(logD), where

δ1 = 3
2
x∂x + y∂y

δ2 = (y3z − x2)∂z

δ3 = (−1
2
xy2)∂x −

1
3
x2∂y + (y2z2 − y2z)∂z,

whose coefficients verify that
∣∣∣∣∣∣

3
2
x y 0
0 0 y3z − x2

−1
2
xy2 −1

3
x2 y2z2 − y2z

∣∣∣∣∣∣
= −

1

2
f.

This example illustrates the direct approach: we can calculate the annihilator
of 1/f –because it is manageable– and compare it with Ĩ log D. They are the same
ideal. We calculate the b-function of f too. Its least integer root is -1, so

Of ' D · f−1 '
D

AnnD(1/f)
.

To complete this example, we will explain how the duality and the Spencer
type condition mentioned in 5 are checked. We use for this purpose a free reso-
lution of M log D.

Our work is divided in two steps:

• Verify that M log D is holonomic: if it is not holonomic, the computation of
its dual can not be managed as we do. In this case the dimension of the
characteristic variety of M log D is 3, so it is holonomic.

• Compute a free resolution of M log D and check if it is of Spencer type. If
this happens then duality holds by Castro-Jiménez Ucha (2002).

Here are some details of the resolution:

1. The module Syz(δ1, δ2, δ3) is generated by the syzygies obtained from the
commutators [δi, δj]. We have Syz(δ1, δ2, δ3) = 〈s12, s13, s23〉 where

s12 = (−δ2, δ1 − 3, 0)
s13 = (−δ3, 0, δ1 − 2)
s12 = (0,−δ3 − y2z, δ2).

‡Out of the scope of this work, there is an indirect proof of this fact using that it is not a
Koszul free divisor (see Calderón-Moreno Narváez-Macarro (1999)).

90

Castro-Jiménez, F.J., Ucha, J.M.

2. The module Syz(s12, s13, s23) is generated by the element r:

r = (−y2z2∂z+y2z∂z+
1

2
xy2∂x−y2z+

1

3
x2∂y, y3z∂z−x2∂z, −y∂y−

3

2
x∂x+5)

This is the element required to have the Spencer type resolution so duality
holds.

6.2. Example 2: D ≡ ((xz + y)(x4 + y5 + xy4) = 0) ⊂ C3

In this example the divisor D ⊂ C3 has as a local equation at (0, 0, 0) the form

f = (xz + y)(x4 + y5 + xy4) = 0.

The divisor is free with δ1, δ2, δ3 as a global basis of Der(logD):

δ1 = xz∂z + y∂z + x

δ2 = −8x2∂x − 10xy∂x − 6xy∂y − 8y2∂y + 2yz∂z − 2y∂z − 40x − 48y

δ3 = −1/4y2z2∂z − xy2∂x − 1/4y3∂x − 3/4y3∂y + 1/4y2z∂z − 1/4y2z−
−5/4x2∂x + 25/4xy∂x + 1/4x2∂y − 5/4xy∂y + 5y2∂y − 5/4yz∂z − 19/4y2−
−1/4x∂z − 25/4x + 30y

In this case, it can be checked that D is of Spencer type and the third matrix
(corresponding to the second module of syzygies) is (P1, P2, P3) where

P1 = −2y2z + 2y2 + 2x + 20y

P2 = y2z2∂z + 4xy2∂x + y3∂x + 3y3∂y − y2z∂z + y2z + 5x2∂x − 25xy∂x − x2∂y+
+5xy∂y − 20y2∂y + 5yz∂z + 16y2 + x∂z + 20x − 85y

P3 = −32x2∂x − 40xy∂x − 24xy∂y − 32y2∂y + 8yz∂z − 8y∂z − 120x − 136y

It has no constants thus, again we have that Ext3D(M̃ log D,O) 6= 0 because SMC

holds at level 3. So, Of and M̃ log D do not coincide.

Remark: It seems that if D is a free and not Euler homogeneous divisor then
AnnD(1/f) and Ĩ log D do not coincide. For this family the SMC holds at last level
in all the examples we have tried. In fact, in dimension 2 the proof of 5.1 uses the
SMC to compare the logarithmic ideals and the annihilators. We are working on
a generalization of this result which would have important consequences in the
context of the logarithmic comparison theorem.

91

Gröbner bases in D-modules

6.3. Example 3: D ≡ (xyz(x + y)(x + z) = 0) ⊂ C3

This example is an application of theorem 5.2. The direct calculation of AnnD(1/f)
–where f is the local equation of the arrangement of (hyper)planes– is not man-
ageable in the versions of computers systems for D-modules available for us. Our
approach is then very helpful.

A very interesting study of the b-functions of these arrangements is in Walther
(2002). Precisely, we think that theorem 5.2 will be a short cut to prove the last
conjecture of Walther (2002) in the free case.

We have to check:

• The divisor is certainly free: a (global) basis of Der(log D) is

δ1 = 5 + x∂x + y∂y + z∂z

δ2 = 12x + 9z + (3x2 + 3xz)∂x + (3xy + 3yz)∂y

δ3 = −9/2x + 3y − 9/2z + (−3/2x2 − 3/2xz)∂x + (3/2y2 − 3/2yz)∂y,

whose associated determinant of coefficients is equal to −9/2 · f .

• The b-function is not manageable as well. Fortunately we have a theorem
of Leykin (see Walther (2002)) that assures that the least integer root of
the b-function of an arrangement is -1. So Of ' D · f−1.

The last two conditions lead us to the presentation of Of using that AnnD(1/f) =

Ĩ log D.

6.4. Example 4: D ≡ (f = 0) ⊂ Cn with f = xn
1 + xn

2 + · · · + xn
n.

In this example is well known that the least integer root of f is −n+1 so in this
case

Of = D ·
1

fn−1
.

On the other hand, it is not a free divisor for n ≥ 2 (because D has an isolated
singularity) so we do not have theorems to apply! For this example is very easy
to apply the direct approach. However, we will use this example to enlighten in
a concrete case the Successive Matrices Condition too.

The direct method in this case works like this:
• The ideal AnnD[s](f

s) is generated by

{−ns + x1∂1 + · · · + xn∂n,
∂f

∂xi

∂j −
∂f

∂xj

∂i for 1 ≤ i < j ≤ n},

as you can easily check using the algorithm of Oaku§ (see Oaku (1997)). Spe-
cializing s to the value s = −n + 1 leads us to deduce that

Ann(1/fn−1) = 〈−n(−n+1)+x1∂1+· · ·+xn∂n〉+〈
∂f

∂xi

∂j−
∂f

∂xj

∂i for 1 ≤ i < j ≤ n〉.

§The calculation of AnnD[s](f
s) and the b-function can be made by hand with Gröbner

bases for the general case.

92

Castro-Jiménez, F.J., Ucha, J.M.

As a set of generators of Syz(∂f

∂x1

, . . . , ∂f

∂xn
, f) is

{(x1, . . . , xn,−n)}
⋃

{
∂f

∂xi

ej+1 −
∂f

∂xj

ei+1 for 1 ≤ i < j ≤ n},

(where el is the element of An(C)n+1 with 1 in the position l and 0 in the rest,
for 1 ≥ l ≥ n).

We have that

Of ' D
1

fn−1
= M̃ (n−1) log D,

as it can be deduced comparing the annihilator AnnD(1/fn−1) with Ĩ(n−1) log D.
They are the same ideal.
• We will use this example to illustrate the SMC for n = 3 (i.e. for f =

x3 + y3 + z3) at levels 2 and 3 in order to compare AnnD(1/f) with Ĩ log D.

Remark: : It is remarkable that sometimes the SMC is hidden. If you apply the
command Dres of the D-modules package of Macaulay 2 the resolution obtained
does not verify the SMC. Instead of the resolution provided directly, the use of
the command kernel to control exactly which are the generators chosen in each
step, is very friendly to look for the needed conditions.

In this case the following free resolution of M̃ log D can be obtained:

0 → D3 ϕ2

−→ D6 ϕ1

−→ D4 ϕ0

−→ D
π

−→ M̃ log D → 0

The matrix ϕ1 of the first module of syzygies is :



0 ∂x −∂y − ∂z

0 x2 −y2 z2

z2∂y − y2∂z −3y∂y − 3z∂z − 6 −3x∂y x∂z

z2∂x − x2∂z 0 −3x∂x − 3y∂y − 3z∂z − 6 0
y2∂x − x2∂y 0 0 −3x∂x − 3y∂y − 3z∂z − 6

0 −2x y2∂x − x2∂y −z2∂x + x2∂z




.

The matrix of the second module of syzygies is

ϕ2 =




−x2 ∂x 0 0 0 1
−3y∂y − 3z∂z − 6 0 −∂x ∂y −∂z 0

0 3y∂y + 3z∂z x2 −y2 z2 −3x


 .

As you can easily detect, the second row of ϕ1 is

(0, x2,−y2, z2),

with no constants. In ϕ2 the corresponding second column is



∂x

0
3y∂y + 3z∂z


 ,

93

Gröbner bases in D-modules

with all its elements in the ideal generated by ∂x, ∂y, ∂z. The SMC holds at level

2 so Ext2D(M̃ log D,O) 6= 0.
As the third row of ϕ2 is

(0, 3y∂y + 3z∂z, x
2,−y2, z2,−3x)

and there are no constants, Ext3D(M̃ log D,O) 6= 0 too. It is the SMC at level 3.

7. Acknowledgements

We thank Prof. Tajima and Prof. David Mond for very helpful ideas and com-
ments.

References

Bernstein, I. N. (1972), ‘Analytic continuation of generalized functions with re-
spect to a parameter’, Funkcional. Anal. i Priložen. 6(4), 26–40.

Björk, J.-E. (1979), Rings of differential operators, Vol. 21 of North-Holland
Mathematical Library, North-Holland Publishing Co., Amsterdam.

Briançon, J. Maisonobe, P. (1984), ‘Idéaux de germes d’opérateurs différentiels
à une variable’, L’Enseignement Math. 30, 7–38.

Buchberger, B. (1965), An Algorithm for Finding the Bases Elements of the
Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal (German),
PhD thesis, Univ. of Innsbruck (Austria).

Buchberger, B. (1970), ‘An Algorithmical Criterion for the Solvability of Alge-
braic Systems of Equations (German)’, Aequationes Mathematicae 4(3), 374–
383.

Bueso, J. L., Gómez Torrecillas, J., Lobillo, F. J. Castro, F. J. (1998), An
introduction to effective calculus in quantum groups, in ‘Rings, Hopf algebras,
and Brauer groups (Antwerp/Brussels, 1996)’, Vol. 197 of Lecture Notes in
Pure and Appl. Math., Dekker, New York, pp. 55–83.

Calderón-Moreno, F. (1999), ‘Logarithmic differential operators and logarithmic
de Rham complexes relative to a free divisor’, Ann. Sci. École Norm. Sup. (4)
32(5), 701–714.

Calderón Moreno, F. J., Mond, D., Narváez Macarro, L. Castro Jiménez, F. J.
(2002), ‘Logarithmic cohomology of the complement of a plane curve’, Com-
ment. Math. Helv. 77(1), 24–38.

Calderón-Moreno, F. Narváez-Macarro, L. (1999), Locally quasi-homogeneous
free divisors are koszul free, Technical Report 56, Prepub. de la Fac. de
Matemáticas. Univ. de Sevilla.

94

Castro-Jiménez, F.J., Ucha, J.M.

Capani, A., Niesi, G. Robbiano, L. (1995), ‘CoCoa, a system for doing
computations in Commutative Algebra. Available via anonymous ftp from:
cocoa.dima.unige.it’.

Castro-Jiménez, F. (1984), Théorème de division pour les opérateurs différentiels
et calcul des multiplicités, Thèse de 3eme cycle, Univ. of Paris VII.

Castro-Jiménez, F. (1987), Calculs effectifs pour les idéaux d’opérateurs
différentiels, in ‘Actas de la II Conferencia Internacional de Geometŕıa Al-
gebraica. La Rábida.’, Travaux en Cours 24, Hermann.

Castro-Jiménez, F. J., Narváez-Macarro, L. Mond, D. (1996), ‘Cohomology of
the complement of a free divisor’, Trans. Amer. Math. Soc. 348(8), 3037–3049.

Castro-Jiménez, F. J. Ucha-Enŕıquez, J. M. (2001), ‘Explicit comparison theo-
rems for D-modules’, J. Symbolic Comput. 32(6), 677–685. Effective methods
in rings of differential operators.

Castro-Jiménez, F. J. Ucha, J. M. (2002), ‘Free divisors and duality for D-
modules’, Proc. Steklov Inst. Math. 238, 88–96.

Grayson, D. Stillman, M. (1999), ‘Macaulay 2: a computer alge-
bra system for algebraic geometry, version 0.9.2, http://www.math.

uiuc.edu/macaulay2. D-module scripts by A. Leykin and H. Tsai,
http://www.math.cornell.edu/ htsai/’.

Kandri-Rody, A. Weispfenning, V. (1990), ‘Noncommutative Gröbner bases in
algebras of solvable type’, J. Symbolic Comput. 9(1), 1–26.

Kashiwara, M. (1978), ‘On the holonomic systems of linear differential equations.
II’, Invent. Math. 49(2), 121–135.

Mebkhout, Z. (1989), Le formalisme des six opérations de Grothendieck pour les
D-modules cohérents, Vol. 35 of Travaux en Cours, Hermann, Paris.

Oaku, T. (1997), ‘An algorithm of computing b-functions’, Duke Math. J.
87(1), 115–132.

Oaku, T. Takayama, N. (2001), ‘Algorithms for D-modules—restriction, tensor
product, localization, and local cohomology groups’, J. Pure Appl. Algebra
156(2-3), 267–308.

Oaku, T., Takayama, N. Walther, U. (2000), ‘A localization algorithm for D-
modules’, J. Symbolic Comput. 29(4-5), 721–728. Symbolic computation in
algebra, analysis, and geometry (Berkeley, CA, 1998).

Saito, K. (1980), ‘Theory of logarithmic differential forms and logarithmic vector
fields’, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27(2), 265–291.

95

Gröbner bases in D-modules

Saito, M., Sturmfels, B. Takayama, N. (2000), Gröbner deformations of hy-
pergeometric differential equations, Vol. 6 of Algorithms and Computation in
Mathematics, Springer-Verlag, Berlin.

Takayama, N. (1991), ‘Kan: a system for computation in algebraic analysis.
source code available for unix computers from ftp.math.kobe-u.ac.jp’.

Tsai, H. Walther, U. (2001), ‘Computing homomorphisms between holonomic
D-modules’, J. Symbolic Comput. 32(6), 597–617. Effective methods in rings
of differential operators.

Ucha, J. (1999), Métodos constructivos en álgebras de operadores diferenciales.,
PhD thesis, Univ. of Sevilla.

Walther, U. (2002), Bernstein-Sato polynomial versus cohomology of
the Milnor fiber for generic arrangements, Technical report, Preprint
arXiv:math.AG/0204080.

96

Minimal generators from reduced Gröbner
bases obtained by interpolation methods

Francesca Cioffi1 and Ferruccio Orecchia1

1Dip. di Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli

“Federico II”, Via Cintia, 80126 Napoli - Italy

Abstract

In 1982 Buchberger and Möller described a polynomial algorithm to com-

pute a reduced Gröbner basis of the ideal of affine points relying on inter-

polation methods. This algorithm was an incisive step for a worthwhile

progress in computation of zero-dimensional schemes and their applica-

tions. The consequent generalization of the original algorithm of Buch-

berger and Möller to projective points gave space to the problem of mini-

malizing a homogeneous Gröbner basis even without computing syzygies.

Answers to this problem have been already given and applied in several

particular cases. The purpose of this paper is to illustrate in a more gen-

eral context and to improve a method to minimalize reduced Gröbner

bases that we have already successfully used in several applications of

zero-dimensional computation.

KEYWORDS: minimal generators, Gröbner bases, Buchberger-Möller al-

gorithm

1. Introduction

The Gröbner basis of a polynomial ideal I is a particular set of generators of I
introduced by Buchberger in 1965 together with an algorithm for computing it
(see, for example, Buchberger (1998) and references therein for a survey about
Gröbner bases). It is well known that this algorithm takes any set of generators of
I as input and is based on a characterization of a Gröbner basis by S-polynomials.
This means that the construction of the Gröbner basis involves the construction
of syzygies in such a way that minimal generators of a homogeneous ideal I can
be singled out among the polynomials of the Gröbner basis itself. Hence, in this
case the minimalization of a Gröbner basis of a homogeneous ideal I can occur
while the Gröbner basis is constructed.

However, the Gröbner basis can be also constructed by the algorithm of Buch-
berger and Möller (1982) which takes a set of points as input and is based on

97

Minimal generators from Gröbner bases

interpolation methods. In this case it makes sense to ask for a minimalization of
a reduced Gröbner basis. Answers to this problem have been given in (Marinari
et al. 1993, Cioffi 1996, 1999). Although they are described in the particular case
of computation on points, they work in a more general context. As the study
of zero-dimensional schemes can give information also on positive dimensional
schemes, in several cases the algorithm of Buchberger and Möller, which is ap-
plied to points in (Marinari et al. 1993, Abbott et al. 2000, 2001, Cioffi Orecchia
2001), turns out to be useful also for positive dimensional varieties. For example,
it gave rise to implicitization methods that are alternative to the Gröbner bases
technique (Albano et al. 2000, Orecchia 2001b), to an algorithm that constructs
elliptic curves (Chiantini et al. 2001) and it is a tool for the study of minimally
generated rational curves (Orecchia 2001a).

Moreover, the fact that in (Berry 1997, 2000) the shape of reduced Gröbner
bases of some affine space curves is deduced by geometric tools shows that in
some cases a Gröbner basis can be constructed by alternative methods.

For these reasons, in this paper we highlight the applicability of the method
of minimalization arisen for points in (Cioffi 1996, 1999) to any homogeneous
ideal. Moreover, we introduce an improvement, described in detail in section 4.
An implementation of this algorithm, prepared in the object-oriented language
C++ over a field K of positive characteristic p and compiled using g++ and
NTL 5.2 (Shoup 2001), is available at http://cds.unina.it/~cioffifr. It is
applicable to reduced Gröbner bases with respect to (w.r.t.) the graded reverse
lexicographic (deg-rev-lex) term order, because this order is the best suited for
minimalization (Bayer Stillman 1987). In section 3 we illustrate the algorithm
and in section 5 we report some tests.

2. Notation and basic facts

Let S = K[x0, . . . , xr] be the ring of polynomials in r + 1 variables over a field
K, Sd be the K-vector space that consists of the homogeneous polynomial of
S of degree d and I =

⊕
d≥0 Id be a homogeneous ideal of S, where Id is the

K-vector space of all homogeneous polynomials of degree d of I. Then S/I =⊕
d≥0(S/I)d=̃

⊕
d≥0 Sd/Id is a graded algebra and its Hilbert function is the

numerical function HS/I : N → N such that HS/I(d) := dimK(Sd/Id).
Recall that the number of minimal homogeneous generators of I is an invariant

for I. Indeed the number of minimal homogeneous generators of I of a given
degree d is one of the invariants called graded Betti numbers of I, and it appears
in the first step of the minimal free resolution of I. Since one fundamental step
in the construction of the minimal free resolution of I is just the computation
of minimal generators of submodules of a free module over S, we point out that
the described algorithm is applicable also to such submodules.

In (Ramella 1990) a method is described to compute minimal generators of an
ideal I of projective points without using the theory of Gröbner bases: if Bd is a
K-basis of the K-vector space Id, then the dependent generators belonging to Bd

98

F. Cioffi and F. Orecchia

are detected by checking linear dependences in the set {x0, . . . , xr} · Bd−1 ∪ Bd.
This method has a computational cost that is polynomial in the number of points
and in the number r + 1 of variables if the points are in generic position. And
the minimalization step is applicable to any ideal with the condition that it is
possible to construct a basis Bd.

As we reminded in the introduction, in the construction of Gröbner bases by
the algorithm of Buchberger it is classical to get minimal generators by looking
at the constant components of the syzygies: if {f1, . . . , ft} is a set of homoge-
neous generators of I and Syz(I) = {(h1, . . . , ht) ∈ St|

∑t
i=1 hifi = 0} is a first

module of syzygies of I, then a polynomial fk depends if and only if there is a
homogeneous generator (h1, . . . , ht) of Syz(I) such that hk ∈ K. There are many
improvements of this approach and one can see Caboara et al. (2002) for a very
recent result. However, in this paper we are interested in minimalizing Gröbner
bases computed by the Buchberger and Möller algorithm.

In (Marinari et al. 1993) an algorithm is described that minimalizes a reduced
Gröbner basis of a homogeneous ideal by computing only the constant compo-
nents of the syzygies. Its computational cost is evaluated for ideals defined by
functionals and is polynomial in the number of functionals and in the number
r + 1 of variables.

The algorithm that now we are going to illustrate here does not compute syzy-
gies or a piece of them, although it exploits a result of Marinari et al. (1993)
about syzygies for obtaining that in the algorithm of Ramella (1990) it is suffi-
cient to consider only a subset of particular bases Bd−1 and Bd.

Recall that I is a homogeneous ideal of the polynomial ring S = K[x0, . . . , xr]
in r + 1 variables over a field K and let T = {xα0

0 . . . xαr
r | (α0, . . . , αr) ∈ N

r+1}
be the set of all terms of S ordered with respect to a term order <, i.e. a monoid
order on T for which 1 is the smallest term. We say that a term T is a multiple
of a term H if there is a term H̄ such that T = HH̄. If H̄ is a variable, H is a
predecessor of T . If p is a polynomial of S = K[x0, . . . , xr], LT (p) is the leading
term of p. If P is a set of polynomials of S, LT (P) is the ideal generated in S
by the leading terms of the polynomials of P , and Pd is the set of homogeneous
elements of P of degree d.

Recall that a set G ⊂ I of non-null polynomials of I is a Gröbner basis of I,
with respect to a given term order <, if LT (G) = LT (I). From the definition
it follows that a Gröbner basis is a set of generators. A Gröbner basis is called
reduced if its polynomials are monic and any term with a non-null coefficient in
one of the polynomials of G is not divided by a leading term of a polynomial of
G.

A rewriting procedure, with respect to a finite subset F of S and to a given
term order, is an algorithmic method for substituting a polynomial f with a
polynomial f ′ (called remainder) such that f − f ′ belongs to the ideal generated
by F and such that every coefficient of a term that belongs to LT (F) vanishes
in f ′. The polynomial f ′ is unique if F is a Gröbner basis (see the Division
Algorithm, for example, in (Kreuzer Robbiano 2000) Th. 1.6.4).

99

Minimal generators from Gröbner bases

If G is a Gröbner basis of I and T is a term which belongs to the monomial
ideal LT (G), then the normal form NF (T) of T is the remainder of the Division
Algorithm of T with respect to G. Hence, it is a linear combination of terms not
belonging to LT (G) such that b(T) := T − NF (T) belongs to I. If a term T
belongs to the ideal LT (G), then we say that T is dependent, otherwise we say
that it is independent.

From now we fix only graded term orders, i.e. term orders by which terms are
compared first w.r.t. their total degrees. Let Bd = {b(T)|T ∈ LT (G)d} be the
set of the polynomials of type b(T) where T is a dependent term of degree d. If
G = {f1, . . . , ft} is the reduced (homogeneous) Gröbner basis of I with respect
to a graded term order <, then Gd ⊂ Bd.

Remark: The set Bd = {b(T)|T ∈ LT (G)d} is a K-basis of Id. In fact, the
definition of Gröbner basis itself makes possible to rewrite any polynomial of Id

by polynomials of Bd.

From now we suppose that G is reduced and that a and b are respectively the
minimum and the maximum degree of the polynomials of G.

Let B̄d = {b(T) ∈ Bd | ∃xi : T
xi

6∈ LT (G)} ⊂ Bd be the set of the polynomials
of Bd whose leading term has at least one independent predecessor. Then

Gd = {b(T) ∈ B̄d |
T

xi

6∈ LT (G), ∀i = 0, . . . , r}.

Remark: Since HS/I(d) = HS/LT (I)(d) (Macaulay 1927) it follows that

HS/I(d) = |{T ∈ Td | T 6∈ LT (G)}|

and, hence, |B̄d| ≤ r · |{T ∈ Td−1 | T 6∈ LT (G)}| = r · HS/I(d − 1).

3. Minimalization without computing syzygies

With the notation already introduced in section 2, let

Ti = LT (fi), Ti,j = l.c.m.(LT (fi), LT (fj)),

fi,j = (Ti,j/Ti) fi − (Ti,j/Tj) fj.

It is well known that, from all the identities of type fi,j =
∑t

k=1 hkfk, where
LT (hkfk) ≤ LT (fi,j) < Ti,j, it is possible to obtain the following set of generators
of the syzygies of G (see, for example, Kreuzer Robbiano (2000)):

{(−h1, . . . ,−hi−1,
Ti,j

Ti

− hi, . . . ,−hj−1,
Ti,j

Tj

− hj, . . . ,−ht) | 1 ≤ i < j ≤ t}.

In (Marinari et al. 1993) it is observed that, using a rewriting procedure, a set

100

F. Cioffi and F. Orecchia

of generators of syzygies of G can be computed also from all the identities of the
following type:

xαb(xβm) − xβb(xαm) = −
∑

T 6∈LT (G)

cT xβT +
∑

T 6∈LT (G)

dT xαT, (1)

where m is an independent term, xα is different from xβ and there are two
polynomials fi and fj such that xαxβm = Ti,j, xα divides LT (fi) and xβ divides
LT (fj). From the proof of Lemma 13.1 of Marinari et al. (1993) it follows that
xαm and xβm are dependent terms. As in (Cioffi 1996, 1999), we will employ
the observation of (Marinari et al. 1993) to design a minimalization procedure
having always polynomial cost and applicable to each homogeneous polynomial
ideal.

Since G is a Gröbner basis, it is not surprising that, in this context, we prove
statements using a rewriting procedure. Let

Vd = {x0, . . . , xr} · B̄d−1 = {xifl | fl ∈ B̄d−1, i = 0, . . . , r} = {p∗1, . . . , p
∗
q}.

Recall that, if fl belongs to B̄d−1, then LT (fl) has an independent predecessor.

Lemma 3.1: Let f be a homogeneous polynomial of degree d. If any term appear-
ing in f has an independent predecessor, then f can be described as a K-linear
combination of polynomials in Gd ∪ Vd.

Proof: By the hypothesis, LT (f) has an independent predecessor, i.e. there
exist a variable xk and an independent term H such that deg(H) = d − 1
and Hxk = LT (f). If LT (f) does not have a dependent predecessor, there
exists a polynomial fi of Gd such that LT (f) = LT (fi). Then we consider
F1 = f − fi in the place of f . If LT (f) has a dependent predecessor, there is
a variable xi, i 6= k, such that (H/xi)xk is dependent. Notice that, since H
is independent, H/xi must be independent too. Thus, there is a polynomial p
of B̄d−1 such that LT (p) = (H/xi)xk and there is a polynomial p∗ of Vd with
LT (p∗) = Hxk = LT (f). Hence we can consider the polynomial F1 = f − p∗ in
the place of f . If F1 = 0, the proof ends. Otherwise, by construction F1 satisfies
the hypothesis and LT (F1) is lower than LT (f). Since < is a term order, after
a finite number of steps we must obtain the null polynomial so that f must be
equal to a linear combination of polynomials of Gd ∪ Vd. 2

Proposition 3.1: Let fxαxβm = xβb(xαm) − xαb(xβm), where m is an inde-
pendent term. Then:

fxαxβm =
∑

f∈Gd

cff +

q∑

i=1

dip
∗
i . (2)

Proof: The thesis follows by Lemma 3.1 since by formula (2) the polynomial
fxαxβm satisfies the hypothesis of such lemma. 2

101

Minimal generators from Gröbner bases

We point out that the cited observation of Marinari et al. (1993) about syzygies
means that a polynomial fi of G depends if and only if, its dependence is shown
by a syzygy computed from an identity of type (2) by a rewriting procedure.
Therefore, we can state the following result.

Proposition 3.2: A polynomial fi of degree d of the reduced Gröbner basis G
depends on G−{fi} if, and only if, it depends linearly on polynomials of the set
(Gd − {fi}) ∪ Vd.

Proof: The “if” implication is obvious. Notice that the polynomials xβb(xαm)
and xαb(xβm) of formula (2) belong to Vd, where m is an independent term of
degree d−2. By definition of syzygy, fi depends on G−{fi} if, and only if, the i-th
component of a syzygy computed from an identity of type (2) is constant. From
proposition 3.1 it follows that this dependence is equivalent to the existence of
an identity of type (2) with a nonzero coefficient cfi

, since formula (2) has been
obtained by a rewriting procedure. 2

This result allows us to formulate the following procedure to minimalize G. If
α is the minimum degree of the polynomials of G, it is easy to observe that the
polynomials of Gα are already independent. Hence, for each degree d such that
α + 1 ≤ d and |Gd| 6= 0, we consider a matrix Md whose rows correspond to the
terms of degree d which are multiples of independent terms of degree d − 1, i.e.
to the leading terms of the polynomials of B̄d.

The first columns of Md are computed in the following way. For each polyno-
mial p of Vd = {x0, . . . , xr} · B̄d−1, we distinguish two cases: if the polynomial p
has a leading term with an independent predecessor, then we put the column of
its coefficients in Md; otherwise, if we have already considered a polynomial p′

of Vd such that LT (p′) = LT (p) does not have an independent predecessor, we
put the column of coefficients of p − p′ in Md. The last columns of Md are the
vectors of coefficients of the polynomials of Gd.

To single out minimal generators of I in G it is now enough to compute the
row-echelon form of Md. In fact, by proposition 3.2 the polynomials of Gd which
are minimal generators correspond to columns of Md that contain a pivot of the
row-echelon form of Md. Moreover, we can compute how a dependent polynomial
f of Gd depends on (Gd − {f}) ∪ Vd.

Remark: It is evident that in this context we need to compute the polynomials
of B̄d−1 − Gd−1 and, hence, the normal form of their leading terms. In general
there is much interest in the computation of normal forms and there are several
methods, the convenience of which can depend on the context (see, for example,
Mourrain (1999)). If the Gröbner basis has been constructed by the Buchberger
and Möller algorithm, then also the normal forms can be computed by this
algorithm. Otherwise, by the scheme of Faugère et al. (1993), in (Marinari et al.
1993) it is already suggested a recursive procedure that is good for our algorithm
and that is based on the following formula: if T = xiH, where H is a dependent
term and NF (H) =

∑
j cjxjTj (cj ∈ K), then NF (T) =

∑
j cjNF (xjTj).

102

F. Cioffi and F. Orecchia

Let M be a graded submodule of the graded S-module St. For M it is possible
to give the definitions of graded term order and of Gröbner bases analogous to the
corresponding definitions for the ideal I. So we can define also the corresponding
sets B̄M

d and VM
d for M , and it is easy to formulate Lemma 3.1 and Proposition

3.1 for M too. As a consequence, the following statement is obvious, making
possible the application of the algorithm to any module of the type of M .

Proposition 3.3: Let GM = {f1 = (f1,1, . . . , f1,t), . . . , fh = (fh,1, . . . , fh,t)} be
a reduced Gröbner basis of M . Then an element fi of degree d depends on GM −
{fi} if and only if it depends linearly on the elements of the set (GM

d −{fi})∪V
M
d .

4. An improvement

The improvement we propose concerns the matrix Md, the construction of which
has been described in section 3. We realized that it is sufficient to consider
a submatrix M̄d of Md determined only by the columns corresponding to the
polynomials obtained by Vd and only by the rows that correspond to all the
dependent terms of degree d that have an independent term as predecessor.
Indeed, with the notation already fixed, the following statement holds.

Proposition 4.1: Let R be the matrix obtained by a Gauss reduction of the
transpose of M̄d. Let G′

d the subset of Gd consisting of the polynomials of Gd the
leading terms of which correspond to columns of R not containing a pivot. Then
∪dG

′
d is a set of minimal generators of the ideal I.

Proof: First of all, we observe that a pivot of the matrix Md can occur only in
correspondence of a dependent term because by construction it is the leading
term of a polynomial of I. Hence, the pivots of Md are in the same position as
the pivots of M̄d, and as a consequence the rank of Md is equal to the rank of
M̄d. This shows why we can avoid considering the independent terms.

Then, we note that since the rows of the transpose of M̄d correspond to the
polynomials and the columns correspond to the terms, a Gauss reduction of this
matrix cannot change the position of the terms with respect to the columns. By
Proposition 3.2 it follows that in order to have only minimal generators we can
remove from Gd the polynomials corresponding to the rows of the transpose of
M̄d that vanish by the Gauss reduction. It is evident that the rows corresponding
to the polynomials of G′

d cannot vanish and, hence, that such polynomials are
minimal generators. To see that the polynomials of Gd −G′

d are dependent, it is
sufficient to apply a rewriting procedure such as in the proof of Lemma 3.1. 2

Applying the above result we save space memory and time for several reasons:
(a) considering the transpose of M̄d allows one to save memory by storing only
the rows containing a pivot; (b) the number of columns (resp. of rows) of M̄d

(resp. the transpose of M̄d) is lower than the number of columns of Md; (c) to
decide if the polynomials of Gd are or are not minimal generators we need not
reducing them with respect to the transpose of M̄d.

103

Minimal generators from Gröbner bases

5. The algorithm and some tests

On the basis of the results of sections 3 and 4, we can now outline the fundamen-
tal steps of an algorithm for minimalizing reduced Gröbner bases of homogeneous
polynomial ideals and evaluate its computational cost.

Algorithm MinBase

Input: the reduced Gröbner basis G = {f1, . . . , ft} (w.r.t a graded term order)
of a homogeneous polynomial ideal I of S = K[x0, . . . , xr].
Output: a minimal set of generators of the ideal I.

begin
a := min{deg(fi) | fi ∈ G}, b := max{deg(fi) | fi ∈ G}
d := a
repeat

d := d + 1

Computation and sorting of the terms of degree d that have at least an
indepedent predecessor

HS/I(d) := |{T ∈ Td | T 6∈ LT (G)d}|

for T ∈ LT (G)d with at least an independent predecessor do

computation of NF (T) (by the scheme of Faugère et al. (1993) cited
in the remark of section 3)

endfor

Computation of the transpose of the matrix M̄d as described in section 4

Gauss reduction of the transpose of M̄d and identification of the dependent
polynomials of Gd by Proposition 4.1

until d = b
end

Let h = max{HS/I(d) | a ≤ d ≤ b}. Note that every polynomial b(T) of degree
d− 1 has at most HS/I(d− 1) + 1 non null coefficients because the independent
terms of degree d− 1 are HS/I(d− 1). Hence, since the polynomials of type b(T)
of degree d− 1 are at most (r + 1) ·HS/I(d− 2), then the computational cost of
the normal form NF (T) of T is of order (r + 1) · h2. Since the terms T of which
we have to compute the normal form are at most (b − a) · (r + 1) · h, then the
computation of the normal forms is of order (b − a)r2h3.

Although the transpose of M̄d has at most (r + 1)h rows and columns, its
construction and Gauss reduction are equivalent to a reduction of a matrix with
at most (r + 1)2HS/I(d − 2) rows (note that (r + 1)2HS/I(d − 2) is an upper
bound for the number of polynomials of Vd). Hence the computational cost of
the construction and of the reduction of the transpose of M̄d is of order O(h3r4).
Thus the described method of minimalization is an O((b − a)h3r4) algorithm.

104

F. Cioffi and F. Orecchia

Note that the sorting of the terms needs no more than h2(r + 1)2 comparisons
at each degree.

The above algorithm has been implemented in a program called minbase in
C++ compiled using g++ and NTL 5.2 (Shoup 2001) for reduced Gröbner bases
w.r.t. the graded reverse lexicographic (deg-rev-lex) term order, because this
order is the best suited for minimalization (Bayer Stillman 1987). Our program is
available at http://cds.unina.it/~cioffifr and, for particular applications,
in a software called Points (Orecchia et al. 2001). We have tested its performance
on randomly generated rational curves of degrees d = 40, 50 in P

r with r =
4, 6, 8, 10, 12, 14, 16, 18, 20.

In the following table we report the results of our tests: r is the dimension of
the projective space in which the curve is embedded; d is the degree of the curve;
time is the timing of the performance of our program in seconds; size is the
memory space used during the computation in kilobytes. The inputs for these
tests are available at http://cds.unina.it/~cioffifr. All the computations
are performed on K = Zp with p = 31991, on an Intel Pentium IV 1.6 GHz with
512 MB RAM +240 MB swap, running Linux (kernel 2.4.3).

smooth rational curves

r d time size d time size

4 40 0.19 800 50 0.40 940
6 0.32 820 0.49 996
8 0.53 824 0.52 976

10 0.37 1016 0.86 1100
12 0.55 924 0.80 1384
14 1.63 1104 1.23 1356
16 1.54 1216 4.20 1564
18 1.51 1480 3.94 1924
20 1.55 1316 3.77 2072

Notes

This paper is dedicated to Bruno Buchberger in occasion of his sixtieth birthday.

References

Abbott, J., Bigatti, A., Kreuzer, M. Robbiano, L. (2000), ‘Computing ideals of
points’, J. Symbolic Computation 30(4), 351–356.

Abbott, J., Kreuzer, M. Robbiano, L. (2001), Computing zero-dimensional
schemes. Preprint available at http://cocoa.dima.unige.it/research/publica-
tions.html.

Albano, G., Cioffi, F., Orecchia, F. Ramella, I. (2000), ‘Minimally generating

105

Minimal generators from Gröbner bases

ideals of rational parametric curves in polynomial time’, J. Symbolic Compu-
tation 30(2), 137–149.

Bayer, D. Stillman, M. (1987), ‘A criterion for detecting m-regularity’, Invent.
Math. 87, 1–11.

Berry, T. G. (1997), ‘Parameterization of algebraic space curves’, J. Pure Appl.
Algebra 117/118, 81–95. Algorithms for algebra (Eindhoven, 1996).

Berry, T. G. (2000), ‘Groebner bases of the ideal of a space curve’, J. Pure Appl.
Algebra 148(1), 17–27.

Buchberger, B. (1998), Introduction to Gröbner Bases, in ‘Gröbner Bases and
Applications’, Vol. 251 of London Mathematical Society, LNS, Cambridge Uni-
versity Press, pp. 3–31.

Caboara, M., Kreuzer, M. Robbiano, L. (2002), Minimal Sets of Critical Pairs.
Available at http://cocoa.dima.unige.it/research/publications.html.

Chiantini, L., Cioffi, F. Orecchia, F. (2001), Computing minimal generators of
ideals of elliptic curves, in ‘Applications of algebraic geometry to coding the-
ory, physics and computation (Eilat, 2001)’, Kluwer Acad. Publ., Dordrecht,
pp. 23–35.

Cioffi, F. (1996), Calcolo di generatori di ideali di punti e curve algebriche, PhD
thesis, Università di Napoli ”Federico II”. Preprint n. 23, Dip. di Matematica
e Applicazioni ”R. Caccioppoli”.

Cioffi, F. (1999), ‘Minimally generating ideals of points in polynomial time using
linear algebra’, Ricerche di Matematica XLVIII(1), 55–63.

Cioffi, F. Orecchia, F. (2001), Computation of minimal generators of ideals of
fat points, in ‘ISSAC 2001’, ACM (Association for Computing Machinary),
pp. 72–76.

Faugère, J. C., Gianni, P., Lazard, D. Mora, T. (1993), ‘Efficient computation
of zero-dimensional Gröbner bases by change of ordering’, J. Symb. Comp.
16(4), 329–344.

Kreuzer, M. Robbiano, L. (2000), Computational Commutative Algebra 1,
Springer.

Macaulay, F. S. (1927), ‘Some properties of enumeration in the theory of modular
systems’, Proc. London Math. Soc. 26(2).

Marinari, M. G., Moeller, H. M. Mora, T. (1993), ‘Gröbner bases of ideals defined
by functionals with an application to ideals of projective points’, AAECC
4, 103–145.

106

F. Cioffi and F. Orecchia

Mourrain, B. (1999), A new criterion for normal form algorithms, in ‘Applied
algebra, algebraic algorithms and error-correcting codes’, Vol. 1719 of LNCS,
Springer, pp. 430–443.

Orecchia, F. (2001a), ‘The ideal generation conjecture for s general rational
curves in P

r’, Journal of Pure and Appl. Algebra 155(1), 77–89.

Orecchia, F. (2001b), ‘Implicitization of a general union of parametric varieties’,
J. Symbolic Computation 31(3), 343–356.

Orecchia, F., Cioffi, F. Ramella, I. (2001), Points (software for computations on
points), Available for linux platform at http://cds.unina.it/~orecchia/

gruppo/EPoints.html.

Ramella, I. (1990), Algoritmi di Computer Algebra relativi agli ideali di
punti dello spazio proiettivo, PhD thesis, Università di Napoli “Federico II”.
Preprint n. 30, Dip. di Mat. e Applic. “R. Caccioppoli”, 1990.

Shoup, V. (2001), NTL: a Library for doing Number Theory, Open source soft-
ware distributed under the GNU General Public License and available at
http://www.shoup.net/ntl.

107

Naive Axiomatic �Mengenlehre� NAM for Experiments
(dedicated to Bruno Buchberger for his 60-th Birthday)

Werner DePauli-Schimanovich1

(0) Abstract2
 Mathematicians still use Naive Set Theory when generating sets without danger of
producing any contradiction. Therefore their working method can be considered as a
consistent inference system with an experience of over 100 years. My conjecture is that this
method works well because mathematicians use only those predicates to form sets, which
yield decidable and consistent predicate extensions. And for every open formula they use in
the process of constructing of a certain (special) set, we can always find an �almost-closed�
formula (i.e. one with only the free variable "x") which yields the same certain (special) set as
predicate extension as constructed in the process before. Therefore the use of predicates
with free parameters in the Comprehension Scheme does not cause any difficulties.

KEYWORDS: naive set theory, Quine, new foundation, NF, universal sets, comprehension
schema, predicate extension, philosophy of set theory, Zermelo, Fraenkel, ZF, complement.

(1) Introduction
 When David Hilbert delivered his famous talk at the 1928 International Congress of
Mathematicians in Bologna, he claimed: �Cantor has created a Paradise for us from which
nobody can expel us again!� This paradise, the Naive �Mengenlehre�, was based mainly on a
single principle, which was taken as a dogma: �Sets are Predicate-Extensions.� Or in other
words: �For every arbitrary predicate, its extension (that is, all objects with this property)
forms a set.� After formalization this principle is called the general Comprehension Scheme
(CoS) := forall wff A: forall y: [y in {x: A(x)} <==> A(y)].
wff is the abbreviation for well-formed formula.

 In 1903, Bertrand Russell discovered the paradox3 named after him, to wit, that the
predicate �x non-in x� is a substitution-instance for A which falsifies the comprehension
scheme. He wrote a letter to Gottlob Frege and told him his discovery. Frege had just
finished his book �Grundlagen der Arithmetik� in which he wanted to put arithmetic and
�Mengenlehre� onto a safe and sound fundation. He was forced to add an appendix: �Nothing
worse can happen to a scientific writer than when his fundation breaks away after finishing
his house.�

 Later other inconsistencies were found: circa 1908 Burali-Forti�s paradox of the �set of
all ordinals�, circa 1909 Mirimanoff�s paradox of the �set of all sets not containing an infinite
descending element sequence�, etc. In all these cases one single formula A was enough to
falsify (CoS). Therefore set theoreticians posed themselves the question whether one should
not restrict set formation to the �consistent� predicate-extensions (with free parameters); i.e.
only accept those (non-pathological) A which, when substituted in (CoS), do not produce a
contradiction. But soon it turned out that neither the complement �ko(m)�4 of an arbitrary set
�m� nor the Anti-Russell �x in x� allows one to deduce a contradiction if they are substituted
into (CoS); but assuming both together simultaneously does so.

1 Institute for Statistics and Informatics, University Street 9, A-1010 Wien / Austria. Phone: +43.1-4277-386.12,

Fax: +43.1-4277-9386, http://www.univie.ac.at/bvi/europolis, Werner.Schimanovich@univie.ac.at
2 I want to thank Martin Goldstern, Randall Holmes, Matthias Baaz and Thomas Forster for their help and

support by writing this paper.
3 In a forthcoming paper I analyze the concept �paradox� in which I show that it can be split up into the 3

different notions �pathological�, �antinomical� and �abnormal�, each of which can be characterized formally.
4 In the following we will always use K as abbreviation for complement [as the German word �Komplement�],

because the letter C is already used for Comprehension, Church, Cardinal, Conditional, Cofinal, etc.

108

 Therefore experts in set theory asked themselves whether the closed consistent
predicate-extensions in (CoS) would yield a contradiction-free axiomatization of Naive
�Mengenlehre�. But this restriction was not enough. Because if you take some arbitrary
undecideable formula5 UD together with the implication of the Russell-condition �x non-in x�,
then its negation non-UD together with the implication of Russell is also undecideable. Each
of these 2 implications substituted for A in (CoS) gives a consistent predicate-extension, but
either UD or non-UD must be valid and this therefore produces the Russell-class as a set; a
contradiction once again.

 Now the ultimate question arises: do the �closed decidable consistent predicate
extensions�, in short CDC-PE (together only with the common axiom of extensionality (EE)
and no other specific axioms) produce a contradiction-free collection of formulas?6 I
conjecture: �yes!�, and until now nobody could show the contrary. But I was informed by
Randell Holmes that it would be better to demand hereditary-consistent7 formulas A instead
of decideable ones. If this system of set theory is consistent, it is probably some version of
positive set theory. This will give rise to a series of interesting investigations. Therefore we
redefine �consistent� as �hereditary-consistent� what means that decidability as condition can
possibly be dropped if it turns out that hereditary-consistent is already enough.8

(2) Separation Principle and Limitation of Size

At the time when this ultimate question arose (whether all CDC-PE�s together
establish a consistent domain of formulas), its investigation was already too late, because
the fact that such predicate extensions have to be closed has been denied. Nobody wanted
parameter-free set-existence schemata. Georg Cantor had discovered in 1899 the antinomy
named after him, i.e. that on the one hand the universal set �us� is of smaller power then its
power-set �p(us)�: [Card(us) < Card(p(us))], but on the other hand the power-set would have
to be extensionally equal to the universal set: [us = p(us)]. This is a classical contradiction,
because there exists of course a function from �us� onto �us� (i.e. the identity-function).

 This antinomy follows directly from the theorem of Cantor, which says that every set is
of smaller power than its power-set. But the theorem of Cantor can be applied to the
universal set only because the �Aussonderungs-Prinzip� (= principle of separation) for Cantor
was something like an �allgemeingültiges� (generally valid) axiom for arbitrary sets! Therefore
it would not have made any sense to consider the closed decidable consistent predicate
extensions, because the set theoreticians needed parameters like those used in the
separation-principle.

 Today the most common separation principle is the axiom-scheme (Sep):
forall wff A: forall x: Set({y: y in x & A(y)}). Or in another formulation:
exist y: forall x: [y = (x intersection A)], where A is the class {|z : A (z)|} of all objects z with A.9
If we want to accept the principle of separation as a generally valid axiom for arbitrary sets
(which can occur as free parameters), then the �Limitation of Size� ideology follows directly.
Therefore Hausdorff and likewise Fraenkel wrote in their fundamental textbooks (in the
1920s): �The antinomies arise through the construction of sets which are extensionally equal
with the universe!� Based on this ideology is the axiomatic system of set theory (today most
well-known), Zermelo-Fraenkel (= ZF), and adding the axiom of choice (AC), the system
ZFC.

5 A closed wff A shall be decidable in respect to FOL (with the only predicate �in�) and (EE). If A is almost-

closed (with only free x) we call it decidable if all its substitution instances with closed terms are decidable. Any

PE shall be called decidable if its substituted A is it.
6 This collection needs not to be recursively enumerable and therefore no (classical) axiom-system.
7 Hereditary-Consistent (= HC) means: Restrict comprehension to the formulas with the property that all

subformulas (suitably defined) are consistent (i.e. non-pathological). This yield the CHC-PE if we drop D.
8 Concerning set-existence the CDC-PE�s are a �maximal consistent set of formulas� (in a certain sense), and the

corresponding sets form a �maximal model�.
9 In class theory (Sep) is the subset axiom: Every subclass of a set is again a set: forall X: [X =< y ==> Set (X)].

109

 Today this �Limitation of Size� ideology cannot be kept any longer. In 1937 Willard Van
Orman Quine published his system �New Foundation� (= NF)10, which he developed from
Russell�s theory of types. This system contains a universal set and must thus be inconsistent
in virtue of Fraenkel. But in 1969 Ronald Björn Jensen showed the relative consistency of NF
with ZFU (= ZF with Urelemente). Since the days of Zermelo-Fraenkel a lot of set theoretical
systems with a universal set have been developed in the meantime. A beautiful collection of
these systems can be found in the book of Thomas Forster.

(3) Small Sets, Complementation, and ZF
 In my dissertation, �Extension der Mengenlehre� 1971, and its popular-scientific edition
�Der Mengenbildungs-Prozess� (1971 too, in the journal for literature �Manuskripte �33�) I had
raised the question as to a consistent axiomatization of the Naive Mengenlehre. At that time I
could present only partial results, e.g. the answer to the question �What is the slightest
modification of ZF needed to add a complement-axiom?� My answer was: the restriction of
the axiom of separation to �small� sets. Of course, the axiom of replacement -- which says,
formulated in the language of class theory, that �Every image of a set is again a set� -- has to
be restricted too. (In fact it�s enough to restrict replacement, because separation is a logical
consequence of it.)

 The vague notion of a �small� set can be made precise in several ways:
(1) Small shall be represented by well-foundedness, or hereditary foundedness,
(2) The Cantorian sets (for which the theorem of Cantor is valid) are the small ones,
(3) �Slim� or �Komplements-schmächtiger�, i.e. the small sets are those with smaller power
than their complement.
In the simple language of class theory, the restricted axiom of separation says: �The
subclass of every small set is again a set.� The analogue is valid for the images. No
mathematician would ever try to construct a subset or image of the universal set, or of some
other set �extensionally equal to the universe�. In any case, the mathematicians always do
the right thing!

 If we restrict the axiom of replacement to small sets (and from this follows already the
restricted axiom of separation), then this is (at least for me) the slightest modification of ZF
which allows us to add the existence of a general complement. In 1971 at the International
Logic-Congress in Bukarest I gave a talk on this subject and explained it to Dana Scott (and
after that I discussed it with him in Vienna). At that time I even hoped to obtain a proof of the
relative consistency of my system with ZF. But Martin Goldstern convinced me 5 years ago
that this proof is false. (And good-minded as I am, I did believe him.) He published another
proof for a stronger weakened ZF on his homepage.

 After all which has been said until now, one fact should have become evident: If there
exists a universal set or the complement in a set theoretical system, then the axioms of
replacement and separation have to be restricted to small sets. Cantor wanted the general
separation, but that guided us directly into the dead-end street of the Limitation of Size
Ideology and therefore to ZF. Despite the fact that ZF is the favorite system of logicians,
nevertheless, it is highly unnatural. No mathematician constructs his sets bottom-up by
iterated application of the ZF-axioms!

 But this was not the reason why ZF was created. Concerning Hilbert�s Program the
scientific community wanted to show the consistency of set theory. But since Kurt Gödel we
know that this is impossible, because (for a sufficiently rich system) one cannot show its
consistency by means of the system itself. Therefore ZF has lost its original justification, and
it is today in common use mainly because it has been spread all over the world and it is
somehow easy to handle (compared e.g. with NF). Mathematicians (especially Bourbaki)

10 A good introduction to NF the reader can find in Holmes [1998].

110

have in any case always ignored ZF, and they are still working with the Naive �Mengenlehre�,
which they use contentedly without generating any contradictions.

(4) How do Mathematicians Generate Sets?
 Taking the logical point of view which I have described just above (i.e. if somebody
accepts the restriction of replacement and separation), naturally the question arises how the
working method of the mathematicians can be justified philosophically? (ZF certainly does
not do the job!) Therefore I shall investigate here the methods mathematicians actually use
when they are generating sets.

 Working mathematicians have a very strong intuition. And this intuition gives them the
insight that a formula A does not produce a contradiction in the comprehension scheme
(CoS) even when it is very complicated. They also use only hereditary-consistent formulas
and never undecidable ones. (Since these formulas are usualy very large [like the Gödel-
formula in Gödel�s proof or the theorem of Paris-Harrington] mathematicians never use them
in practise). Of course, mathematicians often use open decidable and hereditary-consistent
predicate extensions with free parameters, e.g. for constructing the union or intersection of
finitely many sets, or n-tupels. But this problem can be lifted once we agree that the CDC-
PE�s (together with extensionality axiom (EE), that two sets containing the same elements
are equal) can be considered to be known as contradiction-free by experience. Then the use
of such open extensions can be shown to be correct by meta-theorems stating that in such
cases, a corresponding CDC-PE can also be constructed which forms the same set.11

 Mathematicians only make relative complements (e.g., in a sigma algebra). Therefore
they will not feel disturbed if it were allowed to construct absolute complements of small sets,
too. This can already be deduced from the CDC-PE�s yet. Also the axiom of choice is applied
by the mathematicians only to small sets. But a restricted (to small sets) axiom of choice
(SmallAC) is also compatible with Quine�s NF, and this gives rise to (and hope for) the
assumption that it will also be consistent together with the CDC-PE plus (EE).

 Therefore if mathematicians take a set-constituting property A and substitute it into the
set operator, it always produces a set, and no contradiction. Because mathematicians only
use decidable and hereditary-consistent formulas A (which make the PE�s also as a
collection consistent), no contradiction in practise arises. If they use formulas A, with only x
as free variable, substituting them into the set operator, it makes our philosophical
justification easier. But if they use also formulas with free parameters in turn, it does not
create difficulties as long as they use only small sets (where the pathological ones are
excluded automatically). This can be considered as a 100-year-long experience of
consistency of naïve set theory in practice! 12(That is several years more than ZF or NF
exists.)

(5) The Systems NAM* and NACT*
 The collection of all closed decideable-consistent (or only hereditary-consistent)
predicate extensions (= CDC-PE or CHC-PE) together with (EE) form a new system of set
theory. But since this collection of formulas is not recursively enumerable, it is not a axiom
system in the classical sense. Anyway, the property of a formula A to establish a CDC-PE is
easy to grasp, and therefore it does not matter whether the set of all CDC-PE�s is not
recursively enumerable, because it is enough to consider some large recursively enumerable
subset of it. Let us therefore call this system of all CDC-PE�s plus (EE) an axiom-system in
the wider sense; we want to name it NAM* (= Naïve Axiomatic Mengenlehre Star), or if we

11 A great help in this case would be if we add the term-consistency rule: If for every closed term t of a wff A the

statement A(t) holds, then �forall x: A(x)�.
12 There must exist an adequate formalization of the contentually working method of the mathematicians using

naïve set theory. The question is only: Who will find it first? Of course: implicitely I conjecture in this paper:

The CDC-PE�s (or the CHC-PE�s) are this adequate formalization of mathematical practise.

111

formalize it in the more simple language of class theory, NACT* (= Naive Axiomatic Class
Theory Star, or: the naked star).

 NAM* works in the following way: First we want to find the wffs A with only one free
variable x which itself (and all its subsets) do not produce a contradiction substituted into
(CoS). Let us therefore consider a formula generator FG which enumerates all wffs Aj in a
natural way. For all Aj call their substitution instances (CoS-Aj). A decision algorithm DA shall
find out if (CoS-Aj) together with (EE) produces a contradiction only by use of the rules of
pure logic (with the only predicate �is an element of�) and without any special axioms of set
theory at all! If this happens we want to call such a predicate Aj �pathological�.13 Therefore
the hereditary-non-pathological Aj�s and [if decidable too for short:] logical Aj�s are exactly the
CDC-PE�s. NAM* is therefore (LogoCoS), i.e. (CoS) restricted to the (hereditary-)non-
pathological (and if necessary decidable) Aj�s, plus (EE).
As a formula: NAM* := (LogoCos) & (EE).

For our purpose (as already mentioned) it does not matter that such a decision
algorithm DA does not exist for all (hereditary-)non-pathological predicates. It�s enough to
find one for a sufficiently large class of non-Patho, which should signify the (second order
class of all) pathological classes. (The existence of such a DA for all (CoS-Aj), with the
intention of producing the whole class Logo [= non-Patho and decidable], is logically
equivalent to the decision problem of FOL, shown to be impossible by Alonzo Church 1936.)
The analogue statement is valid also for NACT* (= the naked star): classes with non-patho
(and of course decidable) wffs (i.e. the CDC-PE�s) are sets.

 Therefore we can conclude that NAM* (i.e. the most important system instantiating
NAM) is a real naïve set theory, very similar to the one used by mathematicians in practice,
with a unique logical principle to generate sets (on which it is based), in contrast to other
systems with more or less arbitrarily selected axioms. This shows also that Logicism is not
dead yet. NAM* is a rectification of mathematical practise, and the systems ZF and NF are
(in a certain meta-mathematical sense) included in NAM*. (Of course we have to consider in
this case the restricted axioms of separation, replacement and choice, which have to be
shown as meta-theorems, and consider only the decidable statements.)

 Set theory was already nearly dead, after all the ZF people had done with it. Dana Scott
said on the occasion of receiving the Bolzano award in Prague: �Bernhard Bolzano would
have been very disappointed if he had known what excesses set theory of today is
producing!� Now, after creating NAM* and NACT*, it will become interesting again. Because
Naïve Axiomatic �Mengenlehre� in general (which we want to call short hand NAM in the
following) delivers in addition an instrument to experiment with set theory. This way we can
find out what mathematicians consider to be normal sets. This is a philosophical program like
the one in the �30s of the past century to formalize the intuitive notion of computability. NAM*
is only the most significant system found by this experimentation. In the following sections we
want to show how experimentation with NAM works.

(6) The System NAM of Systems NAMix
 The main goal of NAM is to find a more or less adequately explicit criterion that
precisely formalizes the intuitive notion of a �normal set�. NAM is mainly a construction
procedure for building several formal systems NAMix, each of which can turn out to be an
adequate codification of the contentual naive set theory. (�i� is a natural number which
enumerates the used normal condition, and �x� is a letter which points to the variants of the
used axioms.) Parallel to NAM, the Naïve Axiomatic Class Theory NACT is constructed as a
system of systems too.14

13 Of course this DA proves also if non-(CoS-Aj) produces a contradiction, and therefore if Aj [or better its

corresponding PE] is satisfyable or not.
14 In another forthcoming paper, the most important systems of NACT are explained.

112

 In NAM any arbitrary formula can be used as a starting point for the investigation of the
�normality� of sets. Once a predicate has been found that is equivalent to the predicate atom
�Normal� (and which does not falsify NAM of course) then the concept of a normal set is
characterized correctly and uniquely.15 The tack taken here is similar to attemps of the �30s of
the past century to find an adequate explication (or surrogate) for the concept of
computability. In NAM one can experiment and study the results and effects of different
normality conditions until we have found the most appropriate one. With such a condition
mathematicians would finally have a decision criterion for generating sets of the naïve set
theory.

 In the following we want to suggest a series of criteria as conditions for the
characterization of normal sets. If we consider also combinations of them, there will be about
100 criteria. One of them will fit almost certainly. Then mathematicians and logicians can
prove formally that a given set is normal. Following this line naïve set theory turns out to be
completely free of antinomies or paradoxes once we interpret the comprehension schema
correctly. Only the normal sets are predicate extensions! The abnormal ones are e.g.
identical to the universal set, or to the empty set, or to some external constant �@�, just as
we like!

 Now let us start with the axiomatic construction of all these systems of NAM:
The only objects in NAM are the sets we want to denote by small Latin letters x, y, z,
We also use the (usual unary) prime predicate �Normal�. The set operator (S-O) produces
always only a set (as it is usual in naïve set theory):
{x: A(x)} is a SET !
(And that holds for all A in most systems of NAM.)
But we have to distinguish the set operator from the class operator (C-O):
{|x: A(x)|} is a CLASS !
(Keep in mind that classes are denoted by capital Latin letters X, Y, Z, , while the small
variables are restricted to sets. But we do not use classes in NAM; and we mentioned this
only to avoid confusion! (CoS) for classes cannot produce a contradiction because the
pathological predicates A only yield proper-classes and no sets. Therefore we want to call
this scheme Church Scheme (CS) for classes, in distinction to (CoS) for sets!

 In NAM the general (CoS) is used only in a restricted form. Let �?� be an arbitrary
junctor. Then the most important junctive restriction of (CoS) is:
(Ju-CoS) := forall wff A: forall y: [y in {x: A(x)} <==> A(y) �?� Normal] .
�Normal� can also be a structural property of the wff A, e.g.: Normal := CDC-PE (alternatively
Logo or hereditary-non-Patho) yields NAM*; Normal := Stratified yields NF; Normal := (A is a
ZF-axiom) yields ZF.

(7) The most important Comprehension Scheme (raBaDi-CoS) of NAM
 Generally Normal is a unary predicate of FOL with the basic set of (CoS) substituted
into its free variable. The most frequent junctor �?� is �or non� added directly after A on the
right side of the equivalence. That gives the most important instance of (Ju-CoS):
(raBaDi-CoS) := (y in {x: A(x)} <===> [A(y) or non-Normal({x: A(x)}]).

We want to call this axiom the �rightside-abnormal-Basicset-Disjunction� Comprehension-
Schema, shortly: (raBaDi-CoS).16 With (raBaDi-CoS) the normal sets are predicate
extensions as usual. But the abnormal sets inflate (or sometimes even blow up) to the
universal set �us := {x: Verum}�. They behave somehow like �Urelemente� which are at the

15 Of course it is also possible to construct a hierarchy of characterizations with increasing strength, excluding

cases which are too strongly counter-intuitive.
16 The author has investigated several restrictions of (CoS) but this one is the best! Of course, one can add

Normal also to the left side of the equivalence, or put it as a condition on the entire formula (CoS).

113

same time sets. (Therefore let us call them set-like urelements.) We have 3 possibilities to
handle them:

(A) We identify all pathological sets with the universal set, and the usual axiom of
extensionality (EE) works unrestricted as before:
x = y <===> forall z: (z in x <=> z in y) .
But because of substitutivity the universal set has to be abnormal. (But this merely
philosophical disadvantage will be considered as a gift by many readers.)
(B) The second possibility would be to restrict the extensionality axiom, similarly to what we
do in ZFU (= ZF with Urelemente), i.e. to connect the axiom with the condition �non-
Normal(x) or non-Normal(y)�. Then one cannot deduce the equality of the Russell set �ru�
with the universal set �us�, and us can be considered as normal from now on. But this
solution complicates the machinery in an unnecessary way.
(C) The third possibility is a restriction of substitutivity. But since this axiom is part of pure
logic, this possibility is certainly the least desirable way out (to solve this problem). Therefore
we decide to use possibility (A).

(raBaDi-CoS) is so important that we want to investigate it in more detail. �Antinomies
arise by construction of sets which are extensionally equal to the universe.�, said Fraenkel as
we mentioned already. And Jonny von Neumann concluded in the same spirit: �If they are
not already equal to the universe, the antinomial sets should be at least of equal power!� (In
the new language of class theory they are of course the proper classes and the universal
class, respectively.)
(raBaDi-CoS) does more than Jonny wanted. It unifies all abnormal sets with the universal
set us := {x: Verum}, what will certainly warm the hearts and enjoy the ZF people. But only for
a moment, because (in many systems of NAM) all derivatives of the universal set are normal
again, e.g. {x: x =/= us}.

(raBaDi-CoS) is very strong, and together with the axiom of extensionality (EE), a
suitable axiom of choice (AC), the set operator (S-O), and some Fundamental- and Eventual-
Axioms, it forms a formal system NAM% which is (together with a suitable Normal Condition)
similar to naïve set theory and the mathematical praxis (as well as NAM*).

(8) Other Comprehension Schemata of NAM

It is not an accident that (raBaDi-CoS) forms a system of equal strength as NAM%.
There exist also other junctive-restricted comprehension schemes of construction series (Ju-
CoS) which achieve something similar. For instance, (rinoBaCo-CoS), the �rightside-normal-
Basicset-Conjunction� comprehension scheme
y in {x: A(x)} <===> A(y) & Normal({x: A(x)}) .

In the same way as (raBaDi-CoS) inflates the pathological sets to the universal set,
(rinoBaCo-CoS) collapses them to the empty set-like urelements. If we once again choose
the alternative (A), it turns out that the empty set 0 := {x: Falsum} becomes abnormal, which,
to be sure, is unfamiliar but in no way inconsistent. Already the singleton {0} of 0 is again
normal (and also everything construed upon it). In order to incorporate the empty set into our
consideration of the normal sets, we would have to add into the set operator and the axioms
the term �or y = 0� in each case where the condition Normal(y) appears.

(rinoBaCo-CoS) & (EE) & (AC) & (S-O) and the Fundamental- and Eventual-Axioms
form again together with a suitable Normal-Condition a similar system as NAM%, which we
want to call NAM&. Its logical machinery works exactly parallel to NAM%.
From both mentioned systems NAM% and NAM& we can imagine that it would be enough to
select an arbitrary set and let it become abnormal to avoid the antinomies. To arrange this
we use this time around an implicative restriction (I-CoS) of (CoS), e.g. the �normal-Basicset-
Implication� Comprehension-Scheme (noBI-CoS):
Normal({x: A(x)}) ===> [y in {x: A(x)} <=> A(y)] .

114

By specification of the antecedence with a suitable Normal-condition, all systems like

NAM% and NAM& which are characterized uniquely by a restricted (CoS) like (raBaDi-CoS)
and (rinoBaCo-CoS) can be constructed. Let us choose e.g. the Normal Condition �not-
Equal-@-Implies-normal-Basicset� (nE@I-noB):
{x: A(x)} =/= @ ===> Normal({x: A(x)}),
where �@� is any arbitrary set (which we want to become abnormal in the antinomic case,
e.g.: ru, on, us, 0, etc). (noBI-CoS) again together with the other above mentioned axioms
yields also a system, we want to call NAM§. (We can add also the re-implications (CoS-I-
noB) and (noB-I-nE@) and study these systems. But this often turns out to be too strong.)

We can also adjoin the �commercial at� �@� as a primitive constant to the language
of logic with the effect that then the non-pathological predicate extensions can always form a
set and the proper set universe is free from antinomies. Pathological sets are then �aliens�
which have nothing to do with set theory any longer.

(9) Basic Axioms of NAM

The Naive Axiomatic Mengenlehre NAM should consist in general of 4 Basic Axioms
(BAi), 4 Fundamental Axioms (FAj), some Eventuality Axioms (EAk), and a reasonable
Normality Condition (NCl) (selected from the group of normality conditions NC).

The 4 Basic Axioms are:
(BA1) := (S-O). The set operator {x: A(x)} produces a set for each wff A .
(BA2): one of the �normalized� Comprehension Schemata (Ju-CoS) or (I-CoS), e.g.:
(BA2a) := (raBaDi-CoS), or
(BA2b) := (rinoBaCo-CoS), or
(BA2c) := (noBI-CoS), or
(BA2d) := what you like.
In the following we want to concentrate our attention mainly on (raBaDi-CoS).

To the set operator and the scheme we have to add:
(BA3) the Axiom of Extensionality (E), mainly as
(BA3a) in the usual formulation of �Element-Equality� (EE):
forall z: (z in x <=> z in y) ===> x = y,17
(BA4) an appropriate formulation of the Axiom of Choice (AC), e.g.:
(BA4a) the Choice-Function Axiom (ACF):
exist f: Function(f) & forall y (=/= empty) Subset x ==> f(y) in y . Or:
(BA4b) the Choice-Set Axiom (ACS):
forall y, z in x: (y =/= empty & y intersection z = empty) ===>
exist u: forall v in x: exist w: u intersection v = {w} . Or:
(BA4c) the Ordinals-Universalset Axiom (On-us), e.g. in the form: On ~ us .
Here �~� is a symbol for equal power, i.e. the existence of a bijection between the 2 sets (or
classes). On := {x: On(x)} is the class or set of all ordinal-numbers, and us: = {x: Verum} is
the universal set.
(BA4d) some other suitable axiom of choice (e.g. the one restricted to small sets), or maybe
none.

(10) Foundamental Axioms of NAM

Furthermore in NAM the following 4 Fundamental Axioms (FAj) should be valid. They
express the standard assumptions for normal sets.18
(FA1) the Omega Axiom (Om):

17 Sometimes (as e.g. in the GNAM-systems considered later) we use also (BA3b), i.e. the �Normal-Elements-

Equality� (NEE): forall z: [Normal(z) ==> (z in x <=> z in y)] ====> x = y .
18 The predicate �Normal(x)� cannot become totally �Falsum� because the Fundamental Axioms and some

Eventuality Axioms contribute implicitly to the Normal-Atom.

115

Normal(omega),
(FA2) the Power Axiom (Po):
Normal(x) ===> Normal(p(x)),
where p(x) := {y: y Subset x} is the power-set of x.19
Note that not every sub-class Y of x (constructed with the wff A) must also be a subset y of x.
E.g.:Ru =< us\{us} & ru = us =/< us\{us} if you use (raBaDi-CoS).
(FA3) the Union Axiom (Un):
Normal(x) & forall y in x: Normal(y) ===> Normal(union(x)),
where union(x) := {y: exist z: y in z & z in x}.
(FA4) shall be a suitable Axiom of Replacement (or Image-set Axiom in the language of class
theory) (Im), that the image of a function with a normal domain is also normal. We distinguish
different degrees of strength of (Im).20

Let us first list the first 3 versions of the image-set axioms:

(FA4alfa) the �Simple� Image-set Axiom (S-Im):
Normal(x) & Functional-Formula(A) & [exist u in x: exist v: A(u, v)] &
y = {z: [exist w: w in x & A(w, z)]} ======> Normal(y).
(FA4beta) the �Normal-or-Null-Elements� Image-set Axiom (NoNE-Im):
Normal(x) & Functional-Formula(A) & [exist u in x: exist v: A(u, v)] &
y = {z: [exist w: w in x & A(w, z)] & [Normal(z) or z = 0]} ======> Normal(y).
(FA4gamma) the �Normal-Elements� Image-set Axiom (NE-Im):
Normal(x) & y = {z: Functional-Formula(F) & [exist u: u in x & F(u, z)] & Normal(z)} =======>
Normal(y).

(11) Eventuality Axioms of NAM

After presenting the Basic Axioms (BAi) and the Fundamental Axioms (FAj), we want
to formulate now the Eventuality Axioms (EAk)21. Some combinations of basic axioms and
fundamental axioms (and maybe the used Normal Conditions) it may be clever and wise to
add some of these axioms too. E.g.:

(EA1) the �Singleton-Arbitrary-Normal� axiom (SAN):
Normal({@}) , where @ := ru, on, us, 0, etc.
(EA2) the �Equivalent-Formulas-Equal-Sets� axiom (EFES):
[forall x: A(x) <=> B(x)] ===> {y: A(y)} = {z: B(z)} ,
(EA3) the �not-Normal-Equal-Mighty� axiom (nNEM):
non-Normal(x) & non-Normal(y) ===> x ~ y ,
(EA4) the �Elements-Normal-or-Arbitrary� axiom (ENoA):
Normal(x) ====> forall y: [y in x ==> Normal(y) or y = @] .

In addition to these 4 main axioms we can use also:
(EA5) the �Elements-Normal� Eventuality Axiom (ElN-EA) instead of (EA4):
Normal(x) ===> forall y: [y in x => Normal(y)] ,
(EA6) the �Komplement-Normal� Eventuality Axiom (KN-EA), which postulates the normality
of the complement of a normal set:
Normal(x) ===> Normal(ko(x)).
(EA7) the �Normal-Set-exclusive-or-Komplement� axiom (NSxorK):
Normal(x) <=/=> Normal(ko(x)).
(EA8) the�Normal-Set-or-Komplement� axiom (NSoK) axiom:
Normal(x) or Normal(ko(x)),

19 p(x) denotes the power set (of a set or class), while P(X) denotes the power class (of all subsets of a given

class), and PC(X) should denote the 2nd order power class of a class. Sometimes it may be more suitable to

define p(x) := {y : y Subset x & Normal(y)}, e.g. in the GNAM-systems.
20 A is here (and also in the following axioms of (FA4)) a Functional-Formula, i.e. a formula with the functional-

property (similar to those used in ZF). As abbreviation for this we write F-F(A).
21 �Eventuality� means case-based in this article.

116

this axiom plays an important role, but it contradicts (ElN-EA).
(EA9) the �Normal-Set-or-Supplement� (NMoS) axiom is also conceivable:
Normal({x: A(x)}) or Normal({x: Supplement-A(x)}),
where Supplement-A is that formula, where the Epsilon (i.e. the element sign) is replaced
everywhere by its negation.
(EA10) Also other similar conditions on wffs A would make sense.

As already mentioned above, the systems of NAM are constructed in general as a
combination of 4 groups of axioms: basic, fundamental, eventuality axioms and a normal
condition, where we sometimes have to choose the most suitable variant of an axiom. But
before we start to consider the first normal conditions (which are in fact only the objects for
our experiments to find out the most appropriate formal explication of the notion �Normal�)
the reader should ask himself: what follows already directly from the axioms of NAM without
the normal conditions. We want to call these �conditionless� kernel systems NAM0x, where
the �x� symbolizes the construction series (i.e. the variants of the (BA2) axioms). �a� points
e.g. for the use of (raBaDi-CoS), �b� for that of (rinoBaCo-CoS), �c� of (noBI-CoS), etc.
(NAM0a, b, c are more or less other names for NAM%, &, §.)

(12) The first Normal Conditions and the first Systems of NAM
 After this short interruption let us go on with the explanation of the last group: the
Normal Conditions (NCl). We want to find the best of these conditions to select. But until we
know which condition is the best, we will need some time for experiments. The first two
conditions are:

(NC1) the �not-Function-Domain-Komplement� Condition (nFDK-Cond):
non-exist f: (Function(f) & f[x] = ko(x)) ===> Normal(x) .
f[x] is the image of the domain x under f, and ko(x) is the Komplement {y: y non-in x}. By
didactical reasons we can add the term �exist g: (Function(g) & g[ko(x)] = x)� in the
antecedent, but this term is in fact redundant.

(NC2) the �Smaller-Power-than-Komplement� Condition (SPK-Cond):
card(x) < card(ko(x)) [& x ~/~ ko(x)] ===> Normal(x) ,
where card(x) is the cardinal-number of x, and card(ko(x)) that of the complement. (Again the
didactical term in brackets can be omitted.)
(NC1) and (NC2) are essentially only different formulations of one and the same fact.22

If we keep the above-mentioned connections in mind, we get first the semi-canonical
system NAM1a with (BA2a) := (raBaDi-CoS) plus the other BAi, and (FA4alfa) := (S-Im) plus
the other FAj, with condition (NC1). The first 3 EAl are derivable in NAM1a. This system
NAM1a will be later the basis for some extensions, e.g. for NAM1aKNoU := NAM1a &
(KNoU-EA).

In analogy to NAM1a we get the parallel-semicanonical system NAM1b which is also
founded on condition (NC1), but together with (BA2b) := (rinoBaCo-CoS) and (FA4beta) :=
(NE-Im) and the other axioms (like in NAM1a) plus the 3 eventuality axioms. Like NAM1b we
get the quasi-semicanonical System NAM1c with (BA2c) := (noBI-CoS), (FA4beta) := (NE-
Im), as well as (NC1), plus the other axioms (inclusive the 3 eventuality axioms). (NAM1c
does not imply Cantor�s Antinomy.) NAM2a, b, und c, are the same systems as NAM1a, b
und c, only based on condition (NC2). NAM2c is a better basis for extensions than NAM2a,
yielding NAM2cKN := NAM2c & (KN-EA). Thus, we get (with this correspondence of the

22 The danger inherent in these conditions can be explained by the following example: Let us define Slim := {x:

card(x) < card(ko(x))} and HeredSlim := {x: forall y in x*: card(y) < card(ko(y))}. We want to find out if �Slim

in Slim� or �HeredSlim in HeredSlim� ? That would imply an antinomy similar to Cantor�s. Fortunately the

�Smaller-Power-than-Komplement� Condition (SPK-Cond) and �Hull-Smaller-Mightiness� (HSM-Cond) are

consequently wrong for Slim and HeredSlim.

117

axioms) all together 6 basic systems (in addition to the 3 kernel systems). Note also that
NAM2a without foundational axioms, but together with (EA7) := (NSxorK) is equivalent to
NACT#. Together with the 4 foundational axioms it is equivalent to NACT#4.

Let us first write down the axioms of the first system NAM1a of the Naive Axiomatic
Mengenlehre in a list. NAM1a has 8 axioms:
(1-1) {x: A(x)} is a set,
(1-2a) [y in {x: A(x)} <==> A(y) or non-Normal({x: A(x)})] ,
(1-3) forall z: (z in x <==> z in y) ===> x = y,
(1-4) a suitable axiom of choice, e.g. On := {|x: On(x)|} ~ us,
(1-5) Normal(omega) ,
(1-6) Normal(x) ==> Normal(p(x)) ,
(1-7) Normal(x) & forall y in x: Normal(y) ==> Normal(union(x)),
(1-8) Normal(x) & Functional-Formula(A) & [exist u in x: exist v: A(u, v)] &
y == {z: [exist w: w in x & A(w, z)] & Normal(z)} ====> Normal(y) ,
(1-9) non-exist f: (Function(f) & f[x] = ko(x)) ===> Normal(x) .

Axiom (1-9) is (NC1). The leading �1� points at the 1st NC, because we are
enumerating the systems synchronously with the Normal Conditions.
The Eventuality Axioms (1-10) to (1-13) are derivable from NAM1a.
(1-10) Normal({us}) ,
(1-11) [forall x: A(x) <=> B(x)] ===> {y: A(y)} = {z: B(z)} ,
(1-12) non-Normal(x) & non-Normal(y) ===> x ~ y ,
(1-13) Normal(x) ==> forall y: [y in x ==> Normal(y) or y = us] ,
NAM1a produces mainly such normal sets which are similar to the sets of ZFC; but also
more than that.

(13) Complements and restricted Image-set Axioms

If we want to add a complement to NAM1a we would put also the �Komplement-
Normal-or-Universal� Eventuality Axiom (EA6�) := (KNoU-EA) as axiom with the number 14
onto the list:
(1-14) Normal(x) ==> Normal(ko(x)) or ko(x) = us,
Let us call this system NAM1aKNoU, where the pathological sets in the �middle� are
abnormal, while small and large sets are normal.23 But in that case we have to restrict the
domain in the Image-set Axioms (1-7alfa, beta, und gamma) to small sets; otherwise it would
be possible to deduce the normality of the Russell-set �ru�. Therefore (1-8) has to be
replaced by stronger restricted axioms (e.g. (FA4delta, eta, fi, psi, chi, jota, or kappa)).
Before we can decide which one we want to select let us enumerate the new image-set
axioms in a list.

(FA4delta) the "twofold Functional-Formula" Imageset Axiom (2FF-Im):
Normal(x) & y1 ==
== {y: ([Funktional-Formel(F) & Funktional-Formel(G) & (forall x1, y1, u, v: x1 =/= y1 & G(x1,
u) & G(y1, v) => u =/= v)] ====> [exist z: z in x & F(z, y) & Normal(y) <==> non-forall
w non-in x: exist z in x: G(z, w)] } ========> Normal(y1) .
In fact this imageset axiom is a double formula scheme24 which expresses the same fact as
the following two other formulations:

23 For NAM1aKN, the same is valid as for ZFK (respectively ZFCK).
24 For unsuitable F or G, y1 will yield the universal set. (Therefore it would be good to use either (KNoU-EA) or

NAM2c as basis.) The right-side expression in the parentheses (in the antecedent of the implication in the set-

brackets) is only added for didactical reasons, since everybody knows that G is an injection. In the consequent

(i.e. right side of the implication) in the set-brackets, the contra-valent (respectively the equivalence with the

negation) is valid! Therefore not both conditions in the 2nd brackets [= square brackets] can simulaneously have

the same truth-value. The term on the right side of the equivalence says that G is no surjection of x onto its

complement. E.g.: Let x := omega. Also if you can find an appropriate F-F(G) (such that the antecedent becomes

true) where G can map omega onto its complement, the 2nd condition of the contra-valent always becomes

118

(FA4eta) the �not-Function-Domain-Komplement� Image-set Axiom (nFDK-Im):
Normal(x) & y1 ==
= {y: Functional-Formula(F) & (non-exist g: Function(g) & g[x] = ko(x)) & [exist z: z in x & F(z,
y)] & Normal(y)} ========> Normal(y1) .
Here g[x] is the image of the domain x of the function g.

(FA4phi) the �Domain-Smaller-Power-as-Komplement� Bildmengen-Axiom (DSPaK-Im):
Normal(x) & y1 ==
== {y: Functional-Formula(F) & [card(x) < card(ko(x))] & [exist z: z in x & F(z, y)] & Normal(y)}
========> Normal(y1) .

The condition slim(x) := [card(x) < card(ko(x))] expresses the fact that x should be
�small� in some specific sense. But instead of using this formulation of �small� we can also
use another condition, e.g.: Mirimanoff, Founded, Hereditary Founded, or Cantorian, which
yields the following axioms. (Note that in NAM it depends of the system chosen whether
these conditions are equivalent or not.)

(FA4psi) the �Mirimanoff-Domain� Imageset Axiom (MD-Im) with:
Mirimanoff(x) := non-exist f: [Function(f) & f(0) = x & forall n in omega: f(n+1) in f(n)].
(FA4chi) the �Founded-Domain� Image-set Axiom (FD-Im) with:
Found(x) := exist y in x: x intersection y = empty .
(FA4jota) the �Hereditary-Founded-Domain� Image-set Axiom (HFD-Im) with:
Heri-Found(x) := forall y in e*(x): exist z in y: z intersection y = empty .
(FA4kappa) the �Cantorian-Domain� Image-set Axiom (CD-Im) with:
Cantorian(x) := [card(x) < card(p(x))] .

If we drop the appendix �Normal(y)� in the curly braces (= set parentheses) of these
new 7 axioms, let us call them (FA4d, e, f, g, h, j, und k). This release from �Normal(y)� will
allow us to also generate the derivatives of the universal set and similar sets. (In some
systems the normality of the elements is redundant because it follows from other facts.) In
analogy to NAM1aKN we get further systems like NAM2aKN, etc, if we replace the image-set
axiom (1-8) by one of the 7 new (FA4).

 To formulate the other NC�s we want to explain what is the meaning of the hull e* of
the elementhood relation e := {<x, y>: x in y}). Let us define:
x e* y :<==> exist n (=/=0) in omega: exist f: Funktion(f) & f(0)=x & f(n-1)=y & forall i in n: f(i)
in f(i+1) .
e* := {<x, y>: x e* y}, [or the union from n = 0 until omega: e^n] .
It is known that e* can be defined within NBG and ZFC, and -- as one can see -- also within
NAM1a, etc. In those systems where that should not be possible, we have to use the class
theory CNAM (constructed over NAM) and define the class relations E, E^n and E* in it.

Since with e and E, �e...� and �E...� are also relations, we can fix their ranges as we
are accustomed to be �e...(x)� := {y: exist z in x: <z, y> in e...} and �E...(X)� similarly. In
analogy to the above we write for the complements of e^n, E^n, e* and E* the following:
n-e^n, n-E^n, n-e* or n-E*, and the same symbols for the predicates.
e^+ (or epsilon-plus) shall be e* \ id and E^+ shall be E* \ Id.

(14) Further Normal Conditions

With this preliminary work we can proceed with the definitions of the NC�s:
(NC3) is the �Elements-of-Hull-no-Function-from-Domain-to-Komplement� (EHnFDK-Cond):

wrong (because that is impossible). Therefore omega is of smaller power than its complement, and therefore the

2nd condition is true: we can produce an image of omega! But if x = ko(omega), then the 2nd condition is true

and the 1st one must be wrong: we cannot construct an image of ko(omega).

119

forall y in e*(x): [non-exist f: Function(f) & f[y] = ko(y)] &
 [exist g: Function(g) & g[ko(y)] = y] =====> Normal(x) .
The 2nd term in the brackets in the antecedent is only of didactical nature and can be
dropped.
(NC4) the �Hull-Smaller-Mightiness� Condition (HSM-Cond):
forall y in e*(x): card(y) < card(ko(y)) =====> Normal(x) .
This condition is more complicated than (NC2), but it does hinder the further construction of
�counter-intuitive� sets.
(NC5) the �no-Bijection-Domain-Komplement� Condition (nBDK-Cond):
non-exist f: (Function(f) & f[x] = ko(x)) or �
... or non-exist g: (Function(g) & g[ko(x)] = x) ====> Normal(x) .
(NC6) the �not-Equal-Mighty-Komplement�25 Condition (nEMK-Cond):
x ~/~ ko(x) ===> Normal(x),
what means that if x is not equal mighty with its complement then it is normal.26 Note also
that NAM6c without foundamental axioms, but together with (EA8) := (NSoK) is equivalent to
NACT+. Together with the 4 foundational axioms it is equivalent to NACT+4.

Just as before we claim now the validity of the last 2 conditions for all elements of the

hull of x. Thus we get:
(NC7) the �Elements-of-Hull-not-Bijection-Domain-Komplement� Condition (EHnBDK-Cond):
forall y in e*(x): �the antecedens of (NC5) with (x/y)� ====> Normal(x) .
(NC8) the �Elements-of-Hull-not-Equal-Mighty-Komplement� (EHnEMK-Cond):
forall y in e*(x): y~/~ko(y) ====> Normal(x) .

 There exists of course a whole series of further Normal Conditions that generate also
more or less interesting systems. E.g.:
(NC9) the �not-Elementship-of-ItSelf� Condition (nEIS-Cond)27:
x non-in x ====> Normal(x) .
(NC10) the �not-Element-of-It�s-Own-Hull� Condition (nEIOH-Cond):
x non-epsilon-plus x ====> Normal(x),
�x non-in e^+(x)� means: non-exist n =/= 0 in omega: x in x1 in x2 in . . . in xn = x .
(NC11) Mirimanoff-Condition: �not-Infinite-Descending-Element-Sequence� (nIDES-Cond):
non-exist f: [Function(f) & f(0) = x & forall n in omega: f(n+1) in f(n)] ===> Normal(x) .
(NC12) the Foundedness condition (Found-Cond):
exist y in x: x intersection y = empty ====> Normal(x) .

These 4 conditions can again be strengthened by the claim of the validity for all
elements of the hull of the former domain:

25 We want to use in the context the notion �Equal-Mighty� instead of �equipollent�, because it allows us the

easier abbreviation. Furthermore, it represents the new language Euro-English. We need not to speak American

English in Europe, and British English is too difficult for us.
26 Be careful with (NC6) := �not-Equal-Mighty-Komplement� (nEMK-Cond) or (NC8) := �Elements-of-Hull-

not-Equal-Mighty-Komplement� (EHnEMK-Cond) ! Because (raBaDi-CoS) and (rinoBaCo-CoS) force �us� or

�0� to be abnormal, we should add the appendix �or x = us or x = 0� to �Normal(x)� at the end of (NC5) to

(NC8) and call them (NC5�) to (NC8�). Or we have to use (noBI-CoS) and �@ := on�. And this implies (because

of �not-Normal-Equal-Mighty� (nNEM)) the strong axiom of choice (OnAs) := On ~ us .
27 In some systems (especially those formed with (NC9) etc) e.g. the following is valid: Let ru := {x: x non-in x}

be the Russell-set. The conditional Comprehension Scheme (noBI-CoS) together with its re-implication (CoS-I-

noB) makes the implication to an equivalence yielding (noBE-CoS). This scheme allows the deduction of the

following facts: ru = ru u {ru} = {x: x non-in x v x = ru} . (�u� is here the union, and �v� is the �or�.) This is

reasonable because the right-hand term of the implication (= the one with the equivalence in (noBI-CoS))

produces a contradiction. This falsifies the antecedent and yields �ru in ru�. But at the same time the following is

also true: ru = ru \ {ru} = {x: x non-in x & x =/= ru}. You cannot take ru out from itself. The same is valid for

the other pathological sets too, like the ordinal-set on, the Mirimanoff-set mi, the Founded-set fu, etc. With ru we

have also as many pathological sets as its elements, because we can generate (ru \ {x}) and (ru \ x) for every

element x in ru (which are mostly normal sets), and for these new products (ru \ {x}) in (ru \ {x}) and also (ru \

x) in (ru \ x) is valid.

120

(NC13) the �Elements-of-Hull-not-Elements-of-ItSelf� Condition (EHnEIS-Cond):
forall y in e*(x): y non-in y ====> Normal(x) .
(NC14) the �Elements-of-Hull-not-Elements-of-its-Own-Hull� (EHnEOH-Cond):
forall y in e*(x): y non-in e^+(y) ===> Normal(x) .
(NC15) �Elements-of-Hull-not-Infinite-Descending-Element-Sequence� (EHnIDES-Cond):
forall y in e*(x): non-exist f: [Function(f) & f(0) = y & forall n in omega: f(n+1) in f(n)] ===>
Normal(x) .
(NC16) �Elements-of-Hull-Founded� Condition (EH.Found-Cond):
forall y in e*(x): exist z in y: z intersection y = empty ===> Normal(x) .

(NBxyz) can be any arbitrary Normal Condition. Because we can also consider
systems NAMix where �Normal� is constructed completely differently. (e.g. as already
mentioned not depending on the elements y or the constructed set {x: A(x)}, but on the
structure of the wff A, as in NF.) To investigate all these conditions is the program of NAM.28

(15) Extensions of NAM

Most systems NAMix described up to now are pure set theory. Of course we can
always cover these pure set theory systems with a class theory (similar to NBG), getting the
systems CNAMix of CNAM. That is important especially because sets and classes generated
with the same wff A often have a different extension. (E.g., in some systems the universal set
�us� is different from the universal class UC, which can contain abnormal sets like the
Russell-set �ru� too (usually different from �us� in some systems), while �us� may not contain
abnormal sets.) For classes over NAM-sets we use capital Latin letters X, Y, Z, � etc as
variables and {|x: A(x)|} as class operator.

But NAM can also be extended into the other direction (i.e. downwards) if we restrict
the set-constituting variable �x� in the set operator to normal sets, i.e. use always {x: A(x) &
Normal(x)}. For normal sets we introduce as new variables the small German letters german-
x, german-y, german-z, � etc (abbreviated as g-x, g-y, g-z, � etc) and the normal-set-
operator (NS-O) := {g-x: A(g-x)} or {/x: A(x)/}. We want to call this theory then the
Germanized Naïve Axiomatic Mengenlehre GNAM and its systems GNAMix.29 If a majority of
the NAMix yields (after their Germanization) a unique same system GNAM! (of course up to
equivalence), it would be an indication that this system GNAM! is an adequate representative
of the formalization of Naïve Mengenlehre!

With the help of normal sets such systems (generated by normal conditions which
allow counter-intuitive sets too) can also be made to work very well. We can define in such
systems functions, relations, cardinals and ordinals, equality, subsets, power, etc, as
precisely as those used in ZFC. If there is no danger of mixing it up we can drop the German
letters and use, as accustomed, the Latin ones. And then everything mathematicians are
doing in the Naïve Mengenlehre is as usual; only now they know (because of the
experiments and the philosophical justification going hand in hand with them) that what they
are doing is consistent, inspite of Gödel and the miscarriage of Hilbert�s program.

28 Further Normal Conditions can be formulated and constructed with structural constraints on the formula A

(like Stratified(A)). But we can also use completely different structural properties like �Supplement� (= Counter-

valisation, where all epsilons are replaced by non-epsilons in the expanded formula, and vice versa), Dualisation

(where alle �and� are replaced by �or� and all general quantifiers by existence-quantifiers, and vice versa), and

structural invariants of such constraints. It may also be possible to show with (AC) that some NC�s are

equivalent, or we can derive for some of the NC�s an implication chain already in NAM0a or in other NAMix.
29 In this case, ZFC would be for example GNAM0a without Eventuality Axioms. Of course (EFES) and

(nNEM) would become redundant (or may have to be rejected), and (ElN-EA) deriveable for normal sets from

(NE-Im) or (S-Im), because in GNAM the sets in the set operator are restricted to normal ones like the classes in

the class operator are restricted to sets. Therefore we could also use GNAM0a as basis for ZFC. In both cases the

missing ZF-axioms can be deduced from the Foundamental Axioms.

121

References:

Bernays, Paul & Fraenkel, Abraham

[1968] Axiomatic Set Theory. Springer Verlag, Heidelberg, New York.

Brunner, Norbert & Felgner, Ulrich

[2002] Gödels Universum der konstruktiblen Mengen. In: [Buldt & al, 2002].

Buldt, Bernd & Köhler, Eckehard & Stöltzner, Michael & Weibel, Peter & Klein, Carsten & DePauli, Werner

[2002] Kurt Gödel: Wahrheit und Beweisbarkeit, Band 2: Kompendium zu Gödels Werk. oebv&htp, Wien.

Casti, John & DePauli, Werner

[2000] Gödel: A Life of Logic. Perseus Publishing, Cambridge (MA).

DePauli-Schimanovich, Werner & Weibel, Peter

[1997] Kurt Gödel: Ein Mathematischer Mythos. Hölder-Pichler-Tempsky Verlag, Wien.

DePauli-Schimanovich, Werner: See also: Schimanovich [1971a] and [1971b].

[1998] Hegel und die Mengenlehre. In: Europolis3, Passagen-Verlag (Vienna, probably 2003).

Preprint at: http://www.univie.ac.at/bvi/europolis .

[2003?] The Notion of �Pathology� in Set Theory. Paper submitted to Journal of Philosophical Logic.

[2003?] Naïve Axiomatic Class Theory NACT: a Solution for the Antinomies of Naïve �Mengenlehre�.

 Paper intended for a journal of logic.

Davidson, Donald & Hintikka, Jaakko

[1969] Words and Objections. D. Reidel Publ. Comp., Dordrecht.

Feferman, Solomon & Dawson, John & Kleene, Stephen & Moore, Gregory & Solovay, Robert & Heijenoort,

Jean van, [1990] Kurt Gödel: Collected Works, Volume II. Oxford University Press, New York & Oxford.

Felgner, Ulrich

[1985] Mengenlehre: Wege Mathematischer Grundlagenforschung. Wissensch. Buchgesellschaft, Darmstadt.

[2002] Zur Geschichte des Mengenbegriffs. In: [Buldt & al, 2002].

Forster, Thomas

[1995] Set Theory with an Universal Set. Exploring an Untyped Universe. (2nd Edition.)

 Oxford Science Publ., Clarendon Press, Oxford.

Gödel, Kurt

[1938] The relative consistency of the axiom of choice and of the generalized continuum hypothesis.

 In: [Feferman & al, 1990].

Goldstern, Martin & Judah, Haim

[1995] The Incompleteness Phenomenon. A. K. Peters Ltd., Wellesley (MA).

Goldstern, Martin

[1998] Set Theory with Complements. http://info.tuwien.ac.at/goldstern/papers/notes/zfpk.pdf

Halmos, Paul

[1960] Naive Set Theory. Van Nostrand Company Inc., Princeton (NJ).

Holmes, Randall

[1998] Elementary Set Theory with a Universal Set.

 Vol. 10 of the Cahiers du Centre de Logique. Academia-Bruylant, Louvain-la-Neuve (Belgium).

[2002] The inconsistency of double-extension set theory.

http://math.boisestate.edu/~holmes/holmes/doubleextension.ps

Jech, Thomas

[1974] Procedings of the Symposium in Pure Mathematics (1970), Vol. XIII, Part 2, AMS, Provicene R.I. .

Jensen, Ronald Björn

[1969] On the consistency of a slight (?) modification of Quine�s New Foundation.

In: [Davidson & Hintikka, 1969].

Köhler, Eckehart & Weibel, Peter & Stöltzner, Michael & Buldt, Bernd & Klein, Carsten & DePauli, Werner

[2002] Kurt Gödel: Wahrheit und Beweisbarkeit, Band 1: Dokumente und historische Analysen.

 Hölder-Pichler-Tempsky Verlag, Wien.

Kolleritsch, Alfred & Waldorf, Günter

[1971] Manuskripte 33/�71 (Zeitschrift für Literatur und Kunst). Forum Stadtpark, A-8010 Graz, Austria.

Quine, Willard Van Orman

[1969] Set Theory and its Logic. Belknap Press of Harvard University Press, Cambridge (MA).

Rubin, Jean & Rubin, Herman

[1978] Equivalents of the Axiom of Choice. Springer, Heidelberg & New York

Schimanovich, Werner, [1971a] Extension der Mengenlehre. Dissertation an der Universität Wien.

[1971b] Der Mengenbildungs-Prozess. In: [Kolleritsch & Waldorf, 1971].

Schimanovich-Galidescu, Maria-Elena

[2002] Princeton � Wien, 1946 � 1966. Gödels Briefe an seine Mutter. In: [Köhler & al, 2002].

Scott, Dana, [1974] Axiomatizing Set Theory. In: Jech[1974] .

Suppes, Patrick, [1960] Axiomatic Set Theory. D. Van Nostrand Company Inc., Princeton (NJ).

122

On Non-associative Gröbner Bases

Lothar Gerritzen1

1
Bochum

Abstract

In this article the basic notions of a theory of Gröbner basis for ideals in

the non-associative, non-commutative algebra with unit freely generated

by a set are discussed. The main result is a criterion for a system of

polynomials to be a Gröbner basis. It can be seen as a non-associative

version of the Buchberger criterion.

KEYWORDS: free magmas, planar binary rooted trees, non-associative

free algebras, ideals, Gröbner bases, non-associative Buchberger criterion

1. Introduction

In the first volume on algebra of the Encyclopedia of Mathematical sciences
published by the Academy of Sciences of the USSR in 1987, the author I.R.
Shafarevich is also presenting his general views about basic notions of algebra. He
has attemped a description of the place in mathematics occupied by algebra by
drawing attention to the process of measuring for which H. Weyl has coined the
word coordinatisation. This general idea is certainly of great importance because
it challenges the Bourbaki view that algebra is a certain theory of structures of
composition laws. However since the appearance of computer algebra this recent
approach to describe algebra generally also seems to be insufficient.
Later in this treatise Lie algebras, Cayley numbers and other types of non-
associative algebras are discussed. It is stated that no general theory of nonas-
sociative algebras exists at present and the question is raised if perhaps such a
theory is just not possible, [S], § 19, D. (p.201).
It seems to me that this scepticism derived from the principle of coordinatisation
is no longer justified.
The non-associative, non-commutative algebra freely generated by one element x
has a vectorspace basis given by the set of finite planar, binary rooted trees and
it is nowadays completed clear that these objects are indispensable in computer
science and other theoretical branches for abstract measurings, searchings and
designs, see [Kn].

123

On Non-associative Gröbner Bases

In this note I would like to show that there is an interesting algorithmic and
computational theory of Gröbner bases for ideals in the non-associative non-
commutative K-algebra K{X} with unit element freely generated by a set X
of variables over a field K. It can be considered as a branch of a general theory
of non-associative algebras. In this context one should also mention the many
publications on Hopf algebras of trees, see [CK], [LR], [BF] and recent work on
operads, see [GK], or the non-associative exponential, logarithm and Hausdorff
series, [DG], [GH].
A K-vectorspace basis for K{X} is the magma Mag′(X) with unit freely gener-
ated by X, see [B]. There are admissible orders < on Mag′(X) and for a non-zero
polynomial f in K{X} one has the leading term f< in Mag′(X) of f.
A system G of generators for an ideal I in K{X} is a Gröbner basis if the
leading term f< of any non-zero f in I is a multiple of an element g<, g ∈ G, in
Mag′(X).
The main result in this article is a criterion which guarantees that a given set of
polynomials is a Gröbner basis. It is a non-associative version of the criterion of
Buchberger, see section 6.
There are procedures similar to the Buchberger algorithm, [Bu], to construct
non-associative Gröbner bases, see section 7.
In the sections 2 - 5 basic notions about free magmas, finite labelled planar
binary trees and ideals in free magmas and free algebras are given. Proposition
(4.3) is used in the proof of the Buchberger Criterion. In section 8 a few examples
of Gröbner bases are discussed.

I thank the referees for valuable comments.

2. On free magmas and trees

A magma is a set N together with a binary operation on N which usually will
be denoted by .N or a dot.

This notion was introduced by Bourbaki, [B], Chap. 1, § 1. It has initialized the
name of the Algebraic Programming Language Magma, see [CP], section (4.1),
p. 46.
Let X be a set.

Proposition 2.1: There is a magma Mag(X) with the following properties:

(i) X is a subset of Mag(X)

(ii) The multiplication on Mag(X) is an injective map · : Mag(X)×Mag(X) →
Mag(X) and the image of · is the complement of X in Mag(X).

Mag(X) is uniquely determined by X up to isomorphisms and is called the
magma freely generated by X.

Proof: The construction of Mag(X) can be found in the literature, see for in-
stance [B], [G1]. 2

124

Lothar Gerritzen

There is a unique morphism deg : Mag(X) → N, such that deg(x) = 1 for all
x ∈ X where N denotes the additive monoid of natural numbers. Then deg(v) is
called the degree of v ∈ Mag(X).
Let T be a finite rooted tree, see [H], Chap. 15, p. 187. We denote by T 0 the set
of nodes (vertices) of T , by T̄ the set of edges of T and by wT the root of T.
For any node a of T we denote by valT (a) the valence of T. It is the number of
edges of T which are incident with a.

Definition: T is called binary if valT (wT) ∈ {0, 2} and valT (a) ∈ {1, 3} for any
node a 6= wT of T.

The nodes a of T with valT (a) ≤ 1 are called leaves (or end nodes) of T. L(T)
denotes the set of leaves of T. If there is a node a in T with valT (a) = 0, then T
consists of a single node.

Definition: A finite binary tree T together with a dissection T̄ = T̄ 1∪̇T̄ 2 of the
set of edges of T is called planar, if for any node a of T which is not a leaf of T
there are edges k1 ∈ T̄ (1), k2 ∈ T̄ (2) incident with a and if a 6= wT then neither
lies on the unique simple path from the rooted wT to a. The edges in T̄ (1) (resp.
T̄ (2)) are called the left (resp. right) edges of T.

Definition: A finite planar binary rooted free T together with a map

λ : L(T) → X

is called X-labelled.

Let T1, T2 be two finite planar binary rooted trees and ϕ a bijective map T 0
1 → T 0

2 .
Then ϕ is called an isomorphism from T1 onto T2, if ϕ maps the root of T1 onto
the root of T2 and if the map induced by ϕ on the system Pot(T 0

1) of the subsets

of T 0
1 maps T̄

(i)
1 onto T̄

(i)
2 for i = 1, 2. Then ϕ(L(T1)) = L(T2). If λi is an X-

labelling of Ti, then ϕ is an isomorphism from (Ti, λ1) into (T2, λ2) if ϕ is an
isomorphism of planar binary rooted trees and (λ2 ◦ ϕ)|L(T1) = λ1.
Let PB(X) denote the set of all isomorphism classes of X-labelled finite planar
binary rooted trees.
If T, T ′ ∈ PB(X), then there is a unique T · T ′ ∈ PB(X) with the following
properties: if the root of T · T ′ and the edges incident with it are removed from
T · T ′, then the components of connectivity of this remaining graph consists of
T and T ′. This operation is called grafting and turns PB(X) into a magma.
If X = {x}, then all labels of all elements in PB({x}) are x and we can forget
them. PB({x}) is then called the magma of finite planar binary rooted trees
and is also denoted by PB.
The following fact is fundamental for free magmas because it shows that there is
an canonical combinatorial structure on the elements of Mag(X). Strangely this
view was not included in the presentations of free magmas by Bourbaki, [B], or

125

On Non-associative Gröbner Bases

in the discussion by Kurosh, [K], of general free algebras. Maybe this was one
reason that the general theory of non-associative algebras was not flourishing for
some decades in the last century.
The proof of the following statement is simple, see also [R], p. 5 or [G2].

Proposition 2.2: (i) There is a unique morphism

η : Mag(X) → PB(X)

such that η(x) = tree consisting of a node only labelled with x whenever
x ∈ X.

(ii) η is an isomorphism of magmas

(iii) For any v ∈ Mag(X), deg(v) is equal to the number of leaves of η(v).

Proof: 1) Let v ∈ Mag(X), n = deg(v). We define η(v) by induction on n. If
n = 1 then v ∈ X and η(v) is already defined. If n > 1, then v = v1 · v2, vi ∈
Mag(X) and deg(vi) < n. By induction hypothesis η(vi) is already defined
and η(v) := η(v1) · (v2). Obviously η is a morphism, because there is only one
decomposition of v into two factors.
2) Let T ∈ PB(X) and let l(T) denote the number of leaves of T. We want to
show that η is surjective by induction on l(T).
If l(T) = 1, then T has only one node and T = η(x) for some x ∈ X. If
l(T) > 1, then T = T1 · T2 with Ti ∈ PB(X) and L(T) = L(T1)ċupL(T2) and
thus l(T) = l(T1) + l(T2).
By induction hypothesis there are vi ∈ Mag(X) such that η(vi) = Ti. Then
η(v) = T, if v = v1 · v2.
3) using the argument in 2) one can also show that deg(v) = l(η(v)) for all v.
This proves statement (iii).
4) Assume that η is not injective. Then there are v, w ∈ Mag(X), v 6= w, such
that η(v) = η(w).
We choose the pair v, w such that n = deg(w) is minimal. Then n = deg(v) by
3) and n > 1, because for n = 1 the tree η(v) has only one node.
Let v = v1 ·v2, w = w1 ·w2 be decompositions in Mag(X) and η(vi) = Ti, η(wi) =
Si. Then T1 · T2 is isomorphic to S1 · S2. An isomorphism between T1 · T2 onto
S1 ·S2 maps the root of T1 ·T2 to the root of S1 ·S2 and obviously also the subtree
Ti of T to Si. Thus it induces isomorphisms Ti → Si. It follows that vi = wi, as
deg(vi) < n. This is a contradiction to the assumption v 6= w. 2

Let PB be the magma of finite planar binary rooted trees.
Let T ∈ PB and l(T) =: deg(T) = n. The set L(T) of leaves of T is a canonically
ordered set. This ordering is defined by induction on n. This is trivial for n = 1.
If n > 1 and T = T1 · T2 we may assume that the set L(Ti) of leaves of Ti is
already ordered. This leads to an order on L(T) = L(T1)∪̇L(T2) by define b1 < b2

for any b1 ∈ L(T1), b2 ∈ L(T2).

126

Lothar Gerritzen

Let now N be any magma and v1, ..., vn ∈ N.
We want to define T (v1, ..., vn) by induction on n.
If n = 1, then it is v1. If n > 1 and T = T1 · T2 then

T (v1, ..., vn) = T1(v1, ..., vn1
) · T2(vn1+1, ..., vn)

if n1 = deg(T1).
Informally T (v1, ..., vn) is the product of v1, ..., vn according to the bracketing
induced by the tree T ∈ PB.

3. Admissible orderings on free magmas

A well-ordering < on the free magma M = Mag(X) is called admissible, if

(i) Whenever a, b, c ∈ M and a < b, then ac < bc and ca < cb.

(ii) Whenever a, b ∈ M, then a < ab and a < ba.

We give the construction of an admissible ordering <deg,1 on M which will be
called the degree first factor ordering.
Fix a well-ordering on X.
Let v, w ∈ M, v 6= w.
Define v <deg,1 w, if deg(v) < deg(w).
Assume now that deg(v) = deg(w) = k.
Define v <deg,1 w, if v, w ∈ X and v is smaller than w relative to the fixed
ordering on X.
Assume now that v, w /∈ X. Then k > 1 and v = v1v2, w = w1w2 with vi, wi ∈ M
and deg(vi) < k, deg(wi) < k for all i.
By induction on k we define v <deg,1 w, if v1 <deg,1 w1 or v1 = w1 and v2 <deg,1 w2.
Then <deg,1 is a well-ordering because one can prove with induction on n that
any subset of {v ∈ Mag(X) : deg(v) = n} has a minimal element.

Assume that D is a subset of Mag(X) of elements of degree n. We prove by
induction on n that D has a minimal element relative to <deg,1 . If n = 1, it has
a minimal element, because D ⊆ X.
If n > 1 and k is the minimal degree of the first factors of the elements in D,
then k < n. Also the set Dk of all the first factors of elements from D of degree
k has a minimal element v. Let D̄ be the set of second factors of elements from
D whose first factor is v. By induction hypothesis D̄ has a minimal element w.
Then v · w is minimal in D.

In a similar way one can define a degree second factor order <deg,2 or Mag(X).

Let Mag′(X) be obtained from Mag(X) by adjoining a neutral element which
will be denoted by 1X or 1. It will be called magma with unit freely generated by
X. Any admissible order < on Mag(X) can be extended to Mag′(X) by defining
1 < v for any v ∈ Mag(X).

127

On Non-associative Gröbner Bases

4. Ideals in free magmas

Let N be a magma, a, b ∈ N.

Definition: b is called a multiple of a in N, if there is a sequence

p = (c0, ..., cr), r ≥ 0

such that c0 = a, cr = b, and ci+1 = ci · di or ci+1 = di · ci for all 0 ≤ i < r with
di ∈ M.

We call p also a path from a to b in N.
If b is a multiple of a in N, we also call a a divisor of b in N.

Let I ⊂ N, I 6= ∅.

Definition: I is called ideal in N of for all a ∈ I, b ∈ N, the elements a·b, b·a ∈ I.

It is easy to see that the set < a >N of all multiples of a ∈ N in N is an ideal
in N. It is the smallest ideal containing a and is also called the principal ideal
generated by a.
The multiples of v ∈ Mag′(X) in Mag′(X) are the multiples of v in Mag(X) if
v 6= 1. If v = 1 then all elements in Mag′(X) are multiples of v.

Proposition 4.1: Let I be an ideal in Mag′(X). There is a unique minimal
set Ω ⊂ I such that

I =
⋃

v∈Ω

< v >Mag′(X)

Ω is called the ideal basis of I.

Proof: If the neutral element 1X of Mag′(X) is contained in I, then I =< 1X > .
Assume now that 1X /∈ I.
Let

Ω := I − (I · Mag(X) ∪ Mag(X) · I)

It is the the union of I ∩ X with set of all

ω = v · w ∈ I

with v, w ∈ Mag(X) and v /∈ I or w /∈ I. I claim that I = ∪ω∈Ω < ω >
A obviously < ω > ⊂ I for all ω ∈ Ω ⊆ I.
Let now t ∈ I, deg(t) = n.
We show by induction on n, that t ∈< ω > for some ω ∈ Ω.
If n = 1, then t ∈ Ω. Consider now n > 1. If t /∈ Ω, there is a decomposition.

t = v · w

with v, w ∈ Mag(X) and v ∈ I or w ∈ I.
Thus v ∈< ω > or w ∈< ω > as deg(v) < n, deg(w) < n by the induction
hypothesis. But then clearly t ∈< ω > . 2

128

Lothar Gerritzen

There is the following combinatorial description of the principal ideals in Mag′(X).
Let v ∈ Mag′(X) and T = η(v) be the tree in PB(X) according to Prop. (2.2).
Let a be a node of T and Ta the subtree of T whose nodes consist of all nodes b
of T for which the simple path from the root of T to b passes through a.
If a is designed as root of Ta then Ta has a canonical structure of planar binary
rooted tree and va is the unique element in Mag(X) such that η(va) = Ta.

Proposition 4.2: The principal ideal in Mag′(X) generated by an element
t ∈ Mag(X) consists of all v ∈ Mag(X) for which there is a node a such that
va = t.

Proof: 1) Let a be a node of S1 · S2, Si ∈ PB(X). Then a is a node of S1 or of
S2 or it is the root of S1 · S2. If it is a node of Si, then (S1 · S2)≤a = (Si)≤a. If it
is the root of S1 · S2, then (S1 · S2)≤a = S1 · S2.
2) From 1) it follows easily that all the multiples S of T ∈ PB(X) in PB(X)
have a node a with S≤a = T.
3) Let T, S ∈ PB(X) and assume that there is a node a in S such that S≤a = T.
We prove that S is a multiple of T by induction on l(S). If a is the root of S,
then S≤a = S and T = S.
If a is not the root of S, then S = S1 · S2 and a is a root of Si for i = 1 or i = 2.
Then S≤a = (Si)≤a. As l(Si) < l(S) we may assume that Si is a multiple of T.
Then S is also a multiple of T. 2

Example: Let Ω := {xn · xm : n, m ≥} ⊆ Mag({x}). Then the magma ideal I
generated by Ω in Mag({x}) has Ω as basis, because if a is a node in the tree
η(xn · nm) = T, but not the root of T, then T≤a = η(xk) for some k. It follows
that xn · xm is not a multiple of xn′

· xm′

if (n′, m′) 6= (n, m). By Prop. (4.1) it
follows that I has no finite set of generators.
The following result is used in the proof of Prop. 4.3.

Lemma 4.1: Let q1, q2 be nodes of T ∈ B and assume that the subtrees T1 =
T≤q1

, T2 = T≤q2
of T have a common node.

Then T1, T2 can also be considered as elements of PB and then T1 is a divisor
or a multiple of T2 in PB.

Proof: Let v be a node in T which belongs to T1 and T2. Let P be the simple
path in T from the root of T to v. It passes through q1 and q2. If it first passes
through q1, then T2 ⊆ T1 and T2 is a divisor of T1 in B. Otherwise T1 ⊆ T2 and
T1 is a divisor of T2 in PB. 2

Proposition 4.3: Let w1, ..., wn ∈ Mag(X) and assume that wi is not a mul-
tiple of wj for all i 6= j.
Let < wi > be the principal ideal in Mag(X) generated by wi and

I =< w1 > ∩...∩ < wk > .

129

On Non-associative Gröbner Bases

Then I is an ideal in Mag(X) and v ∈ Mag(X) is in I if and only if there is a
tree T ∈ PB and u1, ..., un ∈ X ∪ {w1, ..., wk} of degree n such that

v = T (u1, ..., un)

and such that for all i there is a j with uj = wi.

Proof: 1) If v = T (u1, ..., un) with the properties in the statement above, then
v ∈< wi > for all i by Prop. (4.1). Thus v ∈ I.
2) Let v ∈ I and Q be the set of nodes q of the tree S = η(v) ∈ PB(X) for which
the subtree S≤q1

is contained in {η(w1), ..., η(wk)}. Then S≤q′ ∩S≤q = empty for
q 6= q′, see Lemma (4.1).
If we remove all non-root nodes of S≤q for all q, we get a tree T ∈ PB.
If the i-th leaf of T is a leaf of S, then we put vi = label of S at this leaf. If it is
q ∈ N, then vi := wj, if η(wj) = S≤q.
Then T (v1, ..., vn) = S and for any i there is j such that wi = vj. 2

5. Gröbner bases of ideals in free algebras

Denote by K{X} the magma algebra of Mag′(X) over a field K. This object
was studied by Kurosh in [K] and also occurs in the work of Lazard, [L]. A
K-vectorspace base of K{X} is Mag′(X).

Let I be a K-subvectorspace of K{X}

Definition: I is called ideal of K{X} if f · g, g · f ∈ I whenever f ∈ I and
g ∈ K{X}.

Let F ⊂ K{X}. There is a smallest ideal I(F) in K{X} which contains F.

Let f, g ∈ K{X}.

Definition: g is called a multiple of f in K{X}, if there is a sequence p =
(f0, f1, ..., fr), r ≥ 0, such that

(i) f0 = f, fr = g, fi ∈ K{X}.

(ii) fi = hi · fi−1 or fi = fi−1 · hi with hi ∈ K{X}.

Proposition 5.1: I(F) = K-vectorspace generated by
⋃

f∈F 〈f〉 where < f >
denotes the set of all multiples of f in K{X}.

Let < be an admissible order on Mag(X) and f ∈ K{X}, f 6= 0.
We denote the leading term of f relative to this order by f< and consider f< as
element in Mag(X). The leading coefficient of f is denoted by c(f) ∈ K.
Then the leading term of f − c(f) · f< is less than f<.
Let now I be an ideal in K{X}, I 6= {0} and F ⊂ I, 0 /∈ F. Then I< := {f< :
f ∈ I, f 6= 0} is a magma ideal in Mag(X).
At this point we do not assume F to be finite, because ideals in K{X} are
not always finitely generated even if]X = 1, see Example 2 in section 8 or the
Example after Proposition 4.2.

130

Lothar Gerritzen

Definition: F is called Gröbner bases of I, if the ideal I< is generated by F< :=
{f< : f ∈ F}.

Assume now for simplicity that c(f) = 1 for all f ∈ F.
Now we introduce a relations 7→F on K{X} which will be called the relation of
elementary reductions relative to F.
Let h ∈ K{X}, h 6= 0, and let w be a term in h whose coefficient cw(f) 6= 0.
Assume that f ∈ F and that the leading term f< of f is a factor of w in Mag(X).
Let p = (v0, v1, ..., vr) be the path from v0 = v to vr = f<.
We construct a sequence (f0, ..., fr) as follows: f0 := f and if fi−1 is already
defined and if vi = vi−1 · ui with ui ∈ Mag(X), then fi := fi−1 · ui.
If however vi = ui · vi−1 with ui ∈ Mag(X), then fi := ui · fi−1.
Then w is the leading term of fr and the coefficient of fr relative to the term w
is equal to 1.
Let h′ := h− cw(h) · fr. Then the coefficient of h′ relative to the term w is zero.
Define h 7→F h′, if h′ is obtained from h in the procedure constructed above.
Let 7→∗

F be the reflexive and transitive closure of 7→F and N(F) be the space of
all h ∈ K{X} for which no term of h with coefficient 6= 0 is a multiple of any
f<, f ∈ F.
N(F) is a vectorspace. It is called the space of normal polynomials with respect
to F.

Proposition 5.2: For any h ∈ K{X}, h 6= 0, there is h′ ∈ N(F) such that
h 7→∗

F h′.
We call h′ a normal form of h with respect to F. It is not uniquely defined by h
in general.

The importance of Gröbner bases can be seen in the following result, which
can be called the Macauly decomposition. Its proof is completely analog to the
commutative and non-commutative case, see[BW], [M], [MR].

Corollary 5.1: (i) N(F)⊕ I(F) = K{X}, if F is a Gröbner bases of I(F)

(ii) The restriction of the residue class homomorphism K{X} → K{X}/I(F)
onto N(F) is bijective.

Definition: A Gröbner basis G of an ideal I in K{X} is called reduced, if

(i) all polynomials g ∈ G are unitary

(ii) g<
1 6= g<

2 for g1, g2 ∈ G, g1 6= g2

(iii) {g< : g ∈ G} is the basis of the magma ideal I<.

(iv) if t is a term occuring in g − g<, then t /∈ I<.

131

On Non-associative Gröbner Bases

It is easy to check that any ideal has a unique reduced Gröbner bases.
Reduced non-associative Gröbner bases have appeared in a formula for the
Hilbert series of graded algebras, see [G2]. It expresses the Hilbert series of
any graded algebra of finite type through the series

q(ζ) =
1

2
(1 −

√

1 − 4ζ)

and the generating series of a reduced Gröbner bases for the relation ideal with
respect to a system X of homogeneous algebra generators. More precisely it has
the form

1 + q(GX(ζ) − GΓ(ζ))

where GX is the generating series of X and GΓ is the generating series of a
minimal Gröbner basis of the ideal of relation in K{X} with respect to degree,
see [G2], Proposition (3.1).

Remark: The theory of Gröbner bases should also be presented in free algebras
over rings, for example over Zacharias rings. This can be done by using methods
from [GTZ]

6. The criterion of Buchberger

Let F ⊆ K{X} and assume that all f ∈ F are unitary, i.e. c(f) = 1.
Let f, g ∈ F, f 6= g.

We want to define the s-polynomial spol(f, g) of f and g.
Case 1: f< is a factor of g<.
Let p = (v0, ..., vr) be the path between f< and g<.
Then a sequence (s0, ..., sr) is defined by putting s0 = f. It si−1 is already defined,
then

si = uisi−1 if vi = uivi−1

si = si−1ui if vi = vi−1ui

Then

spol(f, g) := sr − g

Case 2: g< is a factor of f<.
Then spol(f, g) := −spol(g, f).
Case 3: g< is not a factor and not a multiple of f<. Then spol(f, g) := 0.

The following statement is the generalization of the classical criterion of Buch-
berger.
It is simple because there are no overlaps as in the non-commutative case.

132

Lothar Gerritzen

Proposition 6.1: F is a Gröbner basis of I = I(F), if spol(f, g) 7→∗
F 0 for all

f, g ∈ F, f 6= g.

Proof: 1) Let f1, ..., fr ∈ K{X}, vi = f<
i ∈ Mag(X) and assume that no vi is a

proper multiple of vj in Mag(X) for all i and j. Let h = h1+...+hr, hi ∈< fi >:=
ideal in K{X} generated by fi and hi 6= 0 for all i.
Let m := maxr

i=1(h
<
i). We may assume that h<

i = m for 1 ≤ i ≤ r′ and h<
i < m

for r′ < i ≤ r. Then r′ ≥ 2.
From Proposition (4.3) we get a finite, planar binary rooted tree T ∈ PB of
degree n and u1, ..., un ∈ {v1, ..., vr} ∪ (X) such that

m = T (u1, ..., un)

and for each i ≤ r′ there is an index j such that uj = vi.
Let now ũi := fj if ui = vj and let ũi = ui, if ui /∈ {v1, ..., vr}. Then m̃ :=
T (ũ1, ..., ũn) ∈ K{X} and m̃ ∈< fi > for i ≤ r′.
For any i, 1 ≤ i ≤ r′, there is λi ∈ K such that c(hi) = λi. We put λi = 0 for
i > r′ and let h̃i := hi − λim̃.
Then h̃i ∈< fi > for all i because one can check that h<

i ∈< vi > for 1 ≤ i ≤ r′.

Assume now that h< < m. Then
∑r′

i=1 λi = 0 and
∑r

i=1 h̃i = h.

It is easy to check that h̃<
i < m for all i.

By using this construction several times we obtain a decomposition

h = h′
1 + ... + h′

r

with h′
i ∈< fi > and (h′

i)
< = h< for some i, (h′

j)
< ≤ h< for all j.

2) Let G := {g ∈ F : no proper factor of g in Mag(X) is contained in F<}.
Using the construction in 1) we can prove that G is a Gröbner basis of the ideal
I(G) generated by G. By induction on deg(f) and the fact that f can be reduced
relative to G to zero one can show that F ⊆ I(G).
Thus F is Gröbner basis of I(F) = I(G). 2

Corollary 6.1: Let f1, ..., fr ∈ K{X}, fi 6= 0, fi ∈ Mag(X) and assume that
f<

i is not a divisor of f<
j for i 6= j in Mag(X). Then {f1, ..., fr} is a Gröbner

basis of the ideal in K{X} generated by f1, ..., fr.

Remark: It seems to be of interest to extend the notion of Gröbner bases to
more general objects in universal algebra, see [BS], Chap. II, §1, §10.
A case of particular importance seems to be the algebra whose system of mono-
mials is the set P of all planar rooted trees, which are not necessarily binary.
The grafting defines n-ary operations P n → P for all n ≥ 1.
The automorphism group of the power series version of this algebra is the dual
to the Hopf algebra considered in [CK] for applications in quantum field theory.

133

On Non-associative Gröbner Bases

7. Algorithm

Let F = {f1, ..., fn} be a system of polynomials in K{X}, fi 6= 0, and I = I(F)
the ideal generated by F.
We want to sketch the quite simple algorithm to compute a Gröbner basis for I.
If vi = f<

i and vi is not a multiple of vj for i 6= j, in Mag(X), then F is a
Gröbner basis of I by Corollary (6.1).
Otherwise we choose a pair (i, j), i 6= j, such that vi is a divisor of vj.
Let f ′

j be a normal form of fj relative to {fi}. Then the leading term of f ′
j is

smaller than vj.
Let F ′ := {f ′

1, ..., f
′
n} with f ′

i := fi for i 6= j.
Then I(F) = I(F ′). We repeat the procedure just described for F now with F ′.

Thus we get a sequence F (k) = {f
(k)
1 , ..., f

(k)
n }, n ≥ 1, with (F (k))′ = F (k+1) as

long as F (k) does not satisfy the assumption of Corollary (6.1).
This sequence cannot be infinite. If it would be infinite, there would exist an
index i such that the leading term v

(k)
i of f

(k)
I would not be constant as function

of k. As it is decreasing, this is a contradiction to the well-ordering property of
< .

Remark: The procedure just described can sometimes also be applied if F is
infinite in cases where it is given by ”regular” expressions.
It leads to theoretical results as in section 8, Exercise 2.

8. Examples

Example 1: Three-dimensional algebras

Let f1 = x3 − α, f2 =3 x − β, f3 = x2 · x2 − γ with α = α0 + α1x + α2x
2, β =

β0 + β1x + β2x
2, γ = γ0 + γ1x + γ2x

2 ∈ K{X} where x3 = x · x2,3 x = x · x2.
Then f1, f2, f3 is a Gröbner basis of the ideal generated by fi, f2, f3 in K{X}
and A = K{X}/I is a three-dimensional K-algebra with K-base 1, x̄, x̄2.
The left multiplication by a = a0 + a1x̄ + a2x̄

2 is given by the matrix

ma =





a0 a2β0 a1α0 + a2γ0

a1 a0 + a2β1 a1α1 + a2γ1

a2 a1 + a2β2 a0 + a1α2 + a2γ2





and det(ma) is a homogeneous polynomial of degree 3 in the variables a0, a1, a2.
If the set of zeros in the projective plane of this form has no K-rational point,
then A is a division algebra.
It seems interesting to determine all α, β, γ ∈ Q{x} for which A is a division
algebra.

Example 2: Non-associative relations for the free associative algebra
Let Mon(X) be the monoid freely generated by X. There is a canonical mor-
phism η : Mag(X) → Mon(X) such that η(x) = x for all x ∈ X. In [R],

134

Lothar Gerritzen

(4.1), η(w) is called the foliage of w ∈ Mag(X). There is a unique morphism
deg : Mon(X) → (N, +) such that deg(1) = 0, deg(x) = d(x) for all x ∈ X.
The associative K-algebra K〈X〉 with unit freely generated by X is the monoid
algebra K[Mon(X)] of Mon(X) over K.
The morphism η : Mag(X) → Mon(X) extends to a K-algebra homomorphism
η̄ : K{X} → K〈X〉. If Ja = ker(η̄) then Ja is a ideal in K{X} and K〈X〉 ∼=
K{X}/Ja.
Let now < be the degree first factor ordering constructed in section 3.
Let w = x1x2...xn ∈ Mon(X) be a word of lenght n ≥ 1, xi ∈ X for all i. Define
c(w) = x1 if n = 1 and c(w) := x1 · c(x2 · ... · xn) ∈ Mag(X). It is easy to check
that c(w) ≤ v for all v ∈ Mag(X) with η(v) = w.
Let r ≥ 3 and Γr := {c(v)c(w) − c(vw) : v is a word of lenght n ≥ 2, n < r and
w is a word of lenght r − n over X}. One can show

Proposition 8.1: Γ := ∪∞
r=3Γr Gröbner basis of Ja.

Proof: 1) For any v ∈ Mag(X) let |v| be the underlying planar binary tree in
Mag({ζ}) of v.
Then gv := v− c(η(v)) = 0 if and only if |v| is a right comb ζn defined by ζ1 = ζ
and ζn := ζ · ζn−1 for n > 1. Also c(η(u)) = |v|(u1, ..., un) if η(v) = u1u2, ...un ∈
Mon(X) with ui ∈ X.
Then g<

v = v, if gv 6= 0.
It is easy to check that the system

{gv : v ∈ Mag(X), gv 6= 0}

is a K-basis of Ja.
Also J<

a = {v ∈ Mag(X) : |v| is not a right comb}. J<
a is a magma ideal in

Mag(X) because |v1 · v2| = |v1| · |v2| and |v1 · v2| is a right comb only if |v1| = ζ
and |v2| = ζn−1 for some n.

2) Let Ω be the minimal set of generators of J<
a .

We show that Ω = Γ.
Let t ∈ J<

a , t = t1 · t2. If t ∈ Ω, then both t1, t2 /∈ J<
a and |t1|, |t2| are both right

combs in Mag({ζ}). In this case ti = c(η(ti)) and t ∈ Γ.
If t ∈ Γ, then obviously t = t1 · t2 with t1, t2 /∈ J<

a and |t1|, |t2| are right combs.
If t is a proper multiple of some v ∈ J<

a , then |v| is a factor of |t1| or |t2| and is
thus also a right comb.
This is a contradiction which shows that t ∈ Ω. 2

Example 3: Free alternative algebras
Let Ialt(X) be the ideal in K{X} generated by the following system of elements:
f 2g − f(fg), (fg)f − f(gf), (fg)g − fg2

for all f, g, h ∈ K{X}. The algebra Alt(X) := K{X}/Ialt(X) is called the
alternative algebra freely generated by X.

135

On Non-associative Gröbner Bases

A theorem of Artin, see [KS], (2.3), p. 224, states that Alt(x), Alt({x, y}) are
associative, but Alt(X) is not associative if]X ≥ 3.
We raise the question to determine a Gröbner basis for Ialt(X).
The algebra of Cayley numbers is alternative and generated by three elements
i, j, l. What is the reduced Gröbner basis of the ideal of relations?

References

[B] Bourbaki, N.: Algebra, Chap. I - Chap. X, Hermann, Paris, 1971

[Bu] Buchberger, B.: An Algorithm for Finding a Basis for the Residue Class
Ring of a Zero-Dimensional Polynomial Ideal (German), PhD Thesis,
University of Innsbruck, Institute for Mathematics, 1965

[BF] Brouder, Ch. - Frabetti, A.: QED Hopf algebras on planar binary trees,
Preprint, Universitäten Paris / Lyon, December 2001

[BS] Burris, S. - Sankappanavar, H. P.: A course in Universal Algebra,
http:// www.thoralf.uwaterloo.ca/htdocs/ualg.html

[BW] Becker, T. - Weispfennig, V.: Gröbner Bases: A Computational Ap-
proach to Commutative Algebra, Springer-Verlag, New York, 1993

[CK] Connes, A. - Kreimer, D.: Renormalization in quantum field theory and
the Riemann-Hilbert problem I: the Hopf algebra structure of graphs
and the main theorem, Comm. Math. Phys. 210 n.1, 249-273, 2000

[CP] Cannon, J. J. - Playoust, C.: An Introduction to Algebraic Program-
ming with Magma, University of Sydney, 1997

[DG] Drensky, V. - Gerritzen, L.: Non-associative exponential and logarithm,
Manuskript 2002

[G1] Gerritzen, L.: Grundbegriffe der Algebra, Vieweg, 1994

[G2] Gerritzen, L.: Hilbert series and non-associative Gröbner bases,
manuscripta math. 103, 161-167, Springer-Verlag, Heidelberg, 2000

[GH] Gerritzen, L. - Holtkamp, R.: Co-Addition for Free Non-Associative
Algebras and The Hausdorff Series, Manuskript 2002

[GK] Ginzburg, V. A. - Kapranov, M. M. : Koszul duality for operads, Duke
Math. J. 76, 1994

[GTZ] Gianni, P. - Trager, B. - Zacharias, G. : Gröbner bases and primary
decomposition of polynomial ideals, J. Symbolic Comput. 6, no. 2-3, p.
149-167, 1988

136

Lothar Gerritzen

[H] Harary, F.: Graph Theory, Addison-Wesley, London, 1968

[K] Kurosh, A.: Non-associative free algebra and free products of algebra,
Res. Math. (Mat. Sbornik) N.S. 20(62), (1947), 238-262

[Kn] Knuth, D.E.: The Art of Computer Programming, Vol. 1, Fundamental
Algorithmus, Reading, Addison-Wesley, 1973

[KS] Kuzmin, E.-N. - Shestakov, I.P. : Non-Associative Structures, in: En-
cyclopedia of Mathematical Sciences, Vol. 57, Algebra VI (Kostrikin -
Shafarevich Eds.), Vol. 57, Springer-Verlag, 1995

[L] Lazard, M.: Lois de groupes et analyseurs, Ann. Ecole Norm. Sup.
Paris, 72 (1955)

[M] Mora, T.: An introduction to commutative and non-commutative
Groebner baes, Theor. Comp. Sci. 134, p. 131-173 (1994)

[MR] Madlener, K. - Reinert, B.: Computing Gröbner bases in monoid and
groups rings, Proc. ISSAC ’93, p. 254-263, ACM (1993)

[LR] Loday, J.L.- Ronco, M.O.: Hopf algebra of the planar binary trees, Adv.
Math. 139, 293-309, 1998

[R] Reutenauer, C.: Free Lie Algebras, Oxford Univ. Press, 1993

[S] Shafarevich, I.R.: Basic Notions of Algebra, in: Encyclopaedia of Math-
ematical Sciences, Vol. 11, Algebra I, (Kostrikin, A.I. - Shafarevich
Eds.), Springer-Verlag, 1990

Address: Prof. Dr. Lothar Gerritzen

Ruhr-Universität Bochum
Fakultät für Mathematik
D 44780 Bochum
Germany

137

Incremental Decoding ∗

P. Gianni1 and B. Trager2

1Dipartimento di Matematica, Via Buonarroti 2, 56127 Pisa, ITALY
2IBM T.J.Watson Research Center, 1101 Kitchawan Road, Route 134,

Yorktown Heights, NY 10598, USA

Abstract

In this paper we examine a group of decoding algorithms which can be

characterised as being incremental, in that they update the solution to a

previous decoding problem to produce the solution to a new one. Our main

contribution is to show that all of these algorithms can be unified under

the notion of adding a linear constraint to a solution module. Gröbner

bases are used not as a technique for constructing such bases, but as a

framework for proving properties about them.

KEYWORDS: Error Correcting Codes, Groebner Bases, Reed-Solomon

codes, Erasure Decoding, Burst Decoding, Free Modules

1. Introduction

The decoding process for alternant error correcting codes (which include Reed-
Solomon and BCH codes as special cases) is reduced to the resolution of a con-
gruence equation, called the key equation, which is of the form p ≡ qs(modxt),
where p, q, s ∈ F [x], t ∈ N, and F is a finite field. Using syndromes computed
from the received block of symbols, we get the syndrome polynomial s, while p
and q represent the error evaluator and error locator polynomial, respectively.
The desired solutions (p, q) must satisfy the degree constraint deg p < deg q.
The term erasures indicates potential error positions whose locations are known,
represented as roots of a polynomial ψ, and in this case we require the solutions
(p, q) to satisfy ψ|q.
In both cases we want that deg q is minimal among all the solutions. As already
remarked by some authors (1),(2), this problem can be rephrased in terms of
Gröbner bases of submodules of A2 = F [x] × F [x] with respect to a suitable

∗This research was partially performed with the contribution of M.U.R.S.T.

138

Incremental Decoding

module term order such that the desired solution appears in a Gröbner basis for
the module.

In this paper we examine a group of decoding algorithms which can be char-
acterised as being incremental, in that they update the solution to a previous
decoding problem to produce the solution to a new one. While most of these ba-
sic algorithms have appeared before (5), (4), they were each accompanied by a
long, complicated ad-hoc proof of correctness. Our main contribution is to show
that all of these algorithms can be unified under the notion of adding a linear
constraint to a solution module. Gröbner bases are used not as a technique for
constructing such bases, but as a framework for proving properties about them.
Thus we use the theory of Gröbner bases of modules to prove the correctness of
our constructions. At the end of the paper we include an application to burst
error correction, which shows how our incremental algorithms can be combined
to yield a new efficient solution to an important practical problem in coding
theory.

2. Linear Constraints

Let F be a finite field, A = F [x] and A2 = A × A the free module of rank 2
over A. Let T be the set of terms in A2, i.e. the set of elements of the form
{(xi, 0), (0, xj) | i, j ∈ N}, so that every element m ∈ A2 can be written in a
unique way as a linear combination of terms with coefficients in F . We define a
total ordering < on the set of terms T as follows:

Definition: (a1, b1) < (a2, b2) ⇐⇒

• deg a1 < deg a2 if b1 = b2 = 0

• deg b1 < deg b2 if a1 = a2 = 0

• deg a1 < deg b2 if b1 = a2 = 0

Given any element m ∈ A2, we define lt(m) as the largest term appearing in its
representation, and naturally extend the ordering from T to A2. For m ∈ A2,
if lt(m) = (xp, 0) (resp. (0, xq)) we say that m has its leading term on the left
(resp. on the right). We will say that two elements m1,m2 ∈ A2 have leading
terms on opposite sides if one has its leading term on the left and the other has
its leading term on the right. This property is used to characterize a Gröbner
basis for a submodule M ⊂ A2.

It is well known (6) that if M ⊂ A2 is a submodule, then M is a free-module
of rank ≤ 2. In the rest of the paper we will restrict our considerations to
submodules of rank equal to 2.

Proposition 2.1: Let M be a submodule of (A2, <) then we have:

• Any pair of elements of M with leading terms on opposite sides and of
minimal degrees forms a Gröbner basis.

139

P. Gianni, B. Trager

• Any basis of M whose leading terms are on opposite sides is a Gröbner
basis.

Remark: We define minimal element in M , any element whose leading term is
a minimal element in the set of all the leading terms of elements of M , Lt(M).
Any such element is unique up to scalar multiple.

In all the applications we have in mind, we will describe a module containing
all solutions to a given equation, and we are interested in elements (a, b) such
that deg a < deg b and deg b minimal. Under our choice of ordering, such a
pair will have its leading term on the right. A reduced Gröbner basis for the
module will have exactly one element with leading term on the right and will
have minimal degree among such elements. Thus we are guaranteed to find the
sought for minimal solution in a Gröbner basis. The question of uniqueness is
addressed in the following proposition:

Proposition 2.2: If {(aL, bL), (aR, bR)} are a reduced Gröbner basis for a mod-
ule with (aL, bL) having leading term on the left and (aR, bR) having leading term
on the right, then:

• deg bR is minimal among all elements having leading term on the right.

• (aR, bR) < (aL, bL) ⇐⇒ deg bR ≤ deg aL. In this case all minimal elements
on the right are of the form c(aR, bR) for c ∈ F .

• (aR, bR) > (aL, bL) ⇐⇒ deg bR > deg aL. In this case if we let d =
deg br − deg aL, then all minimal elements on the right can be expressed as
c(aR, bR) + p(aL, bL) where c ∈ F and p ∈ A | deg p < d.

Thus we see that in the non-unique case we can parametrize the space of
minimal solutions. This can be exploited for list decoding.

From proposition 1 it follows that if we want to compute a Gröbner basis for
M and we are given a set of generators, we don’t need the complete version of
Buchberger’s algorithm, but only to reduce the generators until we find those of
minimal degrees.

We will need the concept of the discriminant of a module M . As said before
we will restrict ourselves to the case of submodules of A2 of rank 2.

If M ⊂ A2 is a submodule of rank 2 and B = {m1,m2} is a basis for M , we
can express m1 and m2 in terms of a basis E = {e1, e2} of A2. We can assume
that E is the canonical basis e1 = (1, 0) and e2 = (0, 1). In this way

m1 = b11e1 + b21e2

m2 = b12e1 + b22e2.

The 2×2 matrix B = (bij) is called the relationmatrix of the basis B in terms
of the basis E , when E is the canonical basis of A2 we will omit the reference to
E .

140

Incremental Decoding

Definition: Given a submodule M of A2 with basis B = {m1,m2}, the discrimi-
nant of B, denoted by discr(B), is the element of A given by the determinant of
the relation matrix B of the basis B. Moreover we define the discriminant of M
the ideal of A generated by discr(B).

Remark that the discriminant of M is independent of the chosen basis. We
will use the following properties of the discriminant:

Proposition 2.3: Let M ⊆ N be submodules of rank 2 of A2, then

(i) discr(N)|discr(M)

(ii) M = N if and only if discr(M) = discr(N)

The following definitions and properties are the basis for our construction.

Definition: Let M ⊂ A2 be a submodule of rank 2, α ∈ F . Any A-linear map
from M to A followed by evaluation at α will be called a linear constraint at α,
Lα. We define M̃Lα

= {m ∈M |L(m) = 0} = Ker(Lα).

Remark: M̃Lα
is a submodule of M which is free of rank 2 since it contains

(x− α)M .

We will show how to construct a set of generators and then a Gröbner basis
for M̃Lα

from a Gröbner basis for M .

Proposition 2.4: Let M̃Lα
⊂ M be the submodule of M defined by a linear

constraint Lα, α ∈ F , assume that Lα(M) 6= 0 and let B = {m1,m2} be a
basis for M . Then if we define: bi = (x − α)mi, i = 1, 2 and b3 = Lα(m2)m1 −

Lα(m1)m2 the set {b1, b2, b3} is a set of generators for M̃Lα
.

Proof: Consider m ∈ M̃Lα
, there exists d1, d2 ∈ A such that m = d1m1 + d2m2.

It is possible to find si ∈ A and ri ∈ F such that di = si(x− α)− ri for i = 1, 2.

Hence n = m− (s1b1 + s2b2) = r1m1 + r2m2 ∈ M̃Lα
. From the assumption that

Lα(m) = 0 and the definition of b3 it follows that there exists k ∈ F such that
n = kb3. 2

Proposition 2.5: Let M ⊂ A2 be a submodule of rank 2, let B = {m1,m2}
with m1 < m2 be a Gröbner basis of M with respect to <, let Lα be a linear
constraint and M̃Lα

= Ker(Lα). Let

{b1 = (x− α)m1

b2 = (x− α)m2

b3 = Lα(m2)m1 − Lα(m1)m2}

be the set of generators for M̃Lα
as given in the previous proposition. Define

n2 = b3 and n1 as follows:

141

P. Gianni, B. Trager

• If Lα(m1) 6= 0 then n1 = b1

• If Lα(m1) = 0 then n1 = b2

then {n1, n2} is a Gröbner basis for M̃Lα
.

Proof: Since {m1,m2} is a Gröbner basis for M , m1 and m2 have leading terms
on opposite sides. We also notice that

Lα(m1)b2 = Lα(m2)b1 − (x− α)b3

So if Lα(m1) 6= 0 then {b1, b3} forms a basis for M̃Lα
, while if Lα(m1) = 0 then

{b2, b3} forms a basis. In both cases by construction the sets constructed have
leading terms on opposite sides and thus by proposition 1 form a Gröbner basis.
2

We want to use these results to solve the following problems.

• solve the key equation with one additional erasure

• solve the key equation with one fewer erasure

• solve the key equation with one additional syndrome

• interpolate a rational function through one additional point

For all of these problems we assume we have a Gröbner basis for the module of
solutions and want to update the solution to incorporate an additional constraint.
We will see how each of the problems can be characterized as the submodule
given by the kernel of a suitable linear constraint.

We remark that the set {(s, 1), (xt, 0)} is a basis for the module M of solutions
of the key equation

p ≡ qs(modxt), where p, q, s ∈ F [x]

Moreover if we have erasures and ψ, is the polynomial reperesenting them, then
we can consider as a basis the set {(sψ, ψ), (xt, 0)}. If this is the case then
discr(M) = xtψ.

We will assume that the erasures are such that ψ is a square-free polynomial
and ψ(0) 6= 0. We will say that an erasure at α is simple if α is a non-zero
simple root of the erasure polynomial. To add or remove an erasure at α ∈ F ∗ is
equivalent to multiply or divide ψ by (x−α). Our assumption that ψ is square-
free implies that whenever we remove an erasure at α, then (x − α)||discr(M)
(i.e. α is also a simple root of discr(M)).

3. Adding one erasure

Let b = qψ ∈ F [x] be the product of the error locator and erasure polynomial.
Given α ∈ F ∗ such that ψ(α) 6= 0 and given a Gröbner basis for the module

M = {(a, b) ∈ A2 | a ≡ bs mod xt}

142

Incremental Decoding

we wish to find a basis for:

M̃ = {(a, b) ∈M | b(α) = 0}

i.e. we want to identify the submodule of M corresponding to error locator
polynomials which vanish at α, so we have an additional erasure at α.

We can identify M̃ as the kernel of a linear constraint defining Lα(a, b) = b(α).

By definition then Ker(Lα) = M̃ and Proposition 1.5 furnishes a basis {n1, n2}

for M̃ .
Using the definitions of {n1, n2} it easy to see that discr(M̃) = (x−α)discr(M).

4. Removing one erasure

In this section we want to show how to “remove an erasure”, i.e. given a module
M̃ , with a simple erasure at α, we want to construct a module M such that
M̃ ⊂M and M̃ is obtained from M by imposing precisely an additional erasure
at α.

Since M̃ has an erasure at α we have that:

M̃ ⊂ {(a, b) ∈ A2 | a ≡ bs mod xt and b(α) = 0}

and our assumption that the erasure is a simple implies that (x−α)||discr(M̃).
Consider the map φα : A2 7→ A2 given by

φα(a, b) = ((x− α)a, (x− α)b),

and define

M = {(a, b) ∈ A2 |φα(a, b) ∈ M̃},

N = {(a, b) ∈M | b(α) = 0},

M̃0 = {(a, b) ∈ M̃ | a(α) = 0}.

By definition M̃0 ⊂ M̃ ⊂ N , M̃0 = φα(M) = (x− α)M and N is the module
obtained from M by adding an erasure at α.

We want to show that M̃ = N . Since M̃ ⊂ N we can use Proposition 1.3 and
property (ii) of the discriminant. We have

• discr(N) = (x − α)discr(M) and discr(M̃0) = (x − α)discr(M̃), since

N (resp. M̃0) is obtained from M (resp. M̃) by adding a proper linear
constraint at α.

• discr((x− α)M) = (x− α)2discr(M).

143

P. Gianni, B. Trager

From these releation then it follows that:

(x− α)2discr(M) = discr(M̃0) = (x− α)discr(M̃)

and hence that

discr(N) = (x− α)discr(M) = discr(M̃)

which guarantees that M̃ = N .
Finally we remark that, by definition, M is the biggest submodule of A2 such

that by adding an erasure produces the given module M̃ .
We remark also that in order to construct a Gröbner basis for M we can use

Proposition 1.5. Since M̃0 = (x− α)M , at first we construct a basis {n1, n2} for

M̃0 from a basis of M̃ using proposition 1.5 with the linear constraint Lα(a, b) =

a(α) for (a, b) ∈ M̃ . Thus { n1

(x−α)
, n2

(x−α)
} provides a basis for M .

5. Adding one syndrome

In this case we want to solve the congruence for a higher power of x, i.e. we have
a basis for the module

M = {(a, b) ∈ A2 | a ≡ bs mod xn}

and we want to solve the same congruence with n replaced by n+ 1. (a, b) ∈M

implies that xn|a − bs. Consider the A-linear map L : (a, b) 7→ a−bs
xn

and then
the F -linear map L0 which is L followed by evaluation at 0. Thus we have that
Ker(L0) gives the submodule of M which satisfies a ≡ bx mod xn+1. Although
(1) also solves this problem using Gröbner theory, we obtain an automatic proof
of correctness via linear constraints.

6. Interpolating through one additional point

The Berlekamp-Welch decoding algorithm leads to the following rational function
interpolation problem, we are given x1, . . . , xn and y1, . . . , yn with xi, yi ∈ F and
we have a basis for the module

M = {(a, b) ∈ A2 | a(xi) = yib(xi) for 1 ≤ i ≤ n}

Given xn+1, yn+1 ∈ F we want to identify the submodule {(a, b) ∈M | a(xn+1) =
yn+1b(xn+1)}. Here we define the A-linear map L : (a, b) 7→ a − yn+1b and then
the F -linear map Lxn+1

which is L followed by evaluation at xn+1. Thus we have
that Ker(Lxn+1

) gives the submodule of M which satisfies a(xn+1) = yn+1b(xn+1).
Although (3) also gives a Gröbner approach for solving this problem, our solution
is more direct and simpler using our notion of linear constraints.

144

Incremental Decoding

7. Burst correction

An error burst is defined as a contiguous sequence of symbols potentially in er-
ror. Assuming the existence of such a burst at a particular starting location is
the same as imposing erasures and thus allows one to correct additional errors as
long as more than half of the locations in the burst are in fact in error. If we have
at most r errors which lie outside a fixed contiguous burst sequence of length b,
then we can correct all the errors as long as b+ 2r ≤ t where t is the number of
syndromes. If we require b+2r < t then we can use the extra constraint to search
for candidate burst start locations. This search can be conducted efficiently by
sliding an erasure burst of length b across the received block of symbols. Assum-
ing we have computed the key equation solution module corresponding to an
erasure burst starting at the first position, we can successively slide this burst
one position to the right by removing the erasure at the beginning of the burst
and adding a new erasure at the end. For each candidate burst start location,
we check to see if the the error locator from our module generators has degree
at most r+ b and divides x(l−1) − 1 where l is the order of our symbol field. This
test guarantees that the roots of the error locator polynomial are valid positions
within our symbol block. Each position where the error locator passes this test
gives us a candidate codeword. Thus we can produce a list of feasible codewords
to be passed to some additional discriminating procedure. Since burst errors are
in fact a common cause of decoding failure in many practical situations, this can
provide a successful recovery from decoder failure. Note that our unified frame-
work for adding and removing erasures has allowed us to develop an incremental
decoding algorithm which is much more efficient than the classical approach of
separately constructing a burst of erasures at each possible starting location.

8. Conclusions

We have shown that using the framework of Gröbner bases for modules along
with the notion of submodules satisfying linear constraints, allows a unified
derivation of many incremental decoding algorithms. This unified framework
allows us to guarantee that the various individual algorithms can be intermixed,
yielding a novel approach for burst error correction.

Since the use decoding modules allows us to parameterize the space of solutions
to the key equation, one can attempt to explore this solution space to generate
a list of candidate codewords whose distance from the received data exceeds
the error correcting radius of the code. This is a possible direction for future
research.

References

[1] P.Fitzpatrick, “On the Key Equation”, IEEE Trans. on Information The-
ory, vol 41, no 5, 1995, pp. 1290–1302.

145

P. Gianni, B. Trager

[2] P.Fitzpatrick, “Errors-and-erasures decoding of BCH codes”, IEE Proc.
Commun., Vol 146, No 2, 1999, pp. 79–81.

[3] S.M.Jennings, “Gröbner basis view of Welch–Berlekamp algorithm for
Reed–Solomon codes”, IEE Proc. Commun., Vol 142, No 6, Dec. 1995, pp.
349–351.

[4] N. Kamiya, “On multisequence shift register synthesis and generalized-
minimum-distance decoding of Reed-Solomon codes”, Finite Fields and
Their Applications, vol 1, no. 4, pp. 440-457, Oct. 1995

[5] R. Kötter, “Fast Generalized Minimum–Distance Decoding of Algebraic–
Geometry and Reed–Solomon codes”, IEEE Trans. on Information Theory,
vol 42, no. 3, May 1996, pp. 721–737.

[6] S.Lang, Algebra, Addison-Wesley, 1984.

146

∗

On Inverse Systems and Squarefree
Decomposition of

Zero-Dimensional Polynomial
Ideals

To Bruno Buchberger on the occasion of his sixtieth birthday

WERNER HEIß1 , ULRICH OBERST2 AND FRANZ PAUER3

Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck,
Austria.

1Werner.Heiss@uibk.ac.at
2Ulrich.Oberst@uibk.ac.at
3Franz.Pauer@uibk.ac.at

Abstract
We show how to compute a basis of the inverse system of an arbitrary zero-
dimensional ideal over an arbitrary field and present an algorithm to compute
the squarefree decomposition of these ideals.

KEYWORDS: inverse system, polynomial ideal, squarefree decomposition

1. Introduction
Let F be an arbitrary field, n a positive integer, F [s] := F [s1, . . . , sn] the polynomial
algebra in n indeterminates. Let I be an ideal in F [s] with radical R :=

√
I . We

assume that I is zero-dimensional or, equivalently, that the algebra F [s]/I is finite-
dimensional as F -vector space.

By I⊥ we denote the F -vector space of all linear functions ϕ ∈ HomF (F [s], F)
whose kernel contains I, i.e. ϕ|I = 0. Then I⊥ is the inverse system (7) of I . A dual
basis of I is an F -basis of the vector space I⊥.

In (9; 10; 11; 12; 13; 16) algorithms to compute a dual basis of I have been pre-
sented under the assumption that the set of zeroes of I is known and contained in F n.

∗This work was supported by the Austrian FWF through grant P15031.

147

Inverse Systems and Squarefree Decomposition

In section 2 we show how to compute a dual basis of an arbitrary zero-dimensional
ideal over an arbitrary field. This method has its origin in (14) (see also (15)).

The inverse system I⊥ is an F [s]-submodule of HomF (F [s], F). Section 3 contains
an algorithm to compute a system of F [s]-generators of I⊥ which has minimal length
if I is primary with rational radical.

In section 4 we generalise the well-known notion of squarefree decomposition of a
univariate polynomial to the case of zero-dimensional ideals.

In section 5 we apply results of the previous sections to develop an algorithm to
compute this decomposition. As in the case of univariate polynomials this decompo-
sition can be computed without any assumptions on the field and without knowing the
primary decomposition or the zeroes of I .

The algorithms of this paper use Buchberger’s theory of Gröbner bases (see (2; 3;
4)). We used Maple 8 and CoCoA 4 to compute the examples.

The inverse system I⊥ is a special case of a multi-dimensional system or behaviour
which are studied in (14; 15) and many other papers in system theory.

The results of sections 2 and 3 have been presented at the Rhine Workshop on
Computer Algebra in Mannheim (6).

Finally, we announce results which will be contained in an extended version of this
paper. We give a formula for the minimal length of a system of F [s]-generators of I⊥

and a characterisation of this number in terms of the socle of the F [s]-module F [s]/I .
If the primary decomposition of I is known a system of F [s]-generators of minimal
length can be computed. Moreover, we describe the F [s]-module I⊥ by generators and
relations and give an algorithm to compute the coefficients of an element ofI⊥ with
respect to a given system of generators. We also construct all commutative Frobenius
algebras with their Frobenius homomorphism or residue.

2. An F -basis of I⊥

Let ≤ be a term order on Nn and let deg(g) ∈ Nn be the degree of g ∈ F [s] with
respect to ≤. We denote by

Γ := Nn \ deg(I)

the complement in Nn of the set of all degrees of non-zero polynomials in I . Since I
is zero-dimensional the set Γ is finite.

Then
F [s] = I ⊕

⊕

γ∈Γ

Fsγ.

Hence we get elements of I⊥ by extending linear maps from
⊕

γ∈Γ Fsγ to F triv-
ially to I ⊕ ⊕

γ∈Γ Fsγ . Thus the map

HomF (
⊕

γ∈Γ

Fsγ, F) −→ I⊥ ⊆ HomF (I ⊕
⊕

γ∈Γ

Fsγ, F)

h �−→ 0 ⊕ h

148

Heiß, Oberst, Pauer

is F -linear and bijective. In particular, the F -vector space I⊥ is finite-dimensional
and its dimension is card(Γ), the number of elements of Γ.
Since the familiy (sα)α∈Nn is an F -basis of F [s], any linear function
ϕ : F [s] → F is uniquely determined by the family (ϕ(sα))α∈Nn in F . If ϕ is an
element of I⊥, it is sufficient to know the finite familiy(ϕ(sγ))γ∈Γ. The following
theorem tells us how to compute the value ϕ(sα) of ϕ ∈ I⊥ at sα for arbitrary α ∈ Nn.

Using a Gröbner basis of I , one can compute the normal form

nf(g) ∈
⊕

γ∈Γ

Fsγ

of g ∈ F [s] such that g − nf(g) ∈ I .

Theorem 1. ((14, 5.42/43/44), (15, Th. 5))
Let α ∈ Nn, ϕ ∈ I⊥, and nf(sα) =

∑
γ∈Γ cγs

γ .
Then

ϕ(sα) =
∑

γ∈Γ

cγϕ(sγ) ∈ F.

Thus we obtain the value ϕ(sα) for arbitrary α ∈ Nn by computing the normal form
nf(sα) of sα.

Proof: Since sα − nf(sα) ∈ I we have ϕ(sα − nf(sα)) = 0, hence

ϕ(sα) = ϕ(nf(sα) + (sα − nf(sα))) = ϕ(nf(sα)) =
∑

γ∈Γ

cγϕ(sγ). �

Let γ ∈ Γ. By eγ we denote the uniquely determined F -linear map eγ ∈ I⊥ with
eγ(s

γ) = 1 and eγ(s
α) = 0, for all α ∈ Γ \ {γ}.

Since I is a zero-dimensional ideal, the family (eγ)γ∈Γ is an F -basis of I⊥. By Theo-
rem 1 we have

nf(sα) =
∑

γ∈Γ

eγ(s
α)sγ .

In the sequel we always represent functions ϕ ∈ I⊥ by the finite family(ϕ(sγ))γ∈Γ,
i.e. by the family of coordinates of ϕ with respect to the basis (eγ)γ∈Γ.

Example 2. Let I :=Q[s1,s2]< s4
2,−s3

2 + s1s
2
2, s2s

2
1, s

3
1 − s2

2 + s2s1 > and let ≤ be the
graded lexicographical term order with s1 > s2. Then

Γ = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (0, 3)},

and the family (eγ)γ∈Γ is a basis of I⊥. We compute the values of e(0,3) for all α ∈ Nn.
By definitione(0,3)(s

3
2) = 1 and e(0,3)(s

α) = 0, for all α ∈ Γ \ {(0, 3)}. Hence

e(0,3)(s1s
2
2) = e(0,3)(nf(s1s

2
2)) = e(0,3)(s

3
2) = 1

e(0,3)(s
4
1) = e(0,3)(nf(s4

1)) = e(0,3)(s
3
2) = 1 .

Since sα ∈ I for all α ∈ Nn \ (Γ ∪ {(1, 2), (4, 0)}) we get nf(sα) = 0, hence

e(0,3)(s
α) = 0 , for α ∈ Nn \ (Γ ∪ {(1, 2), (4, 0)}).

149

Inverse Systems and Squarefree Decomposition

The assertions in the following lemma are well-known and immediate consequences
of the definition ofI⊥.

Lemma 3. Let I1, I2 be ideals in F [s]. Then

(I1 + I2)
⊥ = I1

⊥ ∩ I2
⊥ and

(I1 ∩ I2)
⊥ = I⊥

1 + I⊥
2 .

If I1 and I2 are comaximal (i.e. I1 + I2 = F [s]) then

(I1 ∩ I2)
⊥ = I⊥

1 ⊕ I⊥
2 .

Definition 4. Let W be an F -subspace of HomF (F [s], F). By W⊥ we denote the
F -vector space of all polynomials g ∈ F [s] such that ϕ(g) = 0, for all ϕ ∈ W .

Lemma 5. Let W ⊆ I⊥ be an F -subspace of I⊥. Then

W⊥ = I ⊕ (W⊥ ∩
⊕

γ∈Γ

Fsγ) ,

hence W⊥ is uniquely determined by the F -subspace W⊥ ∩
⊕

γ∈Γ Fsγ . In particular
we obtain (I⊥)⊥ = I and (W⊥)⊥ = W .

Proof: Since I ⊆ W⊥ and W ⊆ I⊥ the assertion follows immediately from

F [s] = I ⊕
⊕

γ∈Γ

Fsγ

and the modular law. �

Remark 6. If ϕ1, ..., ϕ� is an F -basis of W , then an F -basis of W⊥ ∩
⊕

γ∈Γ Fsγ can
be computed by solving the system

∑

γ∈Γ

cγϕi(s
γ) = 0, 1 ≤ i ≤ � ,

of linear equations for cγ, γ ∈ Γ.

Example 7. Let I be the ideal

I =Q[s1,s2]< 5s1s2 − 5s1 − 3s2
2 + 3s2, s

3
2 − 6s2

2 + 5s2,

5s6
1 − 15s5

1 + 15s4
1 − 5s3

1 − 54s2
2 + 54s2 > .

With respect to the graded lexicographical term order with s1 > s2 we get

Γ = {(0, 0), (0, 1), (1, 0), (0, 2), (2, 0), (3, 0), (4, 0), (5, 0)}

150

Heiß, Oberst, Pauer

and the basis
(e(0,0), e(0,1), e(1,0), e(0,2), e(2,0), e(3,0), e(4,0), e(5,0))

of I⊥ . Let W ⊆ I⊥ be subspace generated by

ϕ1 = e(0,0) + e(0,1) + e(0,2) and
ϕ2 = e(1,0) + e(2,0) + e(3,0) + e(4,0) + e(5,0) .

Then W⊥ ∩
⊕

γ∈Γ Qsγ is the set of all polynomials g =
∑

γ∈Γ cγs
γ such that

ϕ1(g) = c(0,0) + c(0,1) + c(0,2) = 0

ϕ2(g) = c(1,0) + c(2,0) + c(3,0) + c(4,0) + c(5,0) = 0 .

Solving this linear equation we get

W⊥ ∩
⊕

γ∈Γ

Qsγ =Q< s2 − 1, s2
2 − 1, s2

1 − s1, s
3
1 − s1, s

4
1 − s1, s

5
1 − s1 >

and hence

W⊥ = I⊕Q < s2 − 1, s2
2 − 1, s2

1 − s1, s
3
1 − s1, s

4
1 − s1, s

5
1 − s1 > .

3. I⊥ as F [s]-Module
There is a natural F [s]-module-structure on HomF (F [s], F): for f, g ∈ F [s] and
ϕ ∈ HomF (F [s], F) we define

(f ◦ ϕ)(g) := ϕ(fg).

Since I is an ideal, I⊥ is an F [s]-submodule of HomF (F [s], F). On the other hand, if
W is an F [s]-submodule of HomF (F [s], F), then W⊥ is an ideal in F [s]. Note that I
annihilates I⊥, i.e. I ◦ I⊥ = 0. Since (I⊥)⊥ = I we have I = (0 : I⊥), where (0 : I⊥)
is the annihilator of I⊥, i.e. the ideal {g ∈ F [s] | g ◦ I⊥ = 0}.

We quote the Lemma of Krull-Nakayama (see (8, Th. 2.2, Th 2.3)), which in our
special case has the form

Lemma 8. Let X be a finitely generated F [s]-module annihilated by I , i.e.
I ◦ X = 0. Let Y be a submodule and x1, ..., xm elements of X .

(1) If X = Y + R ◦ X then Y = X .

(2) The elements xi, 1 ≤ i ≤ m, generate X if and only if their residue classes
xi := xi + R ◦ X, 1 ≤ i ≤ m, generate X/(R ◦ X).

(3) The elements xi, 1 ≤ i ≤ m, are a minimal system of generators of X if and
only if the elements xi, 1 ≤ i ≤ m, are this for X/(R ◦ X).

151

Inverse Systems and Squarefree Decomposition

(4) Assume in addition that the ideal I is primary or, in other terms, that F [s]/R is
a field. Then any minimal system of generators of X is a system of generators of
minimal length. The elements xi, 1 ≤ i ≤ m, are a minimal system of generators
of X if and only if the elements xi, 1 ≤ i ≤ m, are an F [s]/R-basis of X/(R ◦
X).

Corollary 9. Let V be an F -subspace of I⊥ such that I⊥ = V ⊕ R ◦ I⊥. Then:

(1) Each basis of V is a system of generators of I⊥, but in general not a minimal
one. In other terms I⊥ = F [s]◦V . Moreover, R◦I⊥ = R◦V and I⊥ = V ⊕R◦V.

(2) If I is primary and R is rational, i.e. F [s]/R ∼= F , then any F -basis of V is a
system of F [s]-generators of I⊥ of minimal length.

Proof:

(1) The decomposition X = V ⊕ R ◦ X induces the F -isomorphism
V ∼= X/(R ◦X). Hence any basis of V is particularly a system of generators of
X/(R ◦ X) and therefore of X by Lemma 8.

(2) Follows directly from Lemma 8. �

Lemma 10. Let J ⊆ F [s] be an ideal, G a system of generators of J and B an F -
basis of I⊥. Then {g ◦ b | g ∈ G, b ∈ B} is a system of generators of the F -vector
space J ◦ I⊥.

Proof:

F ◦ (G ◦ B) = G ◦ F ◦ B = G ◦ F [s] ◦ B =

= F [s] ◦ G ◦ FB = J ◦ I⊥ . �

Theorem 11. The following algorithm computes a subset E of {eγ | γ ∈ Γ} such that

I⊥ =F < E >
⊕

R◦F < E > .

• Compute a system G of generators of the radical R of I .

• For f =
∑

α af,αsα ∈ G and γ ∈ Γ compute the normal form of sα+β with
respect to I and thus eγ(s

α+β) for all α ∈ supp(f) and β ∈ Γ. Then

f ◦ eγ =
∑

β∈Γ

∑

α∈supp(f)

(af,αeγ(s
α+β))eβ.

• Choose an F -basis of F < f ◦ eγ | γ ∈ Γ, f ∈ G > and
complete it by a subset E of {eγ | γ ∈ Γ} to a basis of I⊥.

152

Heiß, Oberst, Pauer

Proof: By Lemma 10 we have

R ◦ I⊥ =F < f ◦ eγ | γ ∈ Γ, f ∈ G > .

Let df,γ,β ∈ F such that f ◦ eγ =
∑

β∈Γ df,γ,βeβ . Then

df,γ,β = (f ◦ eγ)(s
β) =

∑

α∈supp(f)

af,α(sα ◦ eγ)(s
β) =

=
∑

α∈supp(f)

af,αeγ(s
α+β).

Now the assertion follows from Corollary 9, (1). �

Remark 12. In order to compute the radical R of I , one usually first determines
univariate polynomials gi ∈ F [si], 1 ≤ i ≤ n, such that R is generated by I and
g1, ..., gn. In the preceding algorithm we can replace G by {g1, ..., gn} since f ◦eγ = 0
for f ∈ I.

Example 13. Let I :=Q[s]< s5
2 + 4s4

2 + 4s3
2, 2s1s

3
2 + s4

2 + 4s1s
2
2 + 2s3

2,
4s2

1s2 + 4s1s
2
2 + s3

2, 4s
3
1 − s3

2 − 3s1s
2
2 >. The radical of I is generated by the set

G := {s2
2 + 2s2, 2s1 + s2} and the set {sγ | γ ∈ Γ} (using the graded lexicographical

term order with s1 > s2) is {1, s1, s2, s
2
1, s1s2, s

2
2, s1s

2
2, s

3
2, s

4
2}. We compute

{f ◦ eγ | f ∈ G, γ ∈ Γ} =

{0, 2e(0,0), 2e(1,0), e(0,0) + 2e(0,1), e(1,0),

e(0,1) + 1/2e(2,0) − e(1,1) + 2e(0,2) + 2e(1,2) − 4e(0,3) + 8e(0,4),

1/4e(2,0) − 1/2e(1,1) + e(0,2) + e(1,2) − 2e(0,3) + 4e(0,4),

2e(0,0), e(0,0), 2e(1,0), e(1,0) + 2e(0,1), e(0,1),

1/2e(2,0) − e(1,1) + 2e(0,2) + 2e(1,2) − 4e(0,3) + 8e(0,4),

1/4e(2,0) − 1/2e(1,1) + e(0,2) + e(1,2) − 2e(0,3) + 4e(0,4)}.

The set

{e(0,0), e(1,0), e(0,1), e(2,0) − 2e(1,1) + 4e(0,2) + 4e(1,2) − 8e(0,3) + 16e(0,4)}.

is a basis of Q < f ◦ eγ | γ ∈ Γ, f ∈ G >= R ◦ I⊥. Then

E = {e(1,1), e(0,2), e(1,2), e(0,3), e(2,0)}.

Lemma 14. (see (16, Lemma 2.2.1)) Let J be any ideal in F [s] and let (I : J) be the
ideal quotient of I by J . Then

(I : J)⊥ = J ◦ I⊥ .

153

Inverse Systems and Squarefree Decomposition

Proof: According to Lemma 5 we have (J ◦ I⊥)⊥⊥ = J ◦ I⊥. Hence it suffices to
prove that (I : J) = (J ◦ I⊥)⊥. But

(I : J) = {f ∈ F [s] | fg ∈ I, for all g ∈ J} =

= {f ∈ F [s] | ϕ(fg) = 0, for all g ∈ J and all ϕ ∈ I⊥} =

= {f ∈ F [s] | (g ◦ ϕ)(f) = 0, for all g ∈ J and all ϕ ∈ I⊥} =

= (J ◦ I⊥)⊥ . �

Let

I =
�⋂

i=1

Qi

be the minimal primary decomposition of the zero-dimensional ideal I with primary
ideals Qi and associated radical ideals Pi, 1 ≤ i ≤ �. Since I is zero-dimensional the
ideals Pi are maximal and, indeed, exactly the maximal ideals containing I . Moreover
the primary decomposition of R is

R =
�⋂

i=1

Pi .

The ideals

Qj and
⋂

i,i �=j

Qi resp.

Pj and
⋂

i,i �=j

Pi

are comaximal, 1 ≤ j ≤ �, hence

�⋂

i=1

Qi =
�∏

i=1

Qi and

�⋂

i=1

Pi =
�∏

i=1

Pi .

Theorem 15.

(1) The minimal primary decomposition of I induces

I⊥ =
�⊕

i=1

Q⊥
i .

Q⊥
i is an F [s]−submodule of I⊥, 1 ≤ i ≤ �. If an F -basis ϕ1, ..., ϕm of Q⊥

i is
known, Lemma 5 furnishes the primary component

Qi = (Q⊥
i)⊥ = {g ∈ F [s] | ϕj(g) = 0, 1 ≤ j ≤ m}

by solving a system of linear equations (compare (13, Th. 8)).

154

Heiß, Oberst, Pauer

(2) If i
= j then
Pi ◦ Q⊥

j = Q⊥
j ,

moreover

R ◦ I⊥ =
�⊕

j=1

Pj ◦ Q⊥
j .

Proof:

(1) Follows from Lemma 3.

(2) Obviously R ◦ I⊥ =
⊕�

j=1 R ◦ Q⊥
j . The module Q⊥

j is annihilated by Qj. If
i
= j then Qj is comaximal to Pi. We conclude

Pi ◦ Q⊥
j = (Pi + Qj) ◦ Q⊥

j = F [s] ◦ Q⊥
j = Q⊥

j , hence

R ◦ Q⊥
j = (

�∏

i=1

Pi) ◦ Q⊥
j = Pj ◦ Q⊥

j and

R ◦ I⊥ =
�⊕

j=1

R ◦ Q⊥
j =

�⊕

j=1

Pj ◦ Q⊥
j . �

4. Squarefree Decomposition of Zero-Dimensional Ideals
Recall that a polynomial f ∈ F [s1] is squarefree if it has no proper quadratic divisors,
i.e. for any g ∈ F [s1] with g2 dividing f we have g ∈ F .

Definition 16. ((5, 14.6.)) Let f ∈ F [s1] be a non-constant, monic polynomial. The
squarefree decomposition of f is the (unique) sequence of monic squarefree pairwise
coprime polynomials (g1, ..., gm) such that gm
= 1 and

f = g1g
2
2....g

m
m .

Example 17. Let f := s4
1(s1 + 1)2(s1 − 1)2(s2

1 + 1)2(s2
1 + s1 + 1) ∈ Q[s1]. The

squarefree decomposition of f is (s2
1 + s1 + 1, s4

1 − 1, 1, s1).

Note that if f =
∏

f ei

i is the irreducible factorization of f then we obtain the
squarefree decomposition of f by collecting irreducible factors of the same exponent,
i.e. the squarefree decomposition of f is

(
∏

i,ei=1fi, ...,
∏

i,ei=mfi) ,

where m = max(ei). The important point is that these products can be computed
without knowing the irreducible factors. This process is called the squarefree factor-
ization of a polynomial. For further information we refer to (5, 14.6.).

Let again I =
⋂�

i=1 Qi be the minimal primary decomposition of I and Pi be the
radical of Qi, 1 ≤ i ≤ �.

155

Inverse Systems and Squarefree Decomposition

Definition 18. For 1 ≤ i ≤ � let εi be the smallest natural number k such that
P k

i ⊆ Qi. This number is called the exponent of Qi. Let m := max{εi | 1 ≤ i ≤ �}.
Then m is the exponent of I , i.e. the least natural number k such that Rk ⊆ I .

Definition 19. For 1 ≤ k ≤ m we set

Ik :=
⋂

i,εi=k

Qi and

Rk :=
⋂

i,εi=k

Pi .

The squarefree decomposition of the zero-dimensional ideal I is the (unique) se-
quence

(R1, ..., Rm) .

Note that if I has no primary component of exponent j then Rj = F [s1, ..., sn].

Theorem 20.

(1) For 1 ≤ i ≤ � we have Qi = I + P εi

i .

(2) For 1 ≤ k ≤ m we have Ik = I + Rk
k .

(3) I =
⋂m

k=1 Ik =
⋂m

k=1(I + Rk
k) .

Proof:

(1) See (1), ch. 8.

(2) For all j with εj = k we have

I + (
⋂

i,εi=k

Pi)
k ⊆ I + P k

j = Qj ,

hence I + (
⋂

i,εi=k Pi)
k ⊆ ⋂

i,εi=k Qi .
On the other hand, since

⋂

i,εi=k

Qi =
∏

i,εi=k

Qi and

⋂

i,εi=k

Pi =
∏

i,εi=k

Pi

we have
⋂

i,εi=k

Qi =
∏

i,εi=k

Qi =
∏

i,εi=k

(I + P k
i) ⊆ I +

∏

i,εi=k

Pi
k = I + (

⋂

i,εi=k

Pi)
k .

(3) Obvious. �

156

Heiß, Oberst, Pauer

5. Computation of the Squarefree Decomposition
In this section we describe a method to compute the submodules R⊥

k of I⊥. Then
R⊥⊥

k = Rk (see Lemma 5) and we can compute Ik using Theorem 20, (2). The impor-
tant point is that the ideals Rk and Ik can be computed without knowing the primary
decomposition of I .

Consider the descending chain of F [s]-submodules of I⊥

I⊥ ⊇ R ◦ I⊥ ⊇ R2 ◦ I⊥ ⊇ ... ⊇ Rm−1 ◦ I⊥ ⊇ Rm ◦ I⊥.

Since m is the exponent of the radical R of I it is clear that Rm ⊆ I and
Rm ◦ I⊥ = 0.

Lemma 21. For k ∈ N and for 1 ≤ i ≤ � we have

Rk ◦ I⊥ =
�⊕

j=1

P k
j ◦ Q⊥

j ·

Proof: The assertion is a direct consequence of Theorem 15. �

Lemma 22. For 1 ≤ i ≤ � we have

P εi−1
i ◦ Q⊥

i = P⊥
i .

Proof: By definition of the exponentεi we have P εi

i ⊆ Qi and P εi−1
i
⊆ Qi. Hence

Pi ⊆ (Qi : P εi−1
i) and (Qi : P εi−1

i)
= F [s]. Since Pi is maximal, this implies
(Qi : P εi−1

i) = Pi. By Lemma 14 this implies the assertion. �

Lemma 23. For 2 ≤ k ≤ m

Rk−1 ◦ I⊥ = R⊥
k

⊕ ⊕

i,εi>k

P k−1
i ◦ Q⊥

i .

Proof: By Lemma 21 we have

Rk−1 ◦ I⊥ =
�⊕

j=1

P k−1
j ◦ Q⊥

j .

If εi < k then by the definition ofεi we have P k−1
i ⊆ Qi, hence P k−1

i ◦ Q⊥
i = 0.

Therefore
Rk−1 ◦ I⊥ =

⊕

i,εi=k

P k−1
i ◦ Q⊥

i

⊕ ⊕

i,εi>k

P k−1
i ◦ Q⊥

i .

By Lemma 22 we have
⊕

i,εi=k

P k−1
i ◦ Q⊥

i =
⊕

i,εi=k

P⊥
i = R⊥

k . �

157

Inverse Systems and Squarefree Decomposition

Theorem 24.
(1) R⊥

m = Rm−1 ◦ I⊥

(2) For 1 ≤ k ≤ m − 1 we have

R⊥
k = (

∏m

j=k+1R
j−k+1
j) ◦ (Rk−1 ◦ I⊥).

In particular, we can compute R⊥
k recursively, starting with k = m (and going

down to k=1).

Proof: (1) follows from Lemma 23 for k = m.

(2) By Lemma 23 we have

(
∏m

j=k+1R
j−k+1
j) ◦ (Rk−1 ◦ I⊥) = (

∏m

j=k+1R
j−k+1
j) ◦

⊕

i,εi≥k

P k−1
i ◦ Q⊥

i =

=
⊕

i,εi≥k

((
∏m

j=k+1R
j−k+1
j)P k−1

i) ◦ Q⊥
i .

For every i with εi > k the ideal ((
∏m

j=k+1R
j−k+1
j)P k−1

i) is contained in Qi,
hence we have

((
∏m

j=k+1R
j−k+1
j)P k−1

i) ◦ Q⊥
i = 0 .

Thus
⊕

i,εi≥k

((
∏m

j=k+1R
j−k+1
j)P k−1

i) ◦ Q⊥
i =

⊕

i,εi=k

((
∏m

j=k+1R
j−k+1
j)P k−1

i) ◦ Q⊥
i .

For every i with εi = k the ideals P k−1
i and (

∏m

j=k+1R
j−k+1
j) are coprime, hence

(
∏m

j=k+1R
j−k+1
j) � Pi and by Theorem 15 we have

(
∏m

j=k+1R
j−k+1
j) ◦ Q⊥

i = Q⊥
i .

Therefore with Lemma 22 we get

((
∏m

j=k+1R
j−k+1
j)P k−1

i) ◦ Q⊥
i = P k−1

i ((
∏m

j=k+1R
j−k+1
j) ◦ Q⊥

i) =

= P k−1
i ◦ Q⊥

i = P⊥
i .

Now
(
∏m

j=k+1R
j−k+1
j) ◦ (Rk−1 ◦ I⊥) =

⊕

i,εi=k

P⊥
i = R⊥

k . �

This theorem implies the following algorithm:

158

Heiß, Oberst, Pauer

Algorithm 25. Squarefree Decomposition of Zero-Dimensional Ideals
Input: I a zero-dimensional ideal

R the radical of I
Output: (R1, ..., Rm) the squarefree decomposition of I

S0 := I⊥

i := 0
Repeat

Si+1 := R ◦ Si

i := i + 1
Until Si = 0

m := i
R⊥

m := Sm−1

For k from m − 1 to 1
Rk+1 := (R⊥

k+1)
⊥

R⊥
k :=

∏m

j=k+1R
j−k+1
j ◦ Sk−1

Return (R1, ..., Rm)

Example 26. Let I be the ideal in Q[s1, s2] generated by

5s1s2 − 5s1 − 3s2
2 + 3s2, s3

2 − 6s2
2 + 5s2 and

5s6
1 − 15s5

1 + 15s4
1 − 5s3

1 − 54s2
2 + 54s2 .

We compute the set Γ (with respect to the total degree term order with s1 > s2) and
obtain a basis of the dual space of I :

(e(0,0), e(0,1), e(1,0), e(0,2), e(2,0), e(3,0), e(4,0), e(5,0)) .

The ideal R is generated by

5s1s2 − 5s1 − 3s2
2 + 3s2, − 3s2

2 + 3s2 + 10s2
1 − 10s1 and

s3
2 − 6s2

2 + 5s2.

Now we compute Q−bases for the Q[s1, s2]−submodules Rk ◦ I⊥ for increasing k :

S0 = I⊥

S1 = R ◦ I⊥ =Q< e(0,0) + e(0,1) + e(0,2), e(1,0), e(2,0) − e(4,0) − 2e(5,0),

e(3,0) + 2e(4,0) + 3e(5,0) >

S2 = R2 ◦ I⊥ =Q< e(0,0) + e(0,1) + e(0,2),

e(1,0) + e(2,0) + e(3,0) + e(4,0) + e(5,0) >

S3 = R3 ◦ I⊥ = 0

159

Inverse Systems and Squarefree Decomposition

hence the exponent m of I is 3 and

R⊥
3 = S2 =Q< e(0,0) + e(0,1) + e(0,2), e(1,0) + e(2,0) + e(3,0) + e(4,0) + e(5,0) >

is the dual space of the intersection of the associated maximal ideals of the primary
components of exponent 3 of I . We compute

R3 =Q[s1,s2]< s2
1 − s1, s2 − 1 >

by solving a linear system of equations and obtain in the next step

R⊥
2 = R2

3 ◦ S1 = {0}.

The ideal corresponding to R⊥
2 = {0} is the entire polynomial ring

R2 = Q[s1, s2] ,

hence there are no proper primary ideals of exponent 2 in the primary decomposition
of I . We finally obtain the submoduleR⊥

1 by computing

R⊥
1 = R2

2R
3
3 ◦ S1 = R3

3 ◦ S1 =Q< e(0,0),

e(0,1) +
3

5
e(1,0) + 5e(0,2) +

9

5
e(2,0) +

27

5
e(3,0) +

81

5
e(4,0) +

243

5
e(5,0) > .

The corresponding ideal is

R1 =Q[s1,s2]< 5s1 − 3s2, s
2
2 − s2 > .

Now we apply Theorem 20 and get

I1 = R1 =Q[s1,s2]< 5s1 − 3s2, s
2
2 − s2 > ,

I2 = Q[s1, s2] ,

I3 =Q[s1,s2]< s2 − 1, s6
1 − 3s5

1 + 3s4
1 − s3

1 > .

References
[1] Becker, T., Weispfenning, V.: Gröbner bases. Springer-Verlag, New York, 1993.

[2] Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Rest-
klassenringes nach einem nulldimensionalen Polynomideal. Dissertation, Inns-
bruck (1965).

[3] Buchberger, B.: Ein algorithmisches Kriterium für die Lösbarkeit eines alge-
braischen Gleichungssystems. Aequationes Math. 4 (1970), 374-383.

[4] Buchberger, B, Winkler, F. (eds.): Gröbner bases and Applications. Cambridge
University Press, Cambridge, 1998.

160

Heiß, Oberst, Pauer

[5] von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge Univer-
sity Press, Cambridge, 1999.

[6] Heiß, W., Oberst, U., Pauer, F.: On dual spaces of polynomial ideals. Proceed-
ings of the 8th Rhine Workshop on Computer Algebra (2002), 195-207.

[7] Macaulay, F. S.: The algebraic theory of modular systems. Cambridge University
Press, Cambridge, 1916.

[8] Matsumura, H.: Commutative ring theory. Cambridge University Press, Cam-
bridge, 1986.

[9] Marinari, M. G., Möller, H. M., Mora, T.: Gröbner bases of ideals defined by
functionals with an application to ideals of projective points. AAECC 4 (1993),
103-145.

[10] Marinari, M. G., Möller, H. M., Mora, T.: On multiplicities in polynomial system
solving. Trans. Amer. Math. Soc. 348 (1996), 3283-3321.

[11] Möller, H. M., Mora, T.: Gröbner bases of ideals given by dual bases. Proc.
ISSAC 91, ACM (1991), 55-63.

[12] Möller, H. M., Tenberg, R.: Multivariate polynomial system solving using inter-
sections of eigenspaces. J. Symbolic Computation 30 (1999), 1-19.

[13] Mourrain, B.: Isolated points, duality and residues. Journal of pure and applied
algebra 117&118 (1997), 469-493.

[14] Oberst, U.: Multidimensional Constant Linear Systems. Acta Appl. Math. 20
(1990), 1-175.

[15] Oberst, U., Pauer, F.: The Constructive Solution of Linear Systems of Partial
Difference and Differential Equations with Constant Coefficients. Multidimen-
sional Systems and Signal Processing 12 (2001), 253-308.

[16] Tenberg, R.: Duale Basen nulldimensionaler Ideale und Anwendungen. Shaker-
Verlag, Aachen, 2000.

161

Two Paradigms of Learning

Wolfram Menzel1 and Frank Stephan2

1Institut für Logik, Komplexität und Deduktionssysteme, Universität Karlsruhe, 76128
Karlsruhe, Germany

2Mathematisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany. Supported by:
Deutsche Forschungsgemeinschaft (DFG) under Heisenberg grant Ste 967/1-1.

Abstract

Two approaches to model learning phenomena are related to each other, the statis-

tical and the inductive one. A central point where they differ is the used notion of

convergence. We investigate whether and to which extent, in the world of computable

functions over the natural numbers, the two respective types of convergence can be

combined.

KEYWORDS: Statistical learning theory, inductive inference, “static” versus “algo-

rithmic” mathematics

Prelude

Must it be Gröbner bases or Gödel numberings or a new didactics of mathematics, if one
searches for a good topic referring to Bruno Buchberger’s work? Certainly not, quite the
contrary: It would be difficult to find anything interesting from mathematical computer science
or from algorithmic mathematics that does not have such a reference. So when we just try to
look – cautiously, humbly – at these two super-powers, mathematics and computer science,
two patrons or demons or godheads who invisibly guide this meeting, look at their strange and
exciting kind of relationship, somehow iridescent between dependency and autonomy, curiosity
and caution, – if we take any essential question that comes from the joys or battles between
those two we will with probability 1 find Bruno Buchberger engaged.

I will talk about a question which, I think, mirrors at a specific point that difficult mentioned
relationship. It comes from learning theory. Learning is the finding of a finite object – a
“pattern” or “rule” or “program” or “parameter value” – such that, by this find, a certain
problem becomes better tractable or tractable at all.

The concern here is in fact an age-long and famous philosophical one, the induction question:
How can one “infer”, in a well-justified way, from finitely many data a general law which
underlies them and thus governs an infinity of them? I will not, of course, deal with the
immense and complicated philosophical discussions that arose and arise here, but will take
a more pragmatic view, which is that of mathematical learning theory: Learning (induction)
certainly is possible in appropriate situations (simply because it permanently happens), so
that the task which matters is rather to determine

• what the right context to describe the meant phenomena is;

• precisely what, then, (successful) learning means;

• what necessary and/or sufficient conditions for the desired success are.

162

Various types, grades etc. of learning may of course result. Furthermore, we will here aim
at algorithms being able to learn in the intended sense.

It is the question of the right context and definition of “learning” where, I think, a contrast
between the classically mathematical and the algorithmic way of thinking appears. I will
concentrate on a particular point, the chosen notion of convergence, which is to express the
success of the regarded process. Mainly two types of convergence concepts seem to be used,
we call them approximative and inductive, respectively.

Consider the simplest, mostly regarded scenario of supervised learning, where functions are
to be learned from pairs ’argument, function value’. Approximative learning means that when
more and more data are provided, the corresponding hypotheses will converge in probability
to the target function (or a best possible approximation to it): really achieving it only in
the limit and only in a probabilistic sense, but, on the other hand, in such a way that the
quality of hypotheses at given times can in fact be estimated. In contrast to that, successful
inductive learning means that the generating of hypotheses will at some time “click into its
right place”, i.e., become absolutely correct and stay so for ever; but this is paid with the
fact that, in general, the learner will never know how good his current hypothesis really is.
Approximation is convergence with respect to a specific distance measure between functions,
while inductive convergence is convergence w.r.t. the discrete distance measure and hence to
any distance measure whatever. Inductive convergence means that in the “discrete” space of a
language, designed to represent functions, an expression (program) is eventually found which
in fact identifies the searched function, while approximative convergence corresponds to a more
semantic-oriented search in the function space given.

Why does this mirror the difference between a more traditional – so to say, “static” or
“Bourbakian” – kind of mathematics and an algorithmic one? It has been a long, long time
that we know that something being true does by far not mean that it could – even in principle
– be proved, and it was the algorithmic way of thinking which changed logic at this point.
Now for learning (or “induction”), the same kind of difference appears: Should the possessing
or achieving of a right concept (a “truth”, as we may put it) be considered identical with
knowing about this possession? Or should, rather, the possession of a right concept, a right
rule to follow – in the sense that one just acts according to it – be regarded as something
totally different and far away from the knowing about that possession?

But let us for the moment shift that more principal question to the background and ask a
more obvious one. It appears anyway to be a natural desire to combine the benefits of both
convergence concepts, i.e., to combine the ultimate finding of a definitely correct program
after finitely many observations with the possibility to estimate the quality of any current
hypothesis. Our results are from a paper (Menzel and Stephan, 2002), which is to appear in
winter 2002/2003. By these results, then, something more from that philosophical question
above will come in sight, “implementing” them in a more concrete way.

We aim at bringing the view of statistical learning theory in the world of computable func-
tions, say (in the usual standardization) from N to N, and investigate to what extent inductive
learning can be accompanied with a gradual and assessable improvement of the hypotheses.
Our results will heavily rest upon the simple fact that, in contrast to more general situations,
any probability distribution over a countable domain has the property that there are always
finite sets with arbitrarily high probability less than 1.

A Short Glimpse on Inductive Inference

N is the set of natural numbers including 0. We assume familiarity with the basic notions from
computability theory (see (Odifreddi, 1989), (Soare, 1987)) and probability measures. Small
Latin letters f, g, . . . will be used to denote total functions, small Greek letters φ, ψ, . . . for
denoting partial ones. ψ(x) ↓ means that ψ is defined at argument x, ψ(x) ↑ that it is not.
dom(ψ) = {x : ψ(x) ↓}. REC is the class of total recursive functions from N to N, PREC that

163

of partial recursive ones. A numbering is a two-place partial recursive function ψ, and for any
e ∈ N, ψe is the function in PREC with ψe(x) = ψ(e, x). ψ enumerates the class {ψe : e ∈ N} ⊆
PREC, and any F ⊆ PREC is recursively enumerable (r.e.) if it can be enumerated by an
appropriate numbering. PREC itself is r.e., REC is not. For a subfamily F ⊆ REC it is a quite
restrictive property to be r.e., and these classes play an important rôle in inductive inference, as
a particularly good-natured species. Among the numberings enumerating the whole of PREC
there are distinguished ones, called acceptable or Gödel numberings, which correspond to the
functional semantics of universal programming languages, where legal programs are identified
with their respective numbers in some effective listing. As usual, we will fix some particular
Gödel numbering ϕ as our “standard” basis for computing.

Inductive inference was initiated by Gold (Gold, 1967), see also (Jain et al., 1999), (Odifreddi,
1989), (Osherson et al., 1986). In the framework of computable functions, it conceives learning
as finding from finitely many examples a program for an initially unknown function f ∈ REC,
i.e., an e with ϕe = f . (We will here only deal with the case of total functions as those to be
learned.) A learner is a machine which reads the graph of an unknown function f in growing
finite portions and from time to time, during this process, puts out a number as hypothesis for
a program of f . As compared to the literature, our following definition is slightly modified in
order to fit the later statistical aspects.

Definition 1: A learner is a program for a computable partial function

L : (N × N)∗ → N ∪ {?}

where ? is a special extra symbol, and for all sequences ((x1, y1), . . . , (xm, ym)) ∈ (N × N)∗, if
L((x1, y1), . . . , (xm, ym)) ↓ then L((x1, y1), . . . , (xk, yk)) ↓ for all k ≤ m.

Here, L((x1, y1), . . . , (xm, ym)) ↓= ? means that L((x1, y1), . . . , (xm, ym)) ↓ and L((x1, y1),
. . . , (xm, ym)) = ?. Correspondingly, L((x1, y1), . . . , (xm, ym)) ↓= e for an e ∈ N. Interpret
L((x1, y1), . . . , (xm, ym)) ↓= e as: The learner having read examples (x1, y1), . . . , (xm, ym)
puts out e as a hypothesis for a program of the unknown function. The term “hypothesis”
will never be used for the symbol ?. We shortly write L((x1, y1), . . . , (xm, ym)) ↓∈ N for:
There is an e ∈ N with L((x1, y1), . . . , (xm, ym)) ↓= e. Read L((x1, y1), . . . , (xm, ym)) ↓=
? as: The learner has decided not to put out a hypothesis but instead requests to see more
data. L((x1, y1), . . . , (xm, ym)) ↑ means that the learner has got stuck in never ending internal
computations. For m = 0, ((x1, y1), . . . , (xm, ym)) is the empty sequence λ. In our definition,
ambiguous sequences (where xi = xj , yi 6= yj for some i, j) are also allowed. These will not be
of any importance in our present considerations, so let us agree that all sequences regarded
in the following are unambiguous. The learner is total iff L((x1, y1), . . . , (xm, ym)) ↓ for all
sequences ((x1, y1), . . . , (xm, ym)). For sake of simplicity, also the function L itself (instead of
a program for L) will be called “learner”.

Thus, given an infinite sequence (x1, f(x1)), (x2, f(x2)), . . . coming from some f , a learner
produces a finite or infinite sequence of hypotheses e0, e1, . . ., sometimes remaining tacit for a
while (i.e., producing ?) because of recognized need of more information, and possibly remain-
ing tacit for ever in a non-recognized manner because of never ending computing.

In general, a learner is constructed with respect to a class S of functions: Information about
S may be built in L, while the “learning” consists of additionally identifying a particular
f ∈ S. Definition 2 below expresses learning in the mode of syntactical convergence. Here, an
infinite sequence (x1, f(x1)), (x2, f(x2)), . . . is called a valid description of f if every x ∈ N

occurs among the xk.

Definition 2: (Gold, 1967) A class S ⊆ REC is Ex-learnable (explanatorily learnable)
iff there is a learner L such that for all f ∈ S and all valid descriptions (x1, f(x1)), (x2, f(x2)), . . .
of f ,

• there are infinitely many m with L((x1, f(x1)), . . . , (xm, f(xm))) ↓∈ N;

164

• and there is an e ∈ N such that ϕe = f and L((x1, f(x1)), . . . , (xm, f(xm))) ↓∈ {e, ?} for
almost all m.

Note that we have not demanded that from some “convergence point” onward no more ?
will occur. This is because of our intended combining with approximation, but it fits perfectly
well to the idea of inductive inference: As the learner never knows about its possibly reached
success, “thinking phases” may well occur in that “stable” period, too. (Anyway it is always
possible to dispense with ? at all by defining L(λ) = 0 and afterwards simply repeating the last
hypothesis until the next one appears; but this amounts to a loss of information unfavourable
for our further analysis.)

As has been remarked, REC is not recursively enumerable. But there are rather rich sub-
classes S of REC which are (e.g., the primitive recursive functions), i.e., there is a total recursive
g with S = {g0, g1, . . .}. Every such class is Ex-learnable:

Example 3 (Learning by Enumeration): Given an r.e. class of total functions g0, g1,
g2, . . ., the algorithm Learning by Enumeration computes for any (unambignous) input
((x1, y1), . . . , (xm, ym)) the first index e with ge(xk) = yk for k = 0, . . . ,m and outputs h(e),
where h is a fixed computable translation from g-indices to ϕ-indices. Evidently, this algorithm
learns any gi from any valid description of gi.

There are Ex-learnable classes of total recursive functions which are not contained in any
r.e. subclass of REC. A prominent example is the class of self-describing functions S = {f : f ∈
REC, f = ϕf(0)}. A learner for S simply waits (produces ?) until some example (0, e) shows
up and from then onward outputs e. But S is not contained in any r.e. subclass of REC: For
any total numbering g there is a self-describing f not in {g0, g1, . . .}. Define functions fi by
fi(0) = i and fi(x + 1) = gx(x + 1) + 1. By the recursion theorem (Odifreddi, 1989), (Soare,
1987), there is an e with fe = ϕe. fe is self-describing and not contained in {g0, g1, . . .}.

Bārzdiņš (Bārzdiņš, 1974) generalized Ex-learning to the wider concept of learning in the
sense of semantical convergence, called BC-learning (“behaviourally correct”). L BC-learns f
iff any valid description of f causes L to produce infinitely many hypotheses, almost all of which
are indices of f . Thus in contrast to Ex-learning, the set of output hypotheses {e0, e1, . . .} may
be infinite.

Definition 4: (Bārzdiņš, 1974) S ⊆ REC is BC-learnable (behaviourally correct) iff
there is a learner L such that for all f ∈ S and all valid descriptions ((x1, f(x1)), (x2, f(x2)), . . .)
of f

• there are infinitely many m with L((x1, f(x1)), . . . , (xm, f(xm))) ↓∈ N; and

• for almost all output hypotheses e, ϕe = f .

Clearly, every Ex-learner of some S is also a BC-learner of S. But there are BC-learnable
classes which are not Ex-learnable. An example is

{f : f ∈ REC, ϕf(0) is a finite variant of f},

see (Case and Smith, 1983).

Probabilities and Approximation

We will now deal with the statistical approach to learning, which is the second root of our
questions. As we are concentrating upon computable functions from N to N, probability dis-
tributions over N are the natural basis for further analysis. It is common use in this context
to apply such a probability distribution pr not only for describing the occurence of data,

165

but also for establishing a corresponding distance measure between functions (see Vidyasagar
(Vidyasagar, 1997) for a discussion of this point). Thus for total functions f, g we define

Dpr(f, g) = pr({x : f(x) 6= g(x)}).

Similarly for partial functions φ, ψ:

Dpr(φ, ψ) = pr({x : φ(x) ↑ or ψ(x) ↑ or φ(x) ↓ 6= ψ(x) ↓}),

so that functions are considered to disagree at any place where at least one of them is undefined
(see (Menzel and Stephan, 1999) for a more detailed discussion of this view). Furthermore, to
pr and a total f we associate a probability distribution on N × N by

prf ({x, y}) =

{

pr({x}) if y = f(x)
0 otherwise .

Note that, in contrast to “Lebesque-style” probability measures over subsets of R which are
often considered in statistical learning theory (where countable sets have measure zero), pr
over {0, 1}N has the property that for all ε > 0 there is a finite E ⊆ N with pr(E) ≥ 1 − ε.
It will often be appropriate to demand a little more, namely pr({x}) > 0 for all x ∈ N,
and probabilities with this property will be called fair. The main reason for focusing on fair
probabilities is that these have the nice property that for infinite sequences (x1, x2, . . .)

pr∞({(x1, x2, . . .) : (∀x)(∃k)[x = xk]}) = 1,

where pr∞ is the standard extension of pr to infinite sequences, using cylinder sets. Hence given
f , an infinite sequence of examples for f will with probability 1 contain every (x, f(x)). As a
consequence, Dpr(φ, ψ) = 0 for partial functions φ, ψ if and only if φ, ψ are total and equal.
Furthermore, on the total functions every metric Dpr generated by some fair pr is isometric
to the standard metric (Menzel and Stephan, 1999), (Menzel and Stephan, 2002), (Odifreddi,
1989) Dsm defined as

Dsm(f, g) =

{

0 if f = g
1

min{x:f(x) 6=g(x)}+1 otherwise.

Note that even if pr is fair, it is only with probability 1 that infinite sequences ((x1, f(x1)),
(x2, f(x2)), . . .) generated according to prf are valid: Invalid sequences like ((0, f(0)), (0, f(0)),
. . .) do exist, although they altogether have measure 0. Such invalid sequences might well
contain some relevant information, as is the case for, e.g., ((0, f(0)), (0, f(0)), . . .) when the
self-describing functions are to be learned. As a consequence, our notion of successful learning
will merely mean success with probability 1.

Learning in statistical learning theory is uniform approximating in probability. It is defined in
the PAC understanding (“probably approximately correct”) as introduced by Valiant (Valiant,
1984). We will here follow the exposition by Vidyasagar (Vidyasagar, 1997), abstracting in our
more principal questions from complexity issues, which are nonetheless quite important for
some kinds of applications.

Suppose we know for f , a hypothesis e, and numbers x1, . . . , xm that ϕe(x) ↓= f(x) for all
x ∈ {x1, . . . , xm}. Then Dpr(f, ϕe) ≤ 1− pr({x1, . . . , xm}). As in general we will not know pr,
this is not of much use. But we may apply the Chernoff-bound (see, e.g., (Vidyasagar, 1997))
to approximate pr({x1, . . . , xm}): Given ε, δ > 0, there is a number cher(ε, δ) = p 1

2ε2
ln (1

δ
)q

such that for all pr, if among cher(ε, δ) randomly drawn examples h are in {x1, . . . , xm} then
the probability that |pr({x1, . . . , xm}) − h

cher(ε,δ) | < ε is at least 1 − δ. We may use this fact

in such a way that a learner (to be constructed) can delay its next hypothesis (i.e., produce
?) until a sufficiently strong consistency check has been passed with high probability, this way
ensuring sufficiently good hypotheses throughout.

166

To prepare for this technique, we will instead of parameters ε, δ above use a single one, n,
to express the quality of an approximation; n will also serve to count output hypotheses, and
will thus provide a bridging between statistical and inductive behaviour.

For f and some X ⊆ N, let f � X be the restriction of f to X:

(f � X)(x) =

{

f(x) if x ∈ X

↑ otherwise

Much of our later results will rest on the following

Proposition 5: There is a never terminating probabilistic algorithm B, the Basic Approx-

imation Algorithm, such that the following holds for all probability distributions pr on N

and all n ∈ N.

• There exists a constant spr,n such that B having seen spr,n examples according to pr has
with probability greater than n

n+1 gathered a finite set Xpr,n satisfying pr(Xpr,n) > n
n+1 ,

and has put it out.

Hence Dpr(f, f � Xpr,n) < 1
n+1 with probability greater than n

n+1 for all total functions f
(not necessarily computable). The sets Xpr,n are generated for n = 0, 1, 2, . . . in order, and it
is with probability 1 that they are all eventually put out.

Sketch of Proof: (see (Menzel and Stephan, 2002)). B is the following algorithm.

1: m = n = 0, X = ∅;

2: i = 2;

3: k = 1 + cher(1
4(n+1) ,

2−i

n+1), draw k examples xm+1, . . . , xm+k according to pr,

h = |{j : 1 ≤ j ≤ k, xm+j ∈ X}|,

X = X ∪ {xm+1, . . . , xm+k};

4: m = m+ k, i = i+ 1;

5: if h
k
≤ 2n+1

2n+2 then go to 3;

6: Xpr,n = X, output Xpr,n;

7: n = n+ 1, go to 2.

The idea behind the computation ofXpr,n is to postpone its output until enough data x1, . . . , xm

have been seen so as to guarantee that pr({x1, . . . , xm}) > n
n+1 . As pr is unknown, this cannot

be checked directly, so the Chernoff bound is used to obtain an estimate for pr({x1, . . . , xm})
(steps 3 and 5).

More specifically, one concludes as follows.

(a) With probability 1, all Xpr,n are eventually put out.

Proceeding by induction, assume that Xpr,n−1 has already been produced (the case n = 0
is treated in a similar way as what follows). Regard the loop which begins at step 3. As
long as it has not terminated, more and more examples are drawn, and at some time the
current X will satisfy pr(X) ≥ 4n+3

4n+4 . For every i from then on, one easily verifies that

the probability that the algorithm has not terminated for this i is at most 2−i

n+1 . Thus the
probability that the loop never terminates is zero.

167

(b) By (a), there is for every n a first an such that the probability that B outputs Xpr,n for
an i ≤ an is at least 2n+1

2n+2 . Define spr,n to be the total number of examples drawn when
for each n′ ≤ n, i in the inner loop of the algorithm is counted up to an′ .

(c) If Xpr,n is put out for some i, it is (by the Chernoff bound) with probability at most 2−i

n+1
that pr(Xpr,n) ≤ n

n+1 , hence the overall probability that Xpr,n with pr(Xpr,n) ≤ n
n+1 is

put out for some i ≤ an is at most
∑an

i=2
2−i

n+1 <
1

2n+2 . Moreover, by definition of an, the

probability that no output occurs up to i = an is at most 1
2n+2 . We have for each n that

the probability that for up to an runs through the inner loop either no outputs occurs or
Xpr,n with pr(Xpr,n) ≤ n

n+1 , is put out, is less then 1
n+1 . Summing up for all n′ ≤ n and

by definition of spr,n, one concludes that after spr,n examples drawn, the probability that
Xpr,n with pr(Xpr,n) > n

n+1 has been put out is greater than n
n+1 .

(d) Dpr(f, f � Xpr,n) < 1
n+1 with probability greater than n

n+1 for all total functions f is
immediate.

2

Learners are usual, deterministic algorithms, not, as B is, probabilistic ones. But we may
plant a learner into a probabilistic environment: just endow its input sequences with a prob-
ability of their occurence. The sequence of its outputs then becomes a sequence of random
variables, depending on infinite input sequences. Given the learner L, n ∈ N, and an infinite
sequence (x1, y1), (x2, y2), . . ., let en denote the n’th hypothesis of L on this sequence (outputs
? are not counted). Because of technical reasons, we begin counting hyptheses with 0 (e0 may
or may not be L(λ)). Regarding en as a random variable, we arrive at the following definition.

Definition 6: Let S be a class of total functions. The learner L (uniformly) approximates

S iff the following holds for all probability distributions pr on N and n ∈ N. There is a constant
spr,n such that for all f ∈ S, when examples (x1, f(x1)), (x2, f(x2)), . . . are drawn w.r.t. prf
and en is the n’th hyothesis of L w.r.t. the infinite sequence arising, then Dpr(ϕen

, f) < 1
n+1

with probability greater than n
n+1 . L is a universal approximator iff L approximates the

whole class of all total functions from N to N, including the non-computable ones.

Theorem 7: There exists a universal approximator.

Sketch of Proof: The learner U when reading examples according to prf just simulates B
(on their x-parts) and, for n = 0, 1, . . ., outputs its n’th hypothesis un if and when B out-
puts an Xpr,n after the finite sequence seen so far. Thus, for n ∈ N and (unambiguous)
((x1, y1), . . . , (xm, ym)): If and when B having drawn exactly x1, . . . , xm outputs Xpr,n, define
U((x1, y1), . . . , (xm, ym)) = un to be a canonical index of the finite function σn, where σn(xk) =
yk for k = 1, . . . ,m and σn(x) ↑ if x 6∈ {x1, . . . , xm}; otherwise U((x1, y1), . . . , (xm, ym)) = ?.
2

In Definition 6, it is of course not generally the case that limn→∞ ϕen
= f , in the sense of

pointwise convergence, because pr might generate invalid sequences. (Pointwise convergence
means that limn→∞ ψn = f iff for all x there is an nx such that for all n ≥ nx : ψn(x) ↓= f(x).)
But remembering our remarks on fairness we have the

Corollary 8: Let U be a universal approximator, and for any pr, f, n let epr,f,n be the ran-
dom variable, which is the n’th output hypothesis of U when examples are drawn according to
prf (where epr,f,0 counts as the 0’th hypothesis). Then

lim
n→∞

ϕepr,f,n
= f with probability 1

for all fair pr and all total f : N → N, in the sense of pointwise convergence.

168

Remark: The main point in Proposition 5 and Theorem 7 is of course that while spr,n depends
on pr, the algorithms B and U do not. If we had allowed pr to be built in the algorithm
then establishing a bound s such that after s examples a set X with pr(X) > n

n+1 has
with confidence n

n+1 been collected would have been fully trivial. This is in some contrast
to the exposition in (Vidyasagar, 1997), where the dependency of quality bounds from pr is
somehow identified with the algorithm’s “knowing” pr (pages 153, 195). In our opinion, such
an understanding misses the central point.

A second remark is on Vidyasagar’s distinguishing between PAC and PUAC learning, the
latter being the stronger notion. In our context, L being PUAC on S for a given pr would
mean: For every n, the probability of the set of sequences (x1, . . . , xm) satisfying

(∃f ∈ S)

[

Dpr(ϕL((x1,f(x1)),...,(xm,f(xm))), f) ≥
1

n+ 1

]

goes to zero when m goes to infinity. It is easily verified that our universal approximator in
fact has this property, w.r.t. the class of all total functions from N to N and any given pr.

Combining inductive learning with approximation

We are now prepared to define our intended “combining” of inductive learning with approxi-
mation. In the following definition, we will speak of “types of inductive learning”. Examples
of such types are Ex, BC, and Num, the latter being learning by enumeration (Example 3),
but there are a lot of others in the literature.

Definition 9: Let S be a class of total functions from N to N, T a type of inductive learning,
and L be a learner.

L combines T -learning of S with approximation if for all fair probabilities pr and
n ∈ N there is a constant spr,n such that for all f ∈ S

• L T -learns f with probability 1;

• with probability greater than n
n+1 : L has put out its n’th hypothesis en after at most

spr,n examples read, and Dpr(f, ϕen
) < 1

n+1 .

L combines T -learning of S with universal approximation iff the second requirement
is satisfied for all total f (not only those in S).

A first consequence of Theorem 7 refers to dense classes of functions. S is called dense if
every finite partial function possesses a total extension in S. Examples of dense classes are, e.g.,
the total functions almost everywhere 0, the polynomials, the primitive recursive functions.

Corollary 10: Let S be a dense class of total functions, and let the learner L approximate
S. Then L can be transformed into a universal approximator M by just skipping the first output
hypothesis and afterwards behaving like L. Moreover, if L combines Ex-learning or BC-learning
of S with approximation, respectively, then M does so with universal approximation.

We omit the relatively easy proof, see (Menzel and Stephan, 2002). 2

Our next result shows that the rather weak BC-learning and the highly restrictive and simple
learning by enumeration can both be combined with universal approximation.

Theorem 11: Every BC-learnable class of total functions possesses a learner which combines
BC-learning with universal approximation. Every class that can be learned by enumeration
possesses a learner which combines learning by enumeration with universal approximation.

169

Sketch of Proof: (Menzel and Stephan, 2002). The following learner M is constructed from
a BC-learner L of S and our universal approximator U . On a given infinite sequence, the
hypotheses en of M are put out at the same times when U puts out its respective hypotheses
un, and en is defined by patching σn = ϕun

with the last hypothesis an which L has produced
up to the time where un occurs. I.e., en ist such that

ϕen
(x) =

{

σn(x) if x ∈ dom(σn)
ϕan

(x) otherwise.

M approximates some f whenever U does, and by the patching of the ϕan
into ϕen

, if L
BC-learns f then so does M .

The proof of the second part is similar. L’s hypotheses are now indices of total functions,
and if these are patched with the σn then L being an enumeration learner for S immediately
implies that so is M . (In particular, M ’s convergence is now a syntactical one.) 2

The mainly interesting type of inductive convergence is of course that of Ex-learning: It is
here where our search for combining two paradigms got its essential motivation. Note that the
above construction for BC would not work in the Ex-case, where syntactical convergence is
required: Even if L would Ex-learn S, patching the ϕan

with the σn might cause infinitely many
hypotheses to arise (though almost all of them would belong to the target function f , if f ∈ S).
Thus in the above construction, hypotheses are somehow too “flexible” or “irritable”, somehow
one should prevent them from changing too easily. This suggests the idea of a consistency
requirement for producing hypotheses: Discard one only if this is enforced by an inconsistency
revealed by new data.

Definition 12: L is weakly consistent iff for every x there is a number bx ≥ x such
that for all unambiguous sequences ((x1, y1), . . . , (xm, ym)) with {0, . . . , bx} ⊆ {x1, . . . , xm},
L((x1, y1), . . ., (xm, ym)) ↓= e where e is such that ϕe(x) ↓= yk for any k with x = xk.

It is easily verified that one can w.l.o.g. assume that a weakly consistent learner is total and
never outputs ?. There are two notions in the literature which are related to weak consistency.
To be globally consistent ((Jain et al., 1999), Definition 5.61(d)) is equivalent to the special
case bx = x in our definition. Being reliable (Minicozzi, 1976) means that the learner either
learns or else diverges, i.e., outputs infinitely many hypotheses. (The latter must then, in
particular, occur for any non-computable f .) Global consistency is strictly stronger than weak
consistency, and being reliable is strictly weaker (Menzel and Stephan, 2002).

Theorem 13: For a class S of total functions, the following are equivalent properties.

(1) There is a learner which combines Ex-learning of S with universal approximation.

(2) S is weakly consistently Ex-learnable.

Sketch of Proof: Note that two properties rather alien to each other must be brought in rela-
tion: one referring to a statistical environment the learner acts in, and the other one, without
such reference, of a more logical nature of “local agreeing”.

(1) ⇒ (2). Let L combine the Ex-learning of S with universal approximation. We fix the
probability distribution pr({x}) = 1

x+1 −
1

x+2 and construct from L a learner M which weakly
consistently Ex-learns S. M((x1, y1), . . . , (xm, ym)) is defined by induction on m. If m ≤ 2 then
e = M((x1, y1), . . . , (xm, ym)) is any program consistent with {(x1, y1), . . . , (xm, ym)} (the data
being assumed to be unambiguous). Otherwise let e′ be M((x1, y1), . . . , (xm−1, ym−1)).

1: For all k, n, 3 ≤ n ≤ k ≤ m, compute the probability of the following event Ek,n: If
k numbers are drawn according to pr then they are all in {x1, . . . , xm}, and L having
seen these numbers together with the corresponding y-values has already put out its n’th
hypothesis en.

170

2: Choose the largest n such that n = 2 or for some k with n ≤ k ≤ m, Ek,n has probability
at least n−1

n+1 .

3: • If n > 2 and the probability of (Ek,n and en = e′) is at least 2
n+1 then e = e′;

• else if n > 2 and there are e′′ such that the probability of (Ek,n and en = e′′) is at

least 2
n+1 + 2−2−e′′

then let e be the minimal such e′′;

• otherwise let e be any program consistent with {(x1, y1), . . . , (xm, ym)}.

M is weakly consistent: Choose bx so large that bx ≥ x + spr,(x+1)(x+2)+1 and if one draws

spr,(x+1)(x+2)+1 numbers then with probability at least (x+1)(x+2)+1
(x+1)(x+2)+2 these are all below bx.

One concludes that the probability of Espr,(x+1)(x+2)+1,(x+1)(x+2)+1 is at least (x+1)(x+2)+1
(x+1)(x+2)+2 . For

an unambiguous input ((x1, y1), . . . , (xm, ym)) and (x, y) with (x, y) = (xl, yl), then, the n
computed in step 2 is at least (x + 1)(x + 2) + 1. If e in step 3 is selected according to the
first or second case then e = en with probability at least 2

(x+1)(x+2)+2 , and it follows by the

definitions of s..., pr, and Dpr that ϕe(x) ↓= y. If e is selected according to the third case then
ϕe(x) ↓= y because of bx ≥ x.
M Ex-learns S: Given f ∈ S, let ri be the probability that L converges to i when data

according to prf are presented. One shows that there is an i with ri > 2−i−2, and that M
must converge to an e ≤ i. Because of M ’s weak consistency, e must be an index of f .

(2) ⇒ (1). A learner L which combines Ex-learning of S with universal approximation is
constructed from a weakly consistent Ex-learner M of S and a universal approximator U . We
have to use a slightly sharper version of universal approximation than that one in Definition 6
(Theorem 7 can easily be shown to remain true). Recall from the literature that ϕe,m is the
function with ϕe,m(x) = ϕe(x) if program e on input x halts within m steps, and is undefined
otherwise.
L(λ) = ?. For m ≥ 1, L((x1, y1), . . . , (xm, ym)) is computed as follows.

1: Let n be the number of hypotheses put out by L for previous sequences ((x1, y1), . . .,
(xk, yk)), k < m, and c = M((x1, y1), . . . , (xm, ym)). (Recall that M does not produce ?.)
Check whether un is known, i.e., un = U((x1, y1), . . . , (xk, yk)) for some k ≤ m.

2: • If un is known and c ≥ n then L((x1, y1), . . . , (xm, ym)) = un;

• else if un is known, c < n, and ϕc,m(x) = ϕun
(x) for all x ∈ dom(ϕun

) then
L((x1, y1), . . . , (xm, ym)) = c;

• otherwise L((x1, y1), . . . , (xm, ym)) = ?.

For any fair distribution, L Ex-learns every f ∈ S with probability 1: Let the valid sequence
(x1, f(x1)), (x2, f(x2)), . . . be given. As M learns f and by the definition of L, there are s and
c such that ϕc = f and L outputs c or ? for all ((x1, f(x1), . . . , (xm, f(xm)), m ≥ s. But it
will occur infinitely often that (∀x ∈ dom(ϕun

))[ϕc,m(x) ↓= ϕun
(x)] for some un produced by

U , and hence that L((x1, f(x1)), . . . , (xm, f(xm))) = c.
L is a universal approximator: Using the mentioned sharper version of U as a universal ap-

proximator one can conclude that for all pr, n there is a tpr,n such that after the occurence of
tpr,n examples, it is with probability at least 2n+1

2n+2 that L has produced a hypothesis extending
ϕun

and, simultaneously, all of M ’s later hypotheses will agree with f on dom(ϕun
). We can

now argue as in the proof of Proposition 5 and Theorem 7 to conclude that with probabil-
ity greater than n

n+1 , L after tpr,n examples has output its hypothesis en and this satisfies

Dpr(f, ϕen
) < 1

n+1 . 2

For dense classes, the notions of Ex-learnability combined with universal approximation and
of Ex-learnability combined with approximation coincide. A further consequence of Theo-
rem 13 is that in the case of {0, 1}-valued functions Ex-learnability combined with universal
approximation coincides with learnability by enumeration (Menzel and Stephan, 2002). This is

171

because Ex-learnability by a reliable learner implies enumeration learnability in the {0, 1}-case
(Zeugmann, 1983).

The class S of self-describing functions (see above, after Example 3) possesses an Ex-learner
combined with approximation (of S!). A slight modification yields an Ex-learnable class for
which Ex-learning cannot be combined with approximation, and which may thus serve as a
witness to separate both properties (Menzel and Stephan, 2002). It consists of all f such that

• either there is a self-describing g satisfying (∀x)[f(x) = g(x) + 1],

• or f(x) = 0 for almost all x.

Distribution-Free Approximation

Thus far, approximation was such that bounds on the numbers of drawn examples, to ensure
a certain quality of approximation, were allowed to depend on the underlying distribution.
What happens if we require those bounds to be independent from pr? If such a demand is
combined with the uniformity w.r.t. the target function f (as in Definition 6), one arrives at
a rather extreme situation. In order to be not too restrictive right away we consider a notion,
so to say, “orthogonal” to approximation from Definition 6: Quality bounds are independent
from pr, but may depend on the target function f .

Definition 14: A learner L approximates a total function f in a distribution-free way

iff for all n ∈ N there exists a bound sf,n such that for all distributions pr on N if examples
are read according to prf the following holds with probability greater than n

n+1 : L puts out

its n’th hypothesis en after at most sf,n examples read, and Dpr(ϕen
, f) < 1

n+1 . Let T be a
type of (inductive) learning and S a class of total functions. L combines T-Learning of

S with distribution-free approximation iff L T -learns S and approximates every f ∈ S

in a distribution-free way. L combines T-learning of S with uniform distribution-free

approximation iff L combines T -learning of S with distribution-free approximation in such
a way that the bounds sf,n belonging to the f ∈ S can be chosen independent from f , i.e., as
constants sn.

Theorem 13 characterized the possibility to combine Ex-learning with universal approximation
by the property “weakly consistent”, which does not refer to any statistical context. Our main
result on approximation in a distribution-free way is similar, and it is now “proper” (not weak)
consistency which comes into play.

Definition 15: L is consistent on S iff for all f ∈ S and sequences ((x1, f(x1)), . . .,
(xm, f(xm))), L((x1, f(x1)), . . ., (xm, f(xm))) ↓∈ N and ϕL((x1,f(x1)),...,(xm,f(xm)))(xk) = f(xk)
for k = 1, . . . ,m. L is consistent iff L is consistent on the class of all total functions.

Remark: In inductive inference many learning criteria remain unchanged when only “normal-
ized” sequences of the form (0, f(0)), (1, f(1)), . . . are considered, so most publications confine
themselves to using normalized sequences. The latter is also the case for consistency, though
the notion of consistency, in fact, is changed by normalization. As confining to normalized
sequences would certainly be inappropriate for our purposes, we chose the above definition.

Theorem 16: If S has a learner that combines Ex-learning with distribution-free approxima-
tion then there is an Ex-learner of S which is consistent on S.

Sketch of Proof: (Menzel and Stephan, 2002). The proof is very similar to part (1) ⇒ (2) in
the proof of Theorem 13. Observe the difference: The assertion is now much stronger in that at
any given time, agreement with the given examples must be ensured “right now”. But in order
to achieve this, we have now much more possibilities at our disposal, namely, are allowed to

172

construct an appropriate distribution which might depend on f and even the given sequence.
This pr is chosen in such a way that simulating the given L with respect to pr and selecting
a hypothesis if it has sufficiently often been put out by L forces the new machine M to be
consistent. 2

For dense classes S, the converse of Theorem 16 is also true. We have the following character-
ization.

Theorem 17: The following properties of a dense class S of total recursive functions are
equivalent

(1) There is a learner which combines Ex-learning of S with distribution-free approximation

(2) There is a consistent Ex-learner of S

(3) There is a numbering ψ of partial recursive functions such that S ⊆ {ψe : e ∈ N} and the
set {(e, x, y) : ψe(x) ↓= y} is recursive.

Observe that we have now obtained the equivalence of a property “in terms of approximative
Ex-learning”, (1), with a purely recursion-theoretic one, (3), where (2) plays a kind of mediating
rôle between both.

Sketch of Proof: (1) ⇒ (2): Immediate, as consistency of a learner on a dense class implies
consistency “at all”.

(2) ⇒ (3): ψ is based on a one-one recursive enumeration σe, e ∈ N, of all finite unambiguous
sequences of pairs of natural numbers. For σe = ((x1, y1), . . ., (xm, ym)) define ψe(x) ↓= y iff

• either (x, y) ∈ {(x1, y1), . . . , (xm, ym)}

• or x 6∈ {x1, . . . , xm} and L((x1, y1), . . . , (xm, ym), (x, y)) = L((x1, y1), . . ., (xm, ym))

where L is the assumed consistent Ex-learner of S (L must be total).

(3) ⇒ (1): This is a modification of learning by enumeration, using the Chernoff-bound. Given
ψ, the learner L computes its n’th hypothesis en on a given sequence (x1, y1), (x2, y2), . . . in
the following way. e0 = L(λ) = 0. Assume e′ = en−1 has already been produced. Then L,
counting upwards from e′, regards “tentative hypotheses” e: By means of the Chernoff-bound,
each of them is checked for consistency with enough data (L produces ? while requesting these
data). e is put out if the test has gone through. 2

Let us at last turn to uniform distribution-free approximation. Here, main results in statistical
learning theory are connected to the concept of VC-dimension in the case of {0, 1}-valued
functions, or P-dimension in the general case (Vapnik, 1998), (Vidyasagar, 1997). We look at
VC-dimenison only in our special connection of functions on N, though this seems not to be a
particularly interesting case in original work on that concept.

Definition 18: The VC-dimension (Vapnik-Chervonenkis-dimension) of a class T of total
functions from N to {0, 1} is the greatest k satisfying

• there is a set X of cardinality k such that every function ψ : X → {0, 1} is extended by
some f ∈ T

if only finitely many k have this property, and is infinite otherwise.

See (Vapnik, 1998), (Vidyasagar, 1997) for the theory around VC-dimension and its generaliza-
tion to arbitrary functions. For {0, 1}-valued functions, uniform distribution-free learnability is
equivalent to having finite VC-dimension, and for general functions, finiteness of P-dimension
is sufficient but not necessary. These results are obtained in a quite general setting, so that
they hold true in our special case of functions from N to N, too.

173

Having finite VC-dimension is an extremely restrictive property. Besides finite classes S,
an example of a fairly “natural” class which has it are the polynomials of a fixed degree. In
the reading of statistical learning theory, possessing finite VC-dimension is (for {0, 1}-valued
functions) in some sense the strongest and simplest kind of “learnability” (namely, uniform
approximability) which a class of functions can have. The following example shows that even
this extreme property does not imply inductive learnability, not even in the weak sense of
BC-learnability. It shows furthermore that a rather simple transformation of the data can
immediately destroy the property of having finite VC-dimension. 〈. . .〉 below is a recursive
one-one mapping from the set N

+ of all non-empty strings onto N.

Example 19: Let S be the class of all functions gf , f ∈ REC, where

gf (x) =

{

1 if x = 〈f(0), f(1), . . . , f(k)〉 for some k;
0 otherwise, that is, there is no such k.

S has VC-dimension 1 but is not BC-learnable.

Sketch of Proof: S has VC-dimension 1: Consider {x, y} with x 6= y. We have to show that
there is some σ : {x, y} → {0, 1} which is not extended by any g ∈ S ({x, y} is not “shattered
by S”). We have x = 〈a0, . . . , ak〉 for unique numbers k, a0, . . . , ak. If y = 〈a0, . . . , al〉 for some
l < k then g(x) = 1 ⇒ g(y) = 1 for all g ∈ S; choose σ(x) = 1, σ(y) = 0. If y = 〈a0, . . . , al〉
for some l > k and numbers ak+1, . . . , al then g(y) = 1 ⇒ g(x) = 1 for all g ∈ S; choose
σ(x) = 0, σ(y) = 1. If y is of none of these two forms, then g(x) = 0 ∨ g(y) = 0 for all g ∈ S;
choose σ(x) = 1, σ(y) = 1.

It is well known that REC is not BC-learnable (Bārzdiņš, 1974), (Jain et al., 1999), (Odifreddi,
1989), (Osherson et al., 1986). An easy reduction shows that BC-learnability of S would imply
BC-learnability of REC: Given f ∈ REC, compute the arguments for gf from those for f ,
apply the (assumed) BC-learner of S and translate produced hypotheses in such a way that e
is a program for gf iff its translation is a program for f . 2

Concluding remarks

Statistical learning theory, mainly developed by Vapnik (Vapnik, 1998), offers us a fascinating
mathematical world. Clear principles are followed and systematically worked out, guiding con-
cepts discovered, strong and brilliant results obtained. It is beautiful mathematics all around,
in the spirit of classical functional analysis.

Might that be too beautiful? Doubts begin to arise when one tries to model real-life situations
by the proposed means, or to design learning machines for real-life applications, say predict
stock values or find a winning strategy for a soccer team. Are learning processes characterized
sufficiently well by calculating numbers of needed examples from quality bounds? Do we really
need and assume “uniformity” when a certain problem (a class S of functions) is given, i.e.,
assume the required number of examples to be independent from the searched function? In the
group of one of the authors, much and successful work has been done on developing learners for
real-life problems (Hörnel and Menzel, 1998), (Menzel, 1998), (Merke and Riedmiller, 2002),
(Ragg et al., 2002). This was in the methodology of neural networks and reinforcement learning,
thus far away from our more abstract scenario above. Anyway, a central observation in that
work has been that a construction getting successful depends extremely on the individual
problem given, i.e., the class S. But algorithms described in statistical learning theory tend to
be rather “unspecific”, without particular knowledge about S being built in. This is different
for inductive inference, which offers a lot of constructions of learning machines depending on
the specificities of a given class S.

If we try to relate the two worlds considered in this paper, we must regard statistical learning
theory over countable domains of objects. Admittedly, this is not the typical situation adressed

174

by statistical learning theory, but its approach and results apply to this case, too, and may
be tested on it. Regarding the “learning as uniform approximation” paradigm of statistical
learning theory over countable domains, we have then arrived at a highly strange situation:

Either one allows quality bounds (on the numbers of needed examples) to depend on the
distribution. Then the whole class of all total functions from N to N becomes “learnable”
(uniformly approximable). Even stronger, the learning algorithm itself does not need to depend
from pr; only the “environment” it acts in influences convergence. Thus, nothing specific of
“learning” seems to be left at all.

Or, secondly, one requires those bounds to not depend from distributions. Then the whole
concept of “learning”, so to say, collapses the other way round: Extremely few classes remain
to be learnable in this sense, in the case of {0, 1}-valued functions just those of finite VC-
dimension.

Has there a battle been won in favour of one of our two competing powers, in favour of the
algorithmic way of thinking? One should be cautious, there are many points in our investiga-
tions where interesting modifications of the way taken offer themselves. Moreover, our main
goal has not been fighting but the combining of two paradigms of learning. It should anyway
be better to make love, not war, – though in so many cases both turn out to be the same
thing, after some time.

175

References

Janis Bārzdiņš. Two theorems on the limiting synthesis of functions. In Latvian State Univer-
sity, editor, Theory of Algorithms and Programs, volume I, pages 82–88. 1974. In Russian.

John Case and Carl Smith. Comparison of identification criteria for machine inductive infer-
ence. Theoretical Computer Science, (25):193–220, 1983.

E. Mark Gold. Language Identification in the Limit. Information and Control, (10):447–474,
1967.

Dominik Hörnel and Wolfram Menzel. Learning musical structure and style with neural net-
works. Computer Music Journal, 22(4): 44–62, 1998.

Sanjay Jain, Daniel Osherson, James Royer, and Arun Sharma. Systems That Learn. The
MIT Press, Cambridge, Massachusetts, 1999. revised edition of (Osherson et al., 1986).

Wolfram Menzel. Problem solving with neural networks. In Ulrich Ratsch et al., editors,
Intelligence and Artificial Intelligence – an Interdisciplinary Debate, 161–177, Springer, 1998.

Wolfram Menzel and Frank Stephan. Topological Aspects of Numberings. Mathematical Logic
Quarterly, to appear. See also: Interner Bericht 15, Universität Karlsruhe, Fakultät für
Informatik, Karlsruhe, 1999.

Wolfram Menzel and Frank Stephan. Inductive versus approximative learning. In Reimer
Kühn et al., editors, Adaptivity and Learning. Springer, to appear.

Artur Merke and Martin Riedmiller. Karlsruhe Brainstormers – a reinforcement learning way
to robotic soccer II. In A. Birk et al., editors, RoboCup-2001: Robot Soccer World Cup V,
LNCS 2377, 322–327, 2002.

Eliana Minicozzi. Some natural properties of strong-identification in inductive inference. The-
oretical Computer Science, (2):345–360, 1976.

Piergiorgio Odifreddi. Classical Recursion Theory, volume I and II. North-Holland and Else-
vier, Amsterdam, 1989 and 1999.

Daniel Osherson, Michael Stob, and Scott Weinstein. Systems That Learn. An Introduction
to Learning Theory for Cognitive and Computer Scientists. Bradford – The MIT Press,
Cambridge, Massachusetts, 1986.

Thomas Ragg, Wolfram Menzel, Walter Baum, and Michael Wigbers. Bayesian learning for
sales rate prediction for thousands of retailers. Neurocomputing, 43: 127–144, 2002.

Robert I. Soare. Recursively Enumerable Sets and Degrees. A Study of Computable Functions
and Computably Generated Sets. Springer, Heidelberg, 1987.

Leslie G. Valiant. A theory of the learnable. Communications of the Association for Computing
Machinery, 27(11):1134–1142, 1984.

Vladimir N. Vapnik. Statistical Learning Theory. John Wiley, New York, 1998.

Mathukumalli Vidyasagar. A Theory of Learning and Generalization. Springer, London, 1997.

Thomas Zeugmann. A-posteriori characterizations in inductive inference of recursive functions.
Journal of Information Processing and Cybernetics (EIK), 19:559–594, 1983.

176

On an Algebraic Description

of Colorability of Planar Graphs

Michal Mnuk

Institut für Informatik

Technische Universität München

Garching, Germany

E-mail: mnuk@in.tum.de

Abstract

We provide a ideal theoretic formulation of the proof of the famous Four

Color Theorem. The connection between graph theory and polynomial

ideals yields an alternative view onto the problem of colorability of planar

graphs and may contribute to a better understanding of the phenomena

arising there.

KEYWORDS: graph colorability, planar graphs, polynomial ideals, Four

Color Theorem

1. Introduction

The question of how many colors are needed to properly color vertices of a
graph appeared already in the beginnings of the development of graph theory.
Around 1850 this question was restricted to planar graphs which ignited a whole
spectrum of activities. They culminated in the proof of the Four Color Theorem
in 1976 by Apel and Haken ([Apel and Haken, 1976, 1977, 1989]). However, the
proof contained a long list of cases which could be verified only by a computer.
And even though this proof has been partially simplified ([Robertson et al., 1996,
1997]), hundreds of cases are still left.

Our aim is to introduce algebraic concepts into the problem of colorability
of (planar) graphs. While it is not hard to establish a connection between the
colorability of general graphs and polynomial ideals, no such correspondence is
known for planar graphs. Though, it is not unreasonable that interesting con-
nections will be discovered.

In this paper, we present an ideal theoretic formulation of the proof of the
Four Color Theorem. Despite of the complexity of the original proof, we will
reformulate it and replace those parts that introduce combinatorial difficulties

177

Algebraic Description of Colorability of Graphs

by testing polynomial ideal membership. Even though the basic structure of our
proof is basically identical to that coming from pure graph theory, the algebraic
concepts developed here are by no means mere transcriptions of the graph the-
oretical ones. For this reason, the theory developed in this paper does not yield
(yet) an alternative proof of the Four Color Theorem but only an equivalent
formulation of it.

The merits of this approach are not clarified yet. So far, no substantial simpli-
fication of the aforementioned proof could be obtained. On the other hand, our
approach yields for the first time a representation of some planarity notions by
polynomial ideals. This opens a door for a realm of methods from polynomial
ideal theory. Moreover, the ideals introduced here are rather regular and are
explicitly given. This results in sufficiently special instances of the polynomial
ideal membership problem. We hope that understanding the structure of these
ideals, e.g. by means of Gröbner bases, will yield new insights and results in
colorability of planar graphs, and graphs in general.

2. Graphs, Polynomial Ideals, and Colorability

There are several possibilities to associate polynomials with graphs. This fact is
mainly used to encode graph properties either in the values or in the coefficients
of the corresponding polynomial. As we do not work with single graphs but with
classes of graphs, we are looking for a way to map these classes not to singular
polynomials but to polynomial ideals.

In [Mnuk, 2001] the author studied a way to describe properties of graphs by
polynomial ideals. There, it turned out that the graph polynomial defined below
served the intended purpose best.

Definition: Let G = (V, E) be a graph on n vertices {1, . . . , n}. With each vertex
i ∈ V we associate a variable xi. Let � be a connex partial order on the set of
variables {x1, . . . , xn} (i.e. a reflexive, transitive, and antisymmetric order with
xi � xj or xj � xi for any i, j). The graph polynomial fG of G is given by

fG(x1, . . . , xn) =
∏

{i,j}∈E
xi�xj

(xi − xj).

Note that the polynomial fG is homogeneous of degree |E|.

Throughout the paper we will denote by k an arbitrary field and by k[x1, . . . , xn]
the ring of polynomials over k. Moreover, for simplicity we assume that the vari-
ables are ordered x1 � x2 � . . . � xn. At this moment it may not be clear why an
ordering on variables is needed – except for eliminating redundant factors from
the graph polynomial. Later, when Gröbner bases of ideals will be considered,
the ordering will become important.

The graph polynomial can be used to “represent” colorability. A graph G =

178

Michal Mnuk

(V, E) is said to be colorable by r colors if there is an assignment of colors to
vertices such that no two vertices connected by an edge are assigned the same
color.

Let
Un

r := (xr
1
− 1, . . . , xr

n − 1). (1)

In [Matiyasevich, 1974], Yu. Matiyasevich proved the following theorem.

Theorem 2.1: Let G = (V, E) be a graph, fG its graph polynomial and n := |V |.
Then G is not colorable with at most r colors if and only if fG ∈ Un

r .

Proof: This theorem has a short proof based on Gröbner bases. We sketch it
here.

If fG ∈ Un
r , then it is clear that there can be no coloring with at most r

colors. On the other hand, assume that G admits no coloring. We fix a degree
compatible ordering � on k[x1, . . . , xn]. Since {xr

1
− 1, . . . , xr

n − 1} is a Gröbner
basis of Un

r , we can write
fG = nfUn

r
(fG) + g,

where nfUn
r
(fG) is the normal form of fG and g ∈ Un

r . The degree of each variable
in nfUn

r
(fG) is at most r − 1. Evaluating fG at all r-th roots of unity, we infer

from the Fundamental Theorem of Algebra applied to multivariate polynomials
that nfUn

r
(fG) must vanish identically. 2

The above theorem reveals the fact that the connection between graphs and
polynomial ideals is by far not straightforward. While it is a trivial observation
that an graph that is not r-colorable is also not (r − 1)-colorable, the proof of
its algebraic analogon is not easy at all.

Thus, expressing theorems from graph theory in algebra is not merely an easy
translation. It maps the problems into a similar but different setting from which
new insights may be gained.

3. The Four Color Theorem

The history of coloring planar graphs is long and well known. Several books
about graph theory contain reports on it (we refer for example to [West, 1996]).

The first proof that every planar graph can be colored by at most five colors
was found by Heawood in 1890 ([Heawood, 1890]). It was done in the course of
proving the original conjecture which said that four colors suffice for every planar
graph. It was finally proved in 1976 by Apel and Haken ([Apel and Haken, 1976,
1977, 1989]). Their proof resulted in a case distinction that, even after it has
been simplified, still contains hundreds of cases. It splits into two tasks. First,
it is easily shown that there is a finite set of graphs Γ such that every planar
graph contains at least one element of Γ as a subgraph. In the more difficult
second part it is proved that every planar graph containing an element from Γ
as subgraph can be colored by four colors.

179

Algebraic Description of Colorability of Graphs

(α) (β) (γ)

Figure 1: Configurations

Now, we will elaborate on the first part of the proof where a set of graphs is
selected that must be contained in every planar graph.

Definition: A configuration is a “wheel” with n vertices of degree 3 on the rim
and one vertex in the middle (the nut) which is connected to every vertex on
the rim. The three smallest configurations denoted α, β and γ are depicted in
Figure 1.

Definition: Let C be a set of (planar) graphs. A configuration ω is called r-
reducible with respect to C if for any graph G ∈ C containing ω, the following
condition holds:

If G without the nut of ω is r-colorable, then G is r-colorable.

Definition: Let C be a set of graphs. A set U is called unavoidable for C if every
graph in C contains some graph from U .

Using Euler’s Formula, it is not hard to see that a planar graph G = (V, E)
can have at most 3|V | − 6 edges. From this it easily follows that it must contain
a vertex of degree at most 5. Hence, since we assumed that all planar graphs are
triangulated, each of them must contain one of the configurations α, β, or γ as
a subgraph. Thus we have:

Lemma 3.1: Let Π be the set of triangulated planar graphs. The set Γ := {α, β, γ}
is unavoidable for Π.

This lemma solves the first problem we posed above. We have found a set of
graphs that must appear in every planar graph.

Now, we describe the ideas of the proof of the Four Color Theorem.

Theorem 3.1 (The Four Color Theorem): Every planar graph is
4-colorable.

180

Michal Mnuk

Proof (idea): For the sake of simplicity, we will consider only triangulated planar
graphs, i.e. those graphs containing the maximum number of edges (which is
3n − 6 where n is the number of vertices). It is clear that this restriction makes
the colorability problem not easier.

Suppose, the theorem is false. Let C denote the set of planar graphs that are
not 4-colorable and let G be an element of C with a minimal number of vertices.
We know that G must contain one of the configurations α, β, or γ.

Suppose that all these three configurations are 4-reducible. After deleting the
nut we obtain a graph G′ with less vertices than G and hence 4-colorable. The
reducibility of configurations implies 4-colorability of G. A contradiction. 2

In order to complete the above proof, it remains to verify the reducibility of
configurations α, β, and γ. Note, that the reducibility of α is easy, that of β can
be shown by elementary means, and that of γ represents the hardest part of the
proof.

At this point we leave the classical graph theoretic proof of the Four Color
Theorem. In the rest of the paper we will establish equivalent conditions to
the fact that β and γ are 4-reducible. These conditions will be formulated as
polynomial ideal membership problems.

4. Polynomial Ideals and Colorability of Planar Graphs

In this section we formulate algebraic conditions which are equivalent to the
reducibility of β and γ. At this point, the reasoning used in the classical proof
and that used here significantly differ and there is no direct correspondence any
more.

The conditions introduced below are interesting for two reasons. Their struc-
ture is relatively easy and there is a hope that they can be settled by formal
mathematical methods. Furthermore, the paradigms appearing here apply also
to general graphs. Hence, it is reasonable that the study of these conditions will
shed more light onto the problem “What makes a graph colorable?” and hence
on some fundamental questions in colorability of graphs.

In order to keep the reasoning simple, the colors will be, without loss of gen-
erality, the fourth roots of unity. These are the common roots of the generators
of Un

4
.

4.1. Algebraic Preliminaries

The ideals we will deal with arise from sets of polynomials with prescribed com-
mon zeros. Ideals of this type defined over fields will share the property to be
radical ideals. In the sequel, we assume that all polynomials and ideals are de-
fined over an algebraically closed ground field k.

Definition: An ideal I ⊆ k[x1, . . . , xn] is called a radical ideal if it is equal to its

181

Algebraic Description of Colorability of Graphs

Figure 2: G Figure 3: G′ Figure 4: G′′

own radical
√

I defined by
√

I := {f ∈ k[x1, . . . , xn]| f s ∈ I for some s > 0}.

The following theorems collect important properties of radical ideals (details
and proofs may be found in many books on commutative algebra, e.g. [Eisenbud,
1994], [Zariski and Samuel, 1958]).

Theorem 4.1: Let k be a perfect field and I a zero-dimensional ideal in
k[x1, . . . , xn]. Then I is a radical ideal if and only if it contains a univariate
squarefree polynomial in each variable.

Theorem 4.2 (Hilbert Nullstellensatz): Let k be an algebraically closed
field and f, g1, . . . , gr polynomials from k[x1, . . . , xn]. If f vanishes on all common
zeros of g1, . . . , gr, then there is an integer s > 0 such that

f s ∈ (g1, . . . , gr).

The last theorem has an easy but surprisingly important consequence.

Corollary 4.1: Let I = (g1, . . . , gr) be a radical ideal in k[x1, . . . , xn]. If f ∈
k[x1, . . . , xn] vanishes on all common zeros of g1, . . . , gr, then f ∈ I.

4.2. The Configuration β

After we discussed algebraic preliminaries, we return to the proof of the Four
Color Theorem. The essential questions which were left open in the sketch of the
proof of Theorem 3.1 pertained to reducibility of configurations β and γ. Now,
we will establish a condition that is equivalent to the fact that the configuration
β is 4-reducible.

Let us consider a planar (triangulated) graph G containing β (see Figure 2).
When the nut together with all adjacent edges is removed, the resulting graph
will be denoted G′ (see Figure 3). Finally, connecting all vertices on the rim in
G′ we obtain a new graph G′′ depicted in Figure 4.

Now, we assign the nut the variable xn, the vertices on the rim the variables
xn−1, xn−2, xn−3, xn−4, and the rest is assigned arbitrarily. This assignment
defines graph polynomials fG, fG′, and fG′′.

182

Michal Mnuk

Theorem 4.3: The configuration β is 4-reducible if and only if for every planar
graph G containing β it holds:

fG′ ∈ (fG′′ , x4

n−1
− 1, . . . , x4

1
− 1) =⇒ fG′ ∈ (x4

n−1
− 1, . . . , x4

1
− 1). (2)

Notation: The condition that is equivalent to the 4-reducibility of β will be called
“Condition β”. The ideal (fG′′ , x4

n−1
− 1, . . . , x4

1
− 1) will be denoted by IG,β.

Proof: First, we prove the necessity of Condition β. For this, we assume that β
is 4-reducible (w.r.t. planar graphs). Let G be a planar graph containing β. The
graphs G′ and G′′ are defined as above.

Case 1. (G′ is not 4-colorable) From Theorem 2.1 we obtain fG′ ∈ (x4

n−1
−

1, . . . , x4

1
− 1) and the implication (2) holds.

Case 2. (G′ is 4-colorable) The reducibility of β implies that G is 4-colorable
too. Let c1, . . . , cn−1 be the colors assigned to vertices v1, . . . , vn−1. As any
4-coloring of G induces at most 3 colors on the rim of β, the polynomial fG′′

must vanish. On the other hand, c1, . . . , cn−1 is a proper 4-coloring and thus
fG′(c1, . . . , cn−1) 6= 0. This shows fG′ /∈ (fG′′, x4

n−1
− 1, . . . , x4

1
− 1) making

the implication (2) valid.

Hence, the necessity of Condition β is established.
For sufficiency, assume that (2) holds for any planar graph G. To show that

the configuration β is 4-reducible, we assume G′ to be 4-colorable. If we knew
that there is at least one coloring of G′ which induces at most three colors on
the rim of β, we were done. We prove this assertion by contradiction.

Let us assume that every 4-coloring of G induces four colors on the rim.
We choose a perfect algebraically closed field k and consider all common zeros
(c1, . . . , cn−1) of IG,β (which are fourth roots of unity). Since fG′′(c1, . . . , cn−1) =
0, there are two possibilities for this to happen. Either there are two vertices
“outside” of β that are connected by an edge and that are assigned the same
color ci. Since G′ and G′′ agree outside of β, we have fG′(c1, . . . , cn−1) = 0. Or
two vertices on the rim of β were assigned the same color. Giving the remaining
color to the nut, we would obtain a proper 4-coloring of G with at most three
colors on the rim. However, by assumption, no such coloring exists. Hence, a
posteriori, there must be an edge on or outside of the rim whose vertices are
assigned the same color. Again, we obtain fG′(c1, . . . , cn−1) = 0.

Summarizing, the polynomial fG′ vanishes on all common roots of IG,β. From
Hilbert Nullstellensatz there must be a positive integer s such that f s

G′ ∈ IG,β.
Since IG,β is zero dimensional and the ground field is perfect and algebraically
closed, Theorem 4.1 implies that it is a radical ideal. Furthermore, Corollary 4.1
shows that s = 1 and hence fG′ ∈ (fG′′ , x4

n−1
−1, . . . , x4

1
−1). Using Condition β,

fG′ lies in the ideal (x4

n−1
− 1, . . . , x4

1
− 1). The contradiction obtained from

Theorem 2.1 shows that there exists at least one 4-coloring which induce at
most three colors on the rim. 2

183

Algebraic Description of Colorability of Graphs

G′′
1

G′′
2

G′′
3

G′′
4

G′′
5

Figure 5:

Remark:

1. The fact that the configuration β is 4-reducible has an elementary graph
theoretical proof. We consider bicolored paths joining opposite vertices on
the rim of β. The planarity yields then the key argument to show that there
is a 4-coloring that induces only three colors on the rim of β.

2. The above proof admits several variations. If the number of colors 4 is
replaced by 2 and any reference to the rim of β is replaced by the neighbor-
hood of the nut, the same arguments yield a proof that every graph without
odd cycles is bipartite, i.e. can be colored with two colors.

Replacing 4 by 5 and β by γ we obtain analogous assertions for the Five
Color Theorem. Note that the 5-reducibility of α and β is trivial.

4.3. The Configuration γ

The reasoning applied for the configuration β remains the same for γ. Only the
ideal will be changed.

Let G be a planar graph containing γ as a subgraph. Analogously to what has
been said above, let G′ be the graph G where the nut of the pentagon has been
removed. Finally, G′′ will be replaced by graphs G′′

1
, . . . , G′′

5
(see Figure 5).

Theorem 4.4: The configuration γ is 4-reducible if and only if for every planar
graph G containing γ it holds:

fG′ ∈ (fG′′

1
, fG′′

2
, fG′′

3
, fG′′

4
, fG′′

5
, x4

n−1
− 1, . . . , x4

1
− 1) =⇒

fG′ ∈ (x4

n−1
− 1, . . . , x4

1
− 1). (3)

Notation: The condition that is equivalent to the 4-reducibility of γ will be
called “Condition γ”. The ideal (fG′′

1
, fG′′

2
, fG′′

3
, fG′′

4
, fG′′

5
, x4

n−1
−1, . . . , x4

1
−1) will

be denoted by IG,γ .

Proof: The arguments showing the necessity of Condition γ can be taken over
from the proof of Theorem 4.3. We only have to show that any 4-coloring of G is
a common zero of fG′′

1
, . . . , fG′′

5
. Such a coloring induces three colors on the rim

of γ. Two of them appear twice and a single vertex is colored by the third one.
Then it is easy to see that all polynomials fG′′

i
vanish.

184

Michal Mnuk

Concerning the sufficiency of Condition γ, let us assume for a planar graph
G that G′ is 4-colorable. The polynomials fG′′

1
, . . . , fG′′

5
are constructed in such

a way that any coloring of G which is their common zero but not a zero of fG′

induces exactly three colors on the rim.
Analogously as in the proof of Theorem 4.3, the assumption that there is no

coloring inducing three colors on the rim of γ implies that fG′ vanishes on all
common zeros of IG,γ . From Hilbert Nullstellensatz for radical ideals and using
the validity of Condition γ we infer fG′ ∈ (x4

n−1
−1, . . . , x4

1
−1). The contradiction

obtained by Theorem 2.1 concludes the proof. 2

5. What Next?

The reformulation of the proof of the Four Color Theorem done in this paper is
not just a translation of some theorems into another language. Several concepts
in graph theory can be described by polynomial ideals, but the nature of these
areas is inherently different. That is why the ideals cannot deliver a one-to-one
correspondence and a justification why it makes sense to study such alternative
descriptions.

We believe that the study of the ideals introduced in this paper will reveal
new aspects of colorability of graphs. Even though the polynomial ideal mem-
bership problem is, in general, by far more difficult than the colorability itself,
the instances described in this paper are evidently not the most general ones.
On the contrary, for a fixed graph G the only polynomials which enter the game
arise from G by changing a couple of edges inside of the rim of β and γ.

New insights in this matter may be obtained by studying the structure of the
ideals IG,β and IG,γ . Describing their Gröbner bases would be a substantial step
toward a solution. Again, computing Gröbner bases is, in general, a demanding
task. But both IG,β and IG,γ arised from the ideal Un−1

4
for which a Gröbner

basis is known (see (1)).
Another promising direction is the study of the way how a product of two

graph polynomials (of planar graphs) reduces with respect to Un
4
. This question

touches the base of the theory of colorability of graphs. New insights in this area
would also result in a valuable knowledge.

References

K. Apel and W. Haken. Every planar map is four colorable. Bull. Amer. Math.
Soc., 82:711–712, 1976.

K. Apel and W. Haken. Every planar map is four colorable. Part I: Discharging.
Illinois J. Math., 21:429–490, 1977.

K. Apel and W. Haken. The four color proof suffices. Math. Intelligencer, 8:
10–20, 1989.

185

Algebraic Description of Colorability of Graphs

David Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry,
volume 150 of Graduate texts in mathematics. Springer-Verlag, 1994.

P.J. Heawood. Map-colour theorem. Q. J. Math., 24:332–339, 1890.

Yuri Matiyasevich. A criteria of colorability of vertices of a graph stated in terms
of edge orientations. Diskretnyi Analiz, 26:65–71, 1974. Institute of Mathe-
matics, Siberian Branch of the Russian Academy of Sciences, (in Russian).

Michal Mnuk. Representing graph properties by polynomial ideals. In V.G.
Ganzha, E.W. Mayr, and E.V. Vorozhtsov, editors, Computer Algebra in Sci-
entific Computing, CASC 2001. Proceedings of the Fourth International Work-
shop on Computer Algebra in Scientific Computing, Konstanz, pages 431–444.
Springer-Verlag, September 2001.

N. Robertson, D.P. Sanders, P.D. Seymour, and R. Thomas. A new proof of the
four color theorem. Electron. Res. Announc. Amer. Math. Soc., 2(1):17–25,
1996.

N. Robertson, D.P. Sanders, P.D. Seymour, and R. Thomas. The four color
theorem. J. Combin. Theory Ser. B., 70:2–44, 1997.

Douglas B. West. Introduction to Graph Theory. Prentice Hall, 1996.

Oscar Zariski and Pierre Samuel. Commutative algebra, Volume I, volume 28 of
Graduate Texts in Mathematics. Springer-Verlag, 1958.

186

The Eighth Variation

Teo Mora

DISI, Univ. of Genoa, Genoa, Italy

Abstract

Gröbner bases and related notions, like Macaualay’s H-Bases, Hironaka’s
standard bases, can be described in the setting of graded and filtered
rings.

This description required however to apply Buchberger Algorithm and
Reduction in a setting in which termination is not available. As a conse-
quence Gröbner representations of elements in a filtered ring P are to be
looked for in a series overring P ,̂ whose constraction and properties are
discussed in this paper.

KEYWORDS: Gröbner and standard basis, Buchberger Algorithm

1. Introduction

Already [14] remarked that Buchberger Theory [3, 4, 5, 6] could have been per-
fectly described and generalized within graded ring theory; my generalization of
Buchberger Algorithm to the computation of standard bases of ideals in local
rings [15] definitely convinced me that the general setting for describing (commu-
tative and non-commutative) Gröbner bases, Macaualay’s H-Bases, Hironaka’s
standard bases, etc. was graded and filtered rings.

The first attempts [20, 24] to describe Buchberger Algorithm and Theory via
filtration theory were however quite disappointing since they were not discussing
the natural queries which were forced by the application of Buchberger Reduction
in a setting in which termination is not available since the graduation is not
necessarily well-ordered:

Given a filtered ring P, an ideal I ⊂ P, an element h ∈ I and a Gröb-
ner/standard basis B := {b1, . . . , bs} of it

• which kind of Gröbner representations h =
∑s

i=1 pibi are produced
by Buchberger Algorithm in this setting and which other elements
h ∈ P \ I have the same representation?

• I.e. what is the description of the overring Pˆ⊃ P s.t. pi ∈ Pˆ

187

The Eighth Variation

• and of the ideal Cl(I) ⊂ P consisting of all elements h ∈ P having
a Gröbner representation

h =
s∑

i=1

pibi ∈ P, pi ∈ P ?̂

• Does the same theory apply to P ?̂ ut

In fact [24], being mainly interested to a generalization of Buchberger Theory
toward the study of subalgebras [23, 2, 22, 21] restricted himself to the case
of finite valuation and [20], while in principle aiming to a general formulation,
swept the problem under the rug introducing an unjustified assumption which
was not even satisfied by the most relevant instances of the theory.

The solution to that queries, once it fulfilled its aim with its direct application
to local algebra [16] and to PBW rings [17], was left inside an unpublished draft
[18].

This note contains a polished and improved version of that forgotten result∗

which proves that

• Pˆ is the series ring defined over the filtered ring P, in the sense that it is
obtained by mimicking Cantor construction of R as the completion of Q by
adding the topological limits of the converging sequences;

• Cl(I) is the ideal consisting of those elements which are limit of a converging
sequence of elements in I;

• B is a Gröbner/standard basis for both I, Cl(I), and Î = IP .̂

More recently the relation between filtration and Buchberger Theory investi-
gated in [23] has been extended to generalized Gröbner bases filtrations in [19],
and the theories introduced in [27] and [18] have been merged and generalized
in [1], giving one of most wide frame available to cover the many generalization
of Buchberger Theory.

2. Valuation rings, filtrations and graduations

Let Γ be a (commutative) semigroup, totally ordered (but not necessarily well-
ordered) by the semigroup ordering �, and R be a ring with 1.

A valuation is a function† v : R 7→ Γ s.t. ∀a1, a2 ∈ R \ {0},

• v(a1a2) = v(a1) + v(a2);

• v(a1 − a2) � max(v(a1), v(a2)).

In terms of v we can denote, ∀γ ∈ Γ:

∗The presentation here is limited to the commutative case but the same results can be
stated in the non-commutative setting.

†For the notions of this section cf. [28, 8, 25, 7].
Remark that interpretating Buchberger Theory within valuation theory forces to reverse the

order of the values in comparison to classical valuation theory.

188

T. Mora

• Fγ := {a ∈ R : v(a) � γ} ∪ {0} ⊂ R,

• Vγ := {a ∈ R : v(a) ≺ γ} ∪ {0} ⊂ R,

• Gγ := Fγ/Vγ.

For each a ∈ R \ {0}, since we have a ∈ Fv(a) and a /∈ Vv(a) ⊂ Fv(a) there is
necessarily a unique residue class L(a) ∈ Gv(a) of a mod Vv(a), the initial form of
a.

Let us now denote G :=
⊕

γ∈Γ Gγ, the associated graded ring of R and L :
R 7→ G the unique map which associates to each a ∈ R \ {0} its initial form
L(a) and which satisfies L(0) = 0.

If we now consider an R-module E and a v-compatible valuation w on it, i.e.
a map w : E \ {0} 7→ Γ s.t. ∀a ∈ R \ {0}, ∀m, m1, m2 ∈ E \ {0},

• w(am) = v(a) + w(m),

• w(m1 − m2) � max(v(m1), v(m2)),

we can perform the same construction denoting, ∀γ ∈ Γ:

• Fγ(E) := {a ∈ E : w(a) � γ} ∪ {0} ⊂ E,

• Vγ(E) := {a ∈ E : w(a) ≺ γ} ∪ {0} ⊂ E,

• Gγ(E) := Fγ(E)/Vγ(E),

and denoting G(E) :=
⊕

γ∈Γ Gγ the associated graded module of E and L : E 7→
G(E) the map s.t. L(0) = 0 and ∀m ∈ E \ {0},L(m) denotes the unique residue
class of m mod Vw(a)(E) in Gw(a)(E) ⊂ G(E).

Fact 2.1: With the notation above it holds, ∀a, a1, a2 ∈ R \ {0}, ∀m, m1, m2 ∈
E \ {0},

1. ∀γ ∈ Γ, Fγ ⊂ R is an additive subgroup of R;

2. δ ≺ γ =⇒ Fδ ⊂ Fγ, ∀γ, δ ∈ Γ;

3. FγFδ ⊂ Fγ+δ, ∀γ, δ ∈ Γ;

4. if a 6= 0, then a ∈ Fv(a) and a 6∈ Fδ ∀δ ∈ Γ, δ ≺ v(a);

5. {0} =
⋂

γ∈Γ Fγ;

6. the associated graded ring G is a Γ-graded ring;

7. v(a1a2) = v(a1) + v(a2),L(a1a2) = L(a1)L(a2);

8. v(a1 − a2) � max(v(a1), v(a2));

9. v(a1 − a2) ≺ max(v(a1), v(a2)) ⇐⇒ L(a1) = L(a2);

10. L(a1 − a2) = L(a1) − L(a2) ⇐⇒ v(a1 − a2) = v(a1) = v(a2);

11. L(a1 − a2) = L(a1) ⇐⇒ v(a1 − a2) = v(a1) � v(a2);

12. L(a) = 0 ⇐⇒ a = 0;

13. v(1) = 0,L(1) = 1;

189

The Eighth Variation

14. ∀γ ∈ Γ, Fγ(E) ⊂ E is an additive subgroup of R;

15. δ ≺ γ =⇒ Fδ(E) ⊂ Fγ(E), ∀γ, δ ∈ Γ;

16. FγFδ(E) ⊂ Fγ+δ(E), ∀γ, δ ∈ Γ;

17. if m 6= 0, then m ∈ Fw(m)(E) and m 6∈ Fδ(E) ∀δ ∈ Γ, δ ≺ w(m);

18. {0} =
⋂

γ∈Γ Fγ(E);

19. the associated graded module G(E) is a Γ-graded G-module;

20. w(am) = v(a) + w(m),L(am) = L(a)L(m);

21. w(m1 − m2) � max(w(m1), w(m2));

22. w(m1 − m2) ≺ max(w(m1), w(m2)) ⇐⇒ L(m1) = L(m2);

23. L(m1 − m2) = L(m1) − L(m2) ⇐⇒ w(m1 − m2) = w(m1) = w(m2);

24. L(m1 − m2) = L(m1) ⇐⇒ w(m1 − m2) = w(m1) � w(m2);

25. L(m) = 0 ⇐⇒ m = 0. ut

Example 2.1: Let us present some “classical” examples:

A Γ := N, ordered so that d ≺ d + 1, ∀d, R := k[X1, . . . , Xn] and for each
polynomial f ∈ R we define v(f) := deg(f); then we have G = R and
if f =

∑d

i=0 fi, fi homogeneous of degree i, ∀i, and fd 6= 0 then [12, 13]
L(f) = H(f) := fd.

B Γ := N, ordered so that d � d + 1, ∀d, R := k[X1, . . . , Xn] and for each
polynomial

f =
∞∑

i=0

fi ∈ k[X1, . . . , Xn] ⊂ k[[X1, . . . , Xn]],

fi homogeneous of degree i, ∀i, we define v(f) to be its order, i.e. v(f) :=
min{i : fi 6= 0}; then we have G = k[[X1, . . . , Xn]] and [10] L(f) = in(f) :=
fv(f);

C Γ := N ordered so that d � d + 1, ∀d, R := Z, p ∈ N a prime, and ∀ν ∈ Z,
v(ν) := max{n : pn | ν}; then G is the Hensel ring [9] G ∼= Zp[[X]].

D Generalizing the last two examples, we can consider Γ := N ordered so that
d � d + 1, ∀d, a ring R, an ideal L ⊂ R s.t. ∩dL

d = {0} and for each
a ∈ R \ {0} we set v(a) := min{i : a ∈ Li}; then we have:

Fd = Ld, Vd = Ld+1, Gd = Ld/Ld+1,

and
G =

∑

d

Ld/Ld+1,L(a) := a mod Lv(a)+1.

190

T. Mora

E If we now consider

Γ := {Xa1

1 · · ·Xan

n : (a1, . . . , an) ∈ N
n},

ordered by ≺ and R := k[X1, . . . , Xn], then each polynomial f ∈ R has a
unique ordered representation as an ordered linear combination of terms:

f =
s∑

i=1

citi : ci ∈ k \ 0, ti ∈ Γ, t1 � · · · � ts.

If we set v(f) := t1 then L(f) = c1t1 is its maximal monomial.

If ≺ is well-ordered — 1 ≺ Xi, ∀i — we are within Buchberger Theory
[3, 4, 5] and we have G = R.

F If, instead 1 � Xi, ∀i, then G = k[[X1, . . . , Xn]] and we are within Hironaka
Theory [10].

G In the same setting it is also possible to describe the non-commutative solv-
able polynomial rings, also known as PBW-rings [11, 17] whose vectorspace
support is k[X1, . . . , Xn] endowed with a twist multiplication s.t.

XjXi = cijXiXj − pij, 1 ≤ i < j

where

• cij ∈ k,

• for no i, j, k, 1 ≤ i < j < k ≤ n, cij = cjk = 0,

• ∀i, j, 1 ≤ i < j ≤ n, pij =
∑s

k=1 dktk, dk ∈ k \ 0, tk ∈ Γ satisfies
tk ≺ XiXj, ∀k. ut

3. Leitideale and Buchberger reduction

Let, as before

• Γ be a semigroup, totally ordered by the semigroup ordering �,

• R be a ring with 1,

• v : R 7→ Γ a valuation,

• E an R-module and

• w : E \ {0} 7→ Γ a v-compatible valuation.

For any set B ⊂ E we denote L{B} := {L(b) : b ∈ B} and L(B) ⊂ G the
submodule generated by B.

For an ideal I ⊂ R the ideal L(I) generated by L{I} = {L(r) : r ∈ I} is called
the leitideal of I [8]

191

The Eighth Variation

If E ⊂ E is a submodule and we consider the R-module‡ N := E/E with the
filtration inherited by the one in E, by setting

Fγ(N) =
E + Fγ(E)

E
and Vγ(N) =

E + Vγ(E)

E
,

one has

Gγ(N) = Gγ(E)/Nγ where Nγ := {L(m) : m ∈ E, w(m) � γ}

so that if we denote

N :=
⊕

γ∈N

Nγ ⊂
⊕

γ∈N

Gγ(E) = G(E),

we have

N =
⊕

γ

{L(m) : m ∈ E, w(m) � γ} = (L(m) : m ∈ E) = L(E)

so that

G(E/E) =
⊕

γ

Gγ(N) '
⊕

γ

Gγ(E)/Nγ ' G(E)/N = G(E)/L(E).

Therefore the knowledge of the leitmodul L(E) of E allows to obtain the associ-
ated graded module of the quotient module G(E/E).

For a submodule E ⊂ E, a set B ⊂ E is called a Gröbner basis or standard
basis of E if L{B} = {L(b) : b ∈ B} generates L(E).

For each h ∈ E a representation

h =
∑

i

ribi : ri ∈ R, bi ∈ B

is called a standard representation in R in terms of B iff

w(h) ≥ v(ri) + w(bi), ∀i.

With reference to the“ classical” examples presented in Ex. 2.1 a set B ⊂ E

s.t. L{B} generates L(E) is known as

A H-basis,

E Gröbner basis,

F standard basis.
‡The most significant case is when E = R so that E is an ideal and N is a quotient ring.

192

T. Mora

Let us assume that, given a homogeneous element m ∈ G(E) and a homoge-
neous set B = {b1, . . . , bs} ⊂ G(E) , it is possible to verify whether m ∈ (B) in
which case it is possible to produce homogeneous elements ai ∈ G(R) s.t.

m =
s∑

i=1

aibi and deg(m) = deg(ai) + deg(bi), ∀i.

Then, if Γ is well-ordered by ≺, Buchberger reduction allows, given an element
h ∈ E and a Gröbner basis B = {b1, . . . , bs} ⊂ E of E, to decide whether h ∈ E

in which case it produces elements pi ∈ R s.t.

h =
s∑

i=1

pibi and w(h) � v(pi) + w(bi), ∀i.

The inductive construction consists in checker whether

• L(h) /∈ L(E) in which case, by definition, h /∈ E, or

• L(h) ∈ L(E) in which case we obtain elements ai ∈ G(R) s.t.

L(h) =
s∑

i=1

aiL(bi) and w(h) = deg(ai) + w(bi), ∀i.

In the latter case, if we choose any elements ri ∈ R s.t. L(ri) = ai and we
define

h′ := h −

s∑

i=1

ribi,

we have L(h) =
∑s

i=1 L(ribi) and

w(h) = deg(ai) + w(bi) = v(ri) + w(bi) = w(ribi), ∀i,

so that w(h′) ≺ w(h), w(h′) 6= w(h).
Then, inductively, h ∈ E ⇐⇒ h′ ∈ E.
This inductive argument is sufficient to prove

Theorem 3.1 (Buchberger): With the notation above, and under the as-
sumption that Γ is well-ordered by ≺, for each h ∈ E there is a normal form
NF (h) := h′ ∈ E s.t.

• h′ − h has a standard representation in R in terms of B, and

• h′ 6= 0 ⇐⇒ L(h′) 6∈ L(B).
ut

Corollary 3.2 (Buchberger): With the notation above and under the as-
sumption that Γ is well-ordered by ≺, then the following conditions are equivalent:

1. B is a standard basis of E;

193

The Eighth Variation

2. for each h ∈ E, h ∈ E iff it has a standard representation in R in terms of
B;

3. for each h ∈ E either

• h ∈ E and h has a standard representation in R in terms of B, or

• h /∈ E and there is h′ ∈ E\{0} : L(h′) 6∈ L(E) and h−h′ has a standard
representation in R in terms of B

4. for each h ∈ E there is h′ ∈ E s.t.

• h′ − h has a standard representation in R in terms of B, and

• h′ 6= 0 =⇒ L(h′) 6∈ L(E), h /∈ E,

and all imply that B is a basis of E. ut

If however, Γ is not well-ordered by ≺ in principle the recursive argument
could be performed infinitely many times; the properties of the partial results
can be in any case described within the following

Lemma 3.3: Under the notation above, let B := {b1, . . . , bs} ∈ E and h ∈ E
and let us recursively define the following sequences

{pni : n ∈ N} ⊂ R, ∀i, 1 ≤ i ≤ s, {fn : n ∈ N} ⊂ E, {hi : n ∈ N} ⊂ E

as follows

• f0 := h, p0i := 0, h0 := 0;

• if fj = 0 or L(fj) 6∈ L(B) then

fj+1 := fj, pj+1 i := pji, hj+1 := hj;

• if fj 6= 0 and L(fj) ∈ L(B), and rji ∈ R are elements s.t. L(fj) =∑
i L(rji)L(gi) and w(fj) = v(rji) + w(bi), ∀i, then

fj+1 := fj −
∑

i

rjibi, pj+1 i := pji + rji, hj+1 := hj +
∑

i

rjibi.

Then

1. ∀j, fj = 0 =⇒ fj+1 = 0;

2. ∀j, fj 6= 0,L(fj) 6∈ L(B) =⇒ fj+1 = fj;

3. ∀j, fj 6= 0,L(fj) ∈ L(B) =⇒ w(fj+1) < w(fj) = w (
∑

i rjibi);

4. ∀j, fj + hj = h;

5. ∀j, hj ∈ (b1, . . . , bs) ⊂ E;

6. ∀j, hj =
∑

i pjibi is a standard representation in R in terms of B. ut

194

T. Mora

In order to understand how much can be generalize Buchberger Corollary 3.2
let us introduce helpfull definitions.

Let Γ be a semigroup, totally ordered by <. Γ is said to be inf-limited if ∀γ ∈ Γ
and for each decreasing sequence γ1 > γ2 > . . . > γj > . . . there is n s.t. γn ≤ γ.

Under the notation above, if B := {b1, . . . , bs} ∈ E and h ∈ E a representation
h =

∑
i pibi + h′ : pi ∈ R, h′ ∈ E is called

• a standard representation in R in terms of B iff

h′ = 0 and w(h) � v(pi) + w(bi);

• a truncated standard representation at γ ∈ Γ in terms of B iff

w(h) � v(pi) + w(bi) and h′ 6= 0 =⇒ w(h′) ≺ γ.

An element h ∈ E is said to have a Cauchy standard representation in terms
of B if, ∀γ ∈ Γ, it has a truncated standard representation at γ in terms of B.

We can now reformulate Buchberger Corollary as

Proposition 3.4: Under the notation above, let E ⊂ E be a submodule of E
and B := {b1, . . . , bs} ∈ E.

If Γ is inf-limited, then the following conditions are equivalent

1. B is a standard basis of E.

2. each element h ∈ E has a Cauchy standard representation in terms of B;

3. for each h ∈ E either

• h has a Cauchy standard representation in R in terms of B, or

• there is h′ ∈ E \ {0} : L(h′) 6∈ L(E) and h − h′ has a standard repre-
sentation in R in terms of B

ut

Clearly Prop. 3.4 generalizes only the trivial part of Cor. 3.2; in fact, without
assuming that Γ is well-ordered Th. 3.1 doesn’t hold because we don’t have
termination.

The rôle of Th. 3.1 and of termination within Buchberger Theory is twofold:

1. it allows to characterize the elements in E as the ones having a standard
representation in terms of the standard basis B;

2. the production of normal forms allows, within Buchberger Algorithm, to
test whether a basis B is a Gröbner one and, if this is not the case, to
enlarge it; in fact Buchberger Algorithm produces a specific finite set of
elements S(B) ⊂ E, the “S-pairs of B” s.t.

• B is a Gröbner basis iff NF (σ) = 0, ∀σ ∈ S(B);

• and if this is not the case, setting B′ := B ∪ {NF (σ) : σ ∈ S(B)} it
holds

L(B) ⊂ L(B′) ⊂ L(E),L(B) 6= L(B′).

195

The Eighth Variation

It is therefore clear that in order to generalize Cor. 3.2 to those filtration rings
where termination doesn’t hold, we need to solve the two problems above.

A partial solution of the first one is quite easy to produce: the closure of E,

Cl(E) :=
⋂

γ∈Γ

E + Fγ(E),

satisfies the properties:

• Cl(E) is an R-module;

• if h ∈ E has a Cauchy standard representation in terms of B, then h ∈
Cl(E);

• the following conditions are equivalent

– B is a standard basis of E

– ∀h ∈ E, h ∈ Cl(E) iff it has a Cauchy standard representation in terms
of B.

This however is not sufficient to solve the crucial problem of characterizing
normal forms, which are the essential tool for generalizing Buchberger Algo-
rithm; however Ex. 2.1.C, pointing an obvious link between Hensel’s and Buch-
berger’s constructions, provides the hint we need for solving this task: the el-
ements h ∈ E \ E which have a Cauchy standard representation in terms of
B can be characterized, using the notation of Lemma 3.3, as those for which
lim hn = 0 so that lim fn = h and their standard representation is h =

∑
i pibi

where pi := lim pni, ∀i.
This can be proved by mimicking Cantor construction (cf. [26]) of the real

closure of an ordered field by means of Cauchy sequences.

4. Cauchy sequences

Let us begin by remarking that, for each γ ∈ Γ,

• ∃γ′, γ′′ ∈ Γ : ∀f ∈ Fγ′(E), g ∈ Fγ′′(E), f + g ∈ Fγ(E),

• ∃γ′, γ′′ ∈ Γ : ∀f ∈ Fγ′ , g ∈ Fγ′′(E), fg ∈ Fγ(E),

and that ⋂

γ∈Γ

Fγ(E) = {0},

and by recalling that

• a sequence (an), ai ∈ E, n ∈ N is called a Cauchy sequence in E if

∀γ ∈ Γ, ∃n ∈ N : ap − aq ∈ Fγ(E), ∀p, q > n,

• and a Cauchy sequence (an) in E is called a null sequence if

∀γ ∈ Γ, ∃n ∈ N : ap ∈ Fγ(E), ∀p > n,

196

T. Mora

and that the following results hold:

• for each Cauchy sequences (mn) in E, ∃γ ∈ Γ, n ∈ N : w(mp) ≺ γ, ∀p > n;

• the set C(E) of all Cauchy sequences in E is an R-module under the oper-
ations

(mn) + (µn) := (mn + µn), a(mn) := (amn), ∀(mn), (µn) ∈ C(E), a ∈ R;

• the set C(R) of all Cauchy sequences in R is a ring under the operation

(an) · (bn) := (an · bn), ∀(an), (bn) ∈ C(R);

• the set C(E) of all Cauchy sequences in E is a C(R)-module under the
operation

(an) · (mn) := (an · mn), ∀(an) ∈ C(R), (mn) ∈ C(E);

• the set N(E) of all null sequences in E is a C(R)-module;

• R̂ := C(R)/N(R) is a ring;

• the map φ : R 7→ R̂ which associates to each a ∈ R the residue class
modN(R) of the Cauchy sequence (an) : an = a, ∀n, is an immersion;

• N(R) · C(E) ⊂ N(E);

• Ê := C(E)/N(E) is an R̂-module;

• the map φ : E 7→ Ê which associates to each m ∈ E the residue class
modN(E) of the Cauchy sequence (mn) : mn = m, ∀n, is an immersion.

5. Standard bases in valuation rings

If m ∈ Ê and (mn) is a Cauchy sequences in E, we say that (mn) converges to
m, lim mn = m if (mn) belongs to the residue class modN(E) represented by m.

If m ∈ Ê and (mn), (µn) are Cauchy sequences in R which converge to m,
then:

• ∃N ∈ N : w(mp) = w(mN),L(mp) = L(mN), ∀p > N ;

• ∃N ′ ∈ N : w(mp) = w(µq) =: w (̂m),L(mp) = L(µq) =: L (̂m), ∀p, q > N ′.

This defines maps wˆ : Ê 7→ Γ, Lˆ : Ê 7→ G(E) and (if we apply the same
result to the module E := R) vˆ : R̂ 7→ Γ which satisfie

• vˆ is a valuation on R̂ which extends the valuation v in R;

• wˆ is a v -̂compatible valuation on Ê, which extends the valuation w in E;

• Lˆ extends L;

• v ,̂ w ,̂ G, G(·),Lˆ satisfy the properties listed in Fact 2.1.

• In particular G(R̂) = G(R) = G, G(Ê) = G(E),

197

The Eighth Variation

• and, ∀s, G(R̂s) ∼= G(Rs) ∼= Gs.

• Moreover, in this context the result about Cl(E) can be reinterpreted as

Ê ∩ E = Cl(E) =
⋂

γ∈Γ

E + Fγ(E).

If we perform the same construction as described in Lemma 3.3 but starting
with an element h ∈ Ê we obtain sequences

{pni : n ∈ N} ⊂ R, ∀i, 1 ≤ i ≤ s, {fn : n ∈ N} ⊂ Ê, {hi : n ∈ N} ⊂ E

which statisfies the same properties as in Lemma 3.3 and moreover, if we denote
γn := w(fn), ∀n, it holds:

• if h ∈ E then ∀n, fn ∈ E;

• the sequence γ0 � γ1 � · · · � γn · · · is an infinite decreasing sequence;

• (fn) is a Cauchy sequence converging to 0;

• (hn) is a Cauchy sequence converging in E to h;

• ∀i, (pni) is a Cauchy sequence in R, whose limits in R̂ we will denote pi.

We are therefore now able to state Buchberger Theorem in a valation ring:

Theorem 5.1: Let Γ be a (commutative) semigroup, inf-limited by ≺, R be a
ring with 1, v : R 7→ Γ a valuation, E be an R-module and w : E 7→ Γ be a
v-compatible valuation, E ⊂ E be a submodule of E and B := {b1, . . . , bs} ∈ E.

With the notations introduced in this and in the previous sections, then the
following conditions are equivalent:

1. B is a standard basis of E.

2. B is a standard basis of Cl(E).

3. B is a standard basis of Ê.

4. for each element h ∈ E, h ∈ Cl(E) iff it has a Cauchy standard represen-
tation in R in terms of B;

5. for each element h ∈ Ê, h ∈ Ê iff it has a Cauchy standard representation
in R in terms of B;

6. for each element h ∈ E, h ∈ Cl(E) iff it has a standard representation in
R̂ in terms of B;

7. for each element h ∈ Ê, h ∈ Ê iff it has a standard representation in R̂ in
terms of B;

8. for each element h ∈ E, h ∈ Cl(E) iff there is a Cauchy sequence (hn) ∈
C(E) converging to h and s.t., ∀n ∈ N, hn has a standard representation in
R̂ in terms of B;

198

T. Mora

9. for each element h ∈ Ê, h ∈ Ê iff there is a Cauchy sequence (hn) ∈ C(Ê)
converging to h and s.t., ∀n ∈ N, hn has a standard representation in R̂ in
terms of B;

10. for each h ∈ E \ {0} either

• h ∈ Cl(E) and h has a standard representation in R̂ in terms of B, or

• h 6∈ Cl(E) and there is h′ ∈ E \ {0} : L(h′) 6∈ L(E) and h − h′ ∈ E has
a standard representation in R in terms of B

11. for each h ∈ Ê \ {0} either

• h ∈ Ê and h has a standard representation in R̂ in terms of B, or

• h 6∈ Ê and there is h′ ∈ Ê \ {0} : L (̂h′) 6∈ L (̂Ê) and h − h′ ∈ E has a
standard representation in R in terms of B;

12. for each h ∈ E \ {0} either

• h ∈ Cl(E) and there is a Cauchy sequence (hn) ∈ C(E) converging to h
and s.t., ∀n ∈ N, hn has a standard representation in R̂ in terms of B,
or

• h 6∈ Cl(E) and there is h′ ∈ E \ {0} : L(h′) 6∈ L(E) and h − h′ ∈ E has
a standard representation in R in terms of B;

13. for each h ∈ Ê \ {0} either

• h ∈ Ê and there is a Cauchy sequence (hn) ∈ C(Ê) converging to h and
s.t., ∀n ∈ N, hn has a standard representation in R̂ in terms of B, or

• h 6∈ Ê and there is h′ ∈ Ê \ {0} : L (̂h′) 6∈ L (̂Ê) and h − h′ ∈ E has a
standard representation in R in terms of B;

and all imply that B is a basis of Cl(E) in R̂.

References

[1] J. Apel, Computational Ideal Theory in Finitely Generated Extension Rings.
Theor. Comp. Sci. 244 (2000), 1–33.

[2] B. Barkee Groebner bases. The ancient secret mystic power of the algucom-
pubraicus. A revelation whose simplicity will make ladies swoon and grown
men cry. Report (1988)

[3] B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal. Ph. D. The-
sis, Innsbruck (1965).

[4] B. Buchberger, Ein algorithmisches Kriterium für die Lösbarkeit eines al-
gebraischen Gleischunssystem. Aeq. Math. 4 (1970) 374–383.

[5] B. Buchberger, Introduction to Gröbner Bases. In [6] 3–31.

199

The Eighth Variation

[6] B. Buchberger, F. Winkler Gröbner Bases and Application. Cambridge
Univ. Press (1998).

[7] D. Eisenbud, Commutative Algebra with a view toward Alebraic Geometry.
Springer (1995).

[8] W. Gröbner, Algebraische Geometrie. Bibliographisches Institut Mannheim
(1968).

[9] K. Hensel, Zahlentheorie, Goschen (1913).

[10] H. Hironaka, Resolution of singularities of an algebraic variety over a field
of characteristic zero. Ann. Math. 79 (1964), 197–326.

[11] A. Kandry-Rody, V. Weispfenning, Non commutative Groebner base in al-
gebras of solving type. J. Symb. Comp. 9 (1990), 1–26.

[12] F. S. Macaulay, On the Resolution of a given Modular System into Pri-
mary Systems including some Properties of Hilbert Numbers, Math. Ann.
74 (1913) 66–121

[13] F. S. Macaulay, The Algebraic Theory of Modular Systems, Cambridge Univ.
Press (1916)

[14] H.M. Möller, F. Mora, New constructive methods in classical ideal theory.
J.Alg.100 (1986), 138-178

[15] F. Mora, An algorithmic approach to local rings. L.N.C.S. 204 (1985), 518–
525.

[16] T. Mora, La queste del saint Gra(AL). A computational approach to local
algebra. Disc. Appl. Math. 33 (1991) 161–190

[17] T. Mora, Gröbner bases in non-commutative algebras, L.N.C.S. 358 (1989),
150–161

[18] T. Mora, Seven variations on standard bases. Preprint (1988)

[19] E. Mostaig, M. Sweedler, Valuations and Filtrations. J. Symb. Comp., to
appear

[20] L. Robbiano, On the theory of graded structures. J. Symb. Comp. 2 (1986),
139–170.

[21] L. Robbiano, M. Sweedler, Subalgebra bases. L.N. Math. 1430 (1990), 61–
87.

[22] D. Shannon, M. Sweedler, Using Gröbner bases to determine algebra mem-
bership, split surjective algebra homomorphisms and determine birational
equivalence. J. Symb. Comp. 6 (1988), 267–273.

200

T. Mora

[23] D.A. Spear, A constructive approach to commutative ring theory inProc. of
the 1977 MACSYMA Users’ Conference, (NASA CP-2012) (1977) 369–376.

[24] M. Sweedler, Ideal bases and valuation rings. Preprint (1986).

[25] W. Vasconcelos, Computational Methods in Commutative Algebra and Al-
gebraic Geometry, Springer (1998).

[26] B.L. van der Waerden, Modern Algebra Vol. I, Ungar (1949)

[27] G. Zacharias, Generalized Gröbner Bases in Comutative Polynomial Rings,
Bachelor Thesis, MIT, Boston (1978)

[28] O. Zariski, P. Samuel, Commutative Algebra Vol. II, Van Nostrand, Prince-
ton (1960).

201

Variable Shape Logicographic Symbols

������������	�

RISC-Linz, Johannes Kepler University, A-4040 Linz, Austria
E-mail: koji.nakagawa@risc.uni-linz.ac.at

Abstract

The idea of logicographic symbols is to dispatch graphical drawings to predicate

or function constants. The drawings symbolize the intuition behind the notion of

the constants. Without losing its rigor logicographic symbols can be used in the

formal statements whose readability is remarkably enhanced.

 In this paper we propose new type of logicographic symbols, called 'variable

shape', which change their shape depending on the arguments whereas others,

called 'fixed shape', do not change their shape. Also the design principles which

should be took into consideration are discussed.

KEYWORDS: inventing new notation, intuitive proof presentation, user inter-

face for integrated mathematical systems

1. Introduction

The computer-support for doing mathematics has significantly increased in the past few

decades. The fact can be seen by the successful achievements of several existing computer

algebra systems and theorem proving systems. In these systems mathematical knowledge

is described in more formal and precise ways than those of mathematical books so that it

can be processed in computers. However the problem is that it is often very hard to under-

stand the intuition behind the formal description in such systems. Traditionally in order to

help the understanding, we usually make some pictures or drawings. We definitely need

tools to reconcile these two issues, formal rigor and intuitive understanding helped by

drawings.

As a solution of this problem Buchberger proposed a new idea of logicographic sym-

bols in a paper [Buc2000]. The main idea of logicographic symbols is to dispatch graphi-

cal drawings, which have slots for arguments, to predicate or function constants. The

202

graphical drawings symbolize the intuition behind the notion. These graphically repre-

sented drawings can be treated as meaningful objects. Namely it can be used in formal

statements and treated completely same as the traditional formal statements. Additionally

these can be not only visible but also manipulatable, e.g by changing arguments by modify-

ing the places called slots.

In order to show the feasibility of logicographic symbols we implemented the tool on

the top of the Theorema system which is an integrated mathematical environment for

proving, computing, and solving [BDK+1997, BDJ+2000]. So far we have shown several

examples of logicographic symbols in several conferences [Buc2000, Buc2001, NB2001a,

NB2001b] and my Ph.D. thesis[Nak2002].

The purpose of this paper is to propose a new type of logicographic symbols called

'variable shape' which change their shapes depending on the argument terms. On the

contrary the existing type of logicographic symbols are called 'fixed shape' because their

shapes are independent of the argument terms.

 At first we review the 'fixed shape' logicographic symbols, and secondly see the idea

of 'variable shape' logicographic symbols by some examples. Finally we discuss some

design principles which should be took into consideration.

2. Fixed Shape Logicographic Symbols

2.1 Example: Limit

In Theorema the definition of 'sequence f comes closer to a than � from N on' can be

described by the following declaration labeled by "4-ary limit" where 'any[f,a,�,N]' indi-

cates that 'f,a,�,N' are variables.

Definition�"4�ary limit", any�f , a, �, N�, limit�f , a, �, N� : � �
n

n�N

�f �n�� a� � ��

Using textual constants for denoting functions and predicates, it is sometimes hard to

understand the intuition behind the formalized statements. Proofs of propositions based on

this notion will of course rely exclusively on the formal definition. On the other hand a

drawing conveying the intuitive idea behind this notion will greatly help in understanding

propositions and proofs about the notion. In [Buc2000] Buchberger introduced a logico-

graphic symbol for the predicate constant 'limit' of the formula 'limit[f,a,�,M]' by the

following declaration:

Variable Shape Logicographic Symbols

203

LogicographicNotation�"4�ary limit", any�f , a, �, M�,
limit�f , a, �, M���f " stays closer to "�a " than " � " from " M�

�

f

M

�
a

�;

In the above declaration, the entire drawing with four slots for the four possible arguments

constitutes the new symbol. The label "4-ary limit" can be used to refer to this logico-

graphic definition afterwards. The expression 'any[f, a, �, N]' means that 'f, a, �, N' are

slots in the declaration. The annotation '(f " stays closer to " a " than " � " from " M)'

indicates a suggestion for reading the formula.

After the activation of the declaration, formulae with 4 arguments predicate constant

'limit' are shown by the right-hand of the declaration in which all slots are replaced by the

arguments. For example, 'limit[f+g, a+b, �+�, max[M,N]]' is shown as follows:

f 	 g

max�M, N�

� 	 �
a 	 b

Formulae represented with logicographical symbols can be manipulated just like any other

logical formulae of Theorema. Namely, they can be evaluated and their slots can be

modified by selecting places of the variable slots and typing the terms.

2.2 Example: Merge Sort

Figure 1 shows a theory for showing the correct of merge sort. The expressions '	
',
'	x, X

', 'x � X', 'X � Y' stand for 'empty tuple', 'a tuple with the first element x and a finite

sequence 'X

' of elements', 'tuple X with element x prepended', 'concatenation of X and Y',

respectively. And 'stmg', 'mg', 'istv', 'ist', 'ipm', 'lsp', 'rsp' stand for 'sorted by merging',

'merged', 'is sorted version of', 'is sorted', 'is permuted version of', 'left split', and 'right

split', respectively.

K. Nakagawa

204

Algorithm�"stmg", any�X�,

stmg�X� :�

�������

�
������

X � �X�
 1

mg�
stmg�lsp�X��,
stmg�rsp�X���

� otherwise �;

Algorithm�"mg" , any�X, Y, a, b, x

, y

 �,
mg�	
, Y� :� Y

mg�X, 	
� :� X

mg�	a, x

, 	b, y

� :�

� a�mg�	x

, 	b, y

� � a � b

b�mg�	a, x

, 	y

� � otherwise

�;

Definition�"istv", any�X, Y�,
istv�X, Y�� �ist�X� � ipm�X, Y���;

Lemma�"mg" , any�A, B�,
�ist�A� � ist�B��� ist�mg�A, B���;

Lemma�"mg2", any�A, B�,
ipm�mg�A, B�, A � B��;

Figure 1: Formalized Merge-Sort Theory

With the several infix notations and the case notation of Theorema, the declaration is

much more comprehensive than other programming languages. However no notations are

dispatched for the newly introduced constants 'stmg', 'mg', etc. We now introduce logico-

graphic symbols for the newly introduced constants. With the facility of logicographic

symbols the user has complete freedom in designing new symbols for the various notions.

The following may be a possible choice:

X
Y

mg�X, Y� the result of merging two tuples X and Y
X

lsp�X� left split of X

X stmg�X� the result of sorting X by merging
X

rsp�X� right split of X

X

Y

ipm�X, Y� X is a permuted version of Y X ist�X� X is sorted

X

Y

istv�X, Y� X is a sorted version of Y

With these logicographic symbols, the above knowledge base can be described in the way

shown in Figure 2. Here the expressions are represented in a nested 2-dimensional syntax

with dark gray and light gray coloring for clarifying the syntactical structure.

Then the correctness of merge sort can be formalized as follows:

Proposition�"mgs" �� correctness of merge�sort ��, any�A�, A

A

�

The expected Theorema proof can be found in [NB2001a, Nak2002].

Variable Shape Logicographic Symbols

205

Algorithm�"stmg", any�X�,

X :�

�������������

�

������������

X � �X�
 1

X

X
� otherwise

�;

Algorithm�"mg" , any�X, Y, a, b, x

, y

 �,

	

Y

:� Y

X
	
 :� X

	a, x

	b, y

 :�

�������

�
������

a�
	x

	b, y

 � a � b

b�
	a, x

	y

 � otherwise

�;

Definition�"istv", any�X, Y�,

X

Y

�

�

�

����������
X �

X

Y

�

�

����������
�;

Lemma�"mg" , any�A, B�,

�
�
���� A � B �

�
�����

A
B �;

Lemma�"mg2", any�A, B�,

A
B

A � B

�;

Figure 2: Formalized Merge-Sort Theory with Logicographic Symbols

2.3 Example: Notation of Function in Set Theory

In [Buc2001] Buchberger proposed a technique to compose a new logicographic symbol

from existing logicographic symbols by using the example of the notion of function in set

theory. Here are the definitions of the notion of function and their logicographic

representation:

Definitions�"relations", any�A, r, B�,

isrel�A, r, B�� �r � A�B�
isltot�A, r, B�� �

a�A
�

b�B
	a, b
 � r

isrtot�A, r, B�� �
b�B

�
a�A

	a, b
 � r

isrfun�A, r, B�� �
b1�B,b2�B

�
a�A

�	a, b1
 � r � 	a, b2
 � r � b1 � b2�
islfun�A, r, B�� �

a1�A,a2�A
�

b�B
�	a1, b
 � r � 	a2, b
 � r � a1 � a2�

�

LogicographicNotation�"relations", any�A, r, B�,

isrel�A, r, B���r "is a relation between " A "and" B� �
A

r
B

isltot�A, r, B���r "is left total on " A "and" B� �
A

r
B

isrtot�A, r, B���r "is right total on " A "and" B� �
A

r
B

isrfun�A, r, B���r "is right functional on " A "and" B� � A
r

B

islfun�A, r, B���r "is left functional on " A "and" B� �
A

r
B

�

K. Nakagawa

206

The notion of being a function can now be expressed by the formula 'isrel[A,r,B]�isrfun[-

A,r,B]' and with the logicographic declaration it is represented as

' A
r

B � A
r

B'. However, it is natural to represent this formula in more

compact form 'A
r

B'.

In order to introduce this representation, we could have an extra 'LogicographicNota-

tion' declaration and its definition. However in this way, in order to introduce all such

combined symbols, we would have to introduce 25–6(=26) additional logicographic

symbols. Instead, at first we introduce a facility to combine existing logicographic sym-

bols by introducing a syntactic construct '�' (wedge) which is different from the logical

construct '�' (and), and second we dispatch appropriate logicographic symbols for it.

For example, if we have the following expression '(isrel�isrfun)[A,r,B]', then the

logicographic representation of the expression are composed from the representation of

'isrel' and 'isfun' and becomes 'A
r

B'.

Introducing a composing logicographic symbol, e.g. 'isrel�isrfun', means introducing a

new predicate or function constant whose logicographic representation can be automati-

cally composed by combining the logicographic representations of its constituents. Thus,

in a Theorema session, these expressions can be treated as predicate or function constants.

In fact, the meaning could be defined by just adding definitions of the following kind to

the Theorema knowledge base:

Definition�"functionality", any�A, r, B�,
�isrel� isrfun��A, r, B�� isrel�A, r, B� � isrfun�A, r, B��

or alternatively Theorema provers expand the formulae to the appropriate one as the need

arises.

Additionally we introduce a new convention. When argument slots in a logicographic

symbol are left out, they are considered as quantified argument variables. For example, if

the first and third slots are omitted from 'A
r

B', we will have the representation

'
r

' which is considered as '�
A
��
B
� A

r
B ', namely

'�
A
�
B

�isrel� isrfun��A, r, B�'.

Under this conventions the theorem states that 'the composition of two bijective functions

is bijective' can be described as follows:

Theorem�"Composition of Bijective Functions", any�f , g�,
� f � g �� f �g �

With 3 lemmata the proof is automatically produced by Theorema as follows:

Prove:

Variable Shape Logicographic Symbols

207

(Theorem (Composition of Bijective Functions))

�
f ,g

� f � g
�

f �g �,
under the assumptions:

(Lemma (Composition of Injective Functions)) �
f ,g

� f � g
�

f �g �,

(Lemma (Existence of Bijective)) �
f
� f

� � f
f

f ��,

(Lemma (Bijective is Injective)) �
f
� f

�
f �,

For proving (Theorem (Composition of Bijective Functions)) we take all variables arbitrary but fixed

and prove:

(1)
f0 � g0

�
f0 �g0

.

We prove (1) by the deduction rule.

We assume

(2)
f0 � g0

and show

(3)
f0 �g0

.

From (2.2), by (Lemma (Bijective is Injective)), we obtain:

(10)
g0

.

From (2.1), by (Lemma (Bijective is Injective)), we obtain:

(9)
f0

.

From (9) and (10), by (Lemma (Composition of Injective Functions)), we obtain:

(16)
f0 �g0

.

From (16), by (Lemma (Existence of Bijective)), we obtain:

(26) � f0 �g0

f0 �g0
f0 �g0 �.

Formula (3) is proved because (26) is an witness for it.

�

The flow of the produced proof can be seen more legibly by using the following diagram-

matic proof presentation. [1] We assume the left hand side and prove the right hand side.

[2] In order to prove the goal, we have to find appropriate A and B. [3,4] Optically we can

grasp the facts by extraction. [5,6] By the lemmata. [7] We found appropriate values for A

and B. Therefore the theorem is proved. Producing such diagrammatic proof presentation

automatically is an interesting future work.

f � g
���������

deduction

�1�
f ��g

��4� ��3�
f g

� �

��2�

A? f ��g
B?

� �7� �

f ��g

�5�
���������

�6�
� f ��g

f ��g
f ��g �

K. Nakagawa

208

3. Variable Shape Logicographic Symbols

3.1 Example: List Representation

In the previous section we saw some logicographic symbols whose sizes may change, but

shape did not change. Namely the shape depends on only the predicate or function con-

stant, but does not depend on the arguments. Here we introduce some logicographic

symbols which change their shape depending on the arguments, namely 'variable shape'

logicographic symbols.

In mathematics, for heuristic and pedagogic reasons, one often introduces or illustrates

abstract notions by accompanying concrete examples. For example, when explaining the

bubble-sort algorithm, one would illustrate the effect of the algorithm by showing its trace

in concrete examples using lists of numbers. Preferably, one would illustrate the effect by

using lists of strokes with varying length so that the effect is more easily visible. For

example, when we have the following trace:

	3, 4, 1, 5
 � 	4, 3, 1, 5
 � 	4, 3, 1, 5
 �
	4, 3, 5, 1
 � 	4, 3, 5, 1
 � 	4, 5, 3, 1
 � 	5, 4, 3, 1

the corresponding visualized trace is more illustrative than the trace above:

� � �

� � �

Here lengths of vertical lines vary depending on other elements such that the largest

element fits into the box. Also widths between lines vary depending on the number of

elements. Note that this is only possible for terms whose ingredient values are known. For

terms whose subterms contain variable this is of course not possible.

Variable shape logicographic symbols can not be declared as easily LogicographicNota-

tion declaration used in the examples of the fixed shape logicographic symbols. Instead

there should be a mechanism to declare an algorithm to construct the visual representa-

tion. For the moment, this functionality has not yet been implemented, but hard-corded in

Mathematica.

Variable Shape Logicographic Symbols

209

� Interaction

So far what we could interact with logicographic symbols was to fill in or change the

expressions of slots. For this logicographic symbol, different type of interactions is possi-

ble. The possible interactions are adding, deleting, arranging, enlarging or shortening bars

by mouse operations. These interactions change the elements of lists, e.g. adding an

element to the list.

For example, adding an element '2' to the end of the list 	1,2,3
 can be achieved by

drawing a bar into the logicographic symbol:

�

Note that the system automatically recognizes the size of the element from the vertical

length of the bar.

� Tricky Order

We now consider another usage, which is more general and more tricky: Consider the

predicate

Definition�"Tricky Order", any�standard, A�,
is–ordered�standard, A� : �

�
i�2,…,�standard��1

�
j�1,…,i�1

�standardi � standardj�Ai � Aj��

This predicate yields "True" iff the given list 'A' is ordered exactly in the way as specified

by the ordering of the list 'standard'. Now, it may be interesting to introduce an extra

logicographic symbol for each concrete value of the parameter 'standard'. In other words,

the logicographic representation for the predicate 'is-ordered' would depend on the value

of the first argument 'standard'. A possible choice would be, for example:

LogicographicNotation�"4�ary limit", any�A, standard�,
is–ordered�standard, A���A�" is ordered by"�standard�

� standard? �A �;
Then

?

! " and

?

! "

would yield "True" and "False" respectively.

K. Nakagawa

210

3.2 Example: Graph Representation

One of natural applications of variable shape logicographic symbols is the graph theory.

In the graph theory a graph can be defined as a pair of a set of vertices and a set of edges.

For example, this is a graph which has 4 vertices with 3 edges

graph�#v1, v2, v3, v4$, ##v1, v2$, #v1, v3$, #v1, v4$$� .

Then the natural logicographic representation of the graph is ' '.

Obviously for humans it is much easier to understand formalized statements of the

graph theory by this graphical representation than the formula representation. The follow-

ing example, taken from a book [Gib1985], shows the computation sequence of chromatic

polynomial of a graph.

By 'chromatic–polynomial[G,k]', represented logicographically by �G k, we denote the

number of ways of vertex-coloring the graph 'G' with 'k' colors such that verities of 'G'

should not have the same color if they are adjacent by the edges of 'G'. For example,

! "
k
� k��k� 1�3

because the vertex in the center can be colored in k different ways. The remaining vertices

can then be colored in (k–1) ways. Now here is a useful theorem to compute chromatic

polynomials:

Theorem�"7.10 in the book�Gib1985�", any�G, e�,
edge�G, e�� �G k � �G � e k � �G� e k�

where 'edge[G,e]' means 'e' is an edge of 'G', 'G–e' is derived from 'G' by deleting the edge

'e', and 'G � e' is obtained from G by contracting the edge 'e'. Intuitively contraction of an

edge means making the vertices of the edge into one vertex.

We see the idea of the proof by an example. Let 'G' be ' ' and 'e' be '� ', by the

theorem the following fact holds:

! "
k
� ! "

k
� ! "

k

Here % &
k
 contains the all cases of % &

k
 except the cases where the two upper vertices

are the same color. And the number of the exceptional cases is exactly % &
k
. Repeated

application of this theorem will eventually reach to the combination of chromatic polyno-

mials with no edges which can be easily computed.

% &
k

� % &
k
� % &

k

Variable Shape Logicographic Symbols

211

�
�
�
����
�
�
����% &

k
� % &

k

�
�
�����

�
�
����% &

k
� % &

k

�
�
����
�
�
����

�
�
�
����
�
�
����
�
�
����% &

k
� % &

k

�
�
�����

�
�
����% &

k
� % &

k

�
�
����
�
�
�����

�
�
����
�
�
����% &

k
� % &

k

�
�
�����

�
�
����% &

k
� % &

k

�
�
����
�
�
����
�
�
����

�
�
�
����
�
�
����
�
�
����
�
�
����% &

k
� % &

k

�
�
�����

�
�
����% &

k
� % &

k

�
�
����
�
�
�����

�
�
����
�
�
����% &

k
� % &

k

�
�
�����

�
�
����% &

k
� % &

k

�
�
����
�
�
����
�
�
�����

�
�
����
�
�
����
�
�
����% &

k
� % &

k

�
�
�����

�
�
����% &

k
� % &

k

�
�
����
�
�
���� �

�
�
����
�
�
����% &

k
� % &

k

�
�
����� % &

k

�
�
����
�
�
����
�
�
����

� % &
k
� 4 % &

k
	 6 % &

k
� 3 % &

k

� k4
� 4�k3

	 6�k2
� 3�k � k��k� 1���k2

� 3�k 	 3�

With this logicographic representation we will be able to show formal statements of the

graph theory more intuitively, and also use the logicographic representation as formally

manipulatable expressions, e.g. for computation.

3.3 Example: Geometrical Judgement

It is a natural idea to use a logicographic symbol for algebraic inequalities as geometrical

representation. As an application, the judgement of the region inclusion can be converted

into the judgement whether an inequality holds or not. For example, suppose we have the

following definitions:

Definitions�"in a region", any�G, e�,
in–circle�x, y� : �x2 	 y2 � 1

under–line�x, y� : �y � x
�

Then the formulae

in–circle�0.5, 0.2�, under–line�0.5, 0.2�, �in–circle�under–line��0.5, 0.2�
should be represented logicographically in the following ways respectively:

-1 -0.5 0.5 1

-1

-0.5

0.5

1

,

-1 -0.5 0.5 1

-1

-0.5

0.5

1

,

-1 -0.5 0.5 1

-1

-0.5

0.5

1

.

The important observation is '(in–circle�under–line)[0.5,0.2]' which can be composed

from the representations of 'in–circle' and 'under–line' by using the technique explained in

Section 2.3. By seeing the picture, one can reason immediately the truth value of formulae

without computing algebraic inequalities. (Of course when a point is very close to curves

or lines, one can not judge by seeing.)

K. Nakagawa

212

This kind of reasoning are related to the topic so called 'logical reasoning with dia-

grams'. One famous example is the Venn diagram by which one can reason some facts

with the graphical operations. Shin[Shi1995] and Hammer[Ham1995] improved the Venn

diagram and elaborated it in such ways that certain theorems are proved diagrammatically.

They also gave soundness and completeness proofs. This is a counter argument against the

prejudice that using diagrams is unreliable and that they should not be used in formal

proofs. If it is well constructed, one does not lose formality at all. In more general settings

the discussions of the properties which these reasoning systems should satisfy can be

found in [BS1995, Shi2001].

4. Designing Logicographic Symbols

Traditionally, one of the important rules for the invention of notation has always been that

it should be easy and fast to write the notation on paper or blackboard. However this rule

is not any more so important because inputting becomes faster and easier also for quite

involved symbols if we use computers. With this new tool, the users of mathematical

systems like Theorema now have a potentially unlimited collection of mathematical

symbols at their disposition for expressing their ideas. The design of the logicographic

symbol is completely free. However, there are some pedagogic, psychological and design

principles which should be followed.

� Should be as simple as possible and as complicated as necessary

 Most importantly, logicographic symbols should be designed as simple as possible and as

complicated as necessary: If a symbol becomes too complicated, it is, again, hard to grasp

the essential features of the notion quickly. If a symbol is too simple, it may omit essential

features that distinguish the notion from other, similar, notions.

However, the exact design of a logicographic symbol may depend on the pedagogical

situation of the addressee in a formal mathematical text: If the notion to be represented by

a logicographic symbol is completely new to the addressee, it may be preferable to design

a more involved logicographic symbol like the logicographic symbol for 'limit' in Section

2.1. If the notion becomes more and more familiar, an alternative, more concise version of

the symbol may be introduced. In fact, it is perfectly possible to attach two or more logico-

graphic symbols with one notion. For example, another possibility could be

f
�

M

a

.

Variable Shape Logicographic Symbols

213

� Should reflect the concept behind

Secondly the logicographic symbols should reflect the concept behind. For example, we

should not use 'ascendant triangle: X ' for the notion of the predicate checking whether a

list is in descendant order or not.

In 1879, Frege introduced 2-dimensional notation for logical formulae [Fre1967]. For

example, the formula '�
x
�A�x��B�x��' is described as follows:

B x
A x

x

Frege's notation, however, shows only the syntactical structure of formula, whereas

logicographic symbols try to convey the intuitive semantics behind the logical constants.

Obviously we could implement logicographic symbols for such notation. However the

Frege's notation does not convey the intuitive semantics.

� Should use vertical direction and colors

Usually infix notations are located horizontally e.g 'lsp[A]�rsp[A]'. On the contrary, in the

example of 'merge sort' some logicographic symbols are located vertically, too. For exam-

ple, an axiom 'splitting and concatenating gives a permuted version of the original' can be

described with logicographic symbols as follows:

Axiom�"csp" , any�A�,
A
�

A

A

�

It uses vertical direction for ' ' which makes the structure clear with the help of colors

and enhances the readability. If we do not use the vertical direction and colors, it would be

represented as '� �A� � �A��� �A' which does not make us understood immediately.

Of course, the above logicographic representation consumes a lot of 2-dimentional space

whereas traditional representation uses less 1-dimentional space. However, as mentioned,

it is not a problem at all if we use computers, and always we can switch the logicographic

symbol depending on the situation.

K. Nakagawa

214

� Composite symbols have the meaning of all continents

The tool of composing representations helps for the notational conciseness. In some sense

composed representation have the all properties of its constituents.

For example, in the 'merge sort' theory, the leading picture ' ' is combined by two

existing pictures ' ' and ' ' which indicate that this expression is in some sense have

both meanings of constituents as the definition of 'is sorted version'.

Another example in the proof of 'merge sort', the lemma "Bijective is Injective" is used

twice. Note that one can see this fact immediately without referring the lemma because we

constructed the logicographic symbols in such a way that the properties represented by a

part of a logicographic symbol can be implied from the properties represented by the

entire symbol. In this way, one can immediately notice the facts like ' f ', ' f ',

' f ' etc. from ' f '.

5. Conclusion

After reviewing the examples of fixed shape logicographic symbols, the idea of variable

shape logicographic symbols which change their shapes depending on the arguments is

proposed by some examples. There are many applications of variable logicographic

symbols, e.g. graph theory, geometry, topology, category theory, term rewriting theory etc.

The problem of creating variable shape logicographic symbols is that the drawing and

interpreting algorithm should be described on a case basis. Probably there should be a

library which consists of some basic functions helping to draw pictures easily and interpret-

ing meanings from drawing components like lines, circles etc.

There are many existing systems which can visualize mathematical objects. However

these systems can not use these visualized representation for evaluation. With the tool of

logicographic symbols one can freely interchange between visual thinking and logical

thinking. This is a distinctive characteristic which can not be seen in other mathematical

systems.

In mathematics there are some parts which visual description is suited for and other

parts which logical description is suited for. As a tendency, visual description is suited for

concrete examples and logical description is suited for describing general properties. For

example, let 'P' be a certain property then it's difficult to describe the statement

'�
e
�edge' , e(�P' � e (�' only by visual representation, because 'e' is not concrete

yet.

We believe that the tool of logicographic symbols presented in this paper should be

integrated into mathematical software systems in future.

Variable Shape Logicographic Symbols

215

References

[BDJ+2000] B. Buchberger, C. Dupre, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, and W.

Windsteiger. The THEOREMA Project: A Progress Report. In CALCULEMUS 2000 (Interna-
tional Workshop on Systems for Integrated Computation and Deduction), St. Andrews, Scotland,

August 2000.

[BJK+1997] B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, and D. Vasaru. A

Survey on the Theorema Project. In W. Kuechlin, editor, ISSAC'97 (International Symposium on
Symbolic and Algebraic Computation), pages 384–391, Maui, Hawaii, ACM Press, July 21-23

1997. Also available as RISC technical report 97-15.

[BS1995] J. Barwise and A. Shimojima, Surrogate Reasoning. Cognitive Studies: Bulletin of the

Japanese Cognitive Science Society, Vol. 2, No. 4, pp.7-26. 1995.

[Buc2000] B. Buchberger. Logicographic Symbols: Some Examples of Their Use in Formal

Proofs. RISC (Research Institute for Symbolic Computation), Johannes Kepler University, Linz,

Austria, Feb. 2000. Manuscript.

[Buc2001] B. Buchberger. Logicographic Symbols: A New Feature in Theorema. In Y. Tazawa,

editor, Fourth International Mathematica Symposium (IMS 2001), Chiba, Tokyo Denki Univer-

sity. June 2001.

[Fre1967] G. Frege. Begriffsschrift, a Formula Language, Modeled upon that of Arithmetic, for

Pure Thought. In From Frege to Gödel: a Source Book in Mathematical Logic, 1879—1931,

pages 1––82. Harvard University Press, 1967. Original in German in 1879.

[Gib1985] A. Gibbons. Algorithmic Graph Theory. Cambridge University Press, 1985. p. 203.

[Ham1995] E. M. Hammer. Logic and Visual Information, CSLI Publications, Stanford, Califor-

nia, 1995.

[NB2001a] K. Nakagawa and B. Buchberger. Presenting Proofs Using Logicographic Symbols.

In Proceedings of the Workshop on Proof Transformation and Presentation, page 11, Siena,

Italy, 2001. http://www.scch.at/research/publications/522/index.html. PTP-01 in IJCAR-2001.

[NB2001b] K. Nakagawa and B. Buchberger. Two Tools for Mathematical Knowledge Manage-

ment in Theorema. In B. Buchberger and O. Caprotti, editor, First International Workshop on
Mathematical Knowledge Management (MKM 2001), Schloss Hagenberg, Austria, RISC.

September 2001. http://www.scch.at/research/publications/702/index.html.

[Nak2002] K. Nakagawa. Supporting User-Friendliness in the Mathematical Software System

Theroema. Ph.D. thesis of Research Institute for Symbolic Computation, January 2002.

[Shi1995] S. Shin. The Logical Status of Diagrams, Cambridge University Press, Cambridge,

England, 1995.

[Shi12001] A. Shimojima, A Logical Analysis of Graphical Consistency Proof. Abstracts of the

International Conference of Model-Based Reasoning, p. 41, 2001.

K. Nakagawa

216

Solving Linear Boundary Value Problems via Non–Commutative

Gröbner Bases�

MARKUS ROSENKRANZ
1

 AND HEINZ W. ENGL
2

 1 Research Institute for Symbolic Computation, Kepler University, A–4020 Linz, Austria
 2 Institute for Industrial Mathematics, Kepler University, A–4020 Linz, Austria

� This work was supported by the Austrian Science Foundation FWF

under the SFB grants F1302 and F1308.

Abstract
A new approach for symbolically solving linear boundary value problems is presented. Rather
than using general–purpose tools for obtaining parametrized solutions of the underlying ODE
and fitting them against the specified boundary conditions (which may be quite expensive), the
problem is interpreted as an operator inversion problem in a suitable Banach space setting.
Using the concept of the oblique Moore–Penrose inverse, it is possible to transform the
inversion problem into a system of operator equations that can be attacked by virtue of non–
commutative Gröbner bases. The resulting operator solution can be represented as an integral
operator having the classical Green's function as its kernel. Although, at this stage of research,
we cannot yet give an algorithmic formulation of the method and its domain of admissible
inputs, we do believe that it has promising perspectives of automation and generalization; some
of these perspectives are discussed.

KEYWORDS: Symbolic Methods for ODE, Linear BVP, Moore–Penrose Equations

1. Introduction

Sophus Lie said in 1894 what is nowadays folklore [13, p. 488]: "All branches of physics pose
problems that end up in integrating differential equations," and similar things can be said about
many other sciences. A great deal of these differential equations come in the form of boundary
value problems, and it is this problem type that has inspired rich parts of functional analysis, as one
can see nicely in the classic work of Hilbert–Courant [9].

It is therefore natural to ask about symbolic methods for boundary value problems (BVP). But
quite in contrast to the rich arsenal of numerical algorithms for BVP, this corner of mathematics
seems to be a bit neglected by the "symbolic world". Of course, there are some standard techniques
available for various kinds of differential equations—ordinary and partial, linear and nonlinear
[10][23][19]. At the first glance, one might think this is sufficient since one can always solve

217

corresponding differential equation and adapt the free coefficients of the generic solution to fit the
boundary conditions. However, we are not only asking for the solution of one individual differential
equation generated by fixing the inhomogeneity on its right–hand side; what we want is a generic
expression that can be instantiated by all admissible right–hand sides for producing the correspond-
ing solutions (see below). Besides this, the generic solution might have no closed form whereas its
"adaption" to the given boundary conditions often does.

Therefore we propose a new approach that works on the BVP as a whole, representing both the
differential equation and the boundary conditions by operators on suitable Banach spaces. Such a
functional–analytic setting is of course very familiar in abstract convergence analysis of numerical
BVP algorithms, but interestingly it turns out to be equally useful for searching symbolic solutions
via non–commutative Gröbner bases. The idea is that both the differential and the boundary
operator are built up from some "atomic" operators and can thus be seen as non–commutative
polynomials with the atomic operators as its indeterminates. For obtaining suitable polynomial
equations, we use the powerful concept of the oblique Moore–Penrose inverse [21].

In this paper, we consider only ordinary differential operators and linear BVP; see Section 4 for a
discussion of possible extensions. Furthermore we will search for solutions over a finite interval
�a, b� . Now let T be a linear differential operator of order n , so for u � Cn�a, b� we have

T u � c0�u�n� � … � cn�1�u ' � cn�u ,

where c0, …, cn are sufficiently smooth coefficient functions (for example, c j � Cn� j�a, b� for each
j � 0, …, n) and c0 does not vanish. We view T as a linear operator on the Banch space
�C�a, b�, � � ��� with dense domain of definition ��T� � Cn�a, b� . The boundary operators
B1, …, Bn are defined on the same domain; for each i � 1, …, n we have

Bi u � pi,0�u�n���a� � … � pi,n�1�u '��a� � pi,n�u��a� �
qi,0�u�n���b� �… � qi,n�1�u '��b� � qi,n�u��b� ,

where the coefficients pi, j, qi, j are real numbers. Now the boundary value problem induced by T
and B1, …, Bn is to find for each right–hand side f � C�a, b� a function u � Cn�a, b� such that:

(1)
T u � f
B1�u � … � Bn�u � 0

This BVP is actually inhomogeneous in the differential equation and homogeneous in the
boundary conditions (semi–inhomogeneous problem). But we can always decompose a fully inhomo-
geneous problem into such a semi–inhomogeneous one and a rather trivial BVP with homogeneous
differential equation and inhomogeneous boundary conditions (semi–homogeneous problem); see
[24, p. 43] for an explanation. Furthermore, we will assume throughout the paper that the boundary
conditions are such that they determine a unique solution u of (1) for all f � C�a, b� .

We are now searching for an operator G that takes the inhomogeneity f as input and produces
the solution u of (1) as output. In fact, in those cases which we consider, it is well–known that the
operator G can be written as an integral operator with the so–called Green's function g as its kernel
[8, p. 296]:

Solving Linear Boundary Value Problems via Non–Commutative Gröbner Bases

218

(2)G f �x� � �
a

b

g�x, 	�� f �	��
 	

The desired solution operator G is obviously a right inverse of the given differential operator:
T G� f � � f and hence T G � 1. (For the sake of simplicity, we will use the symbol 1 for denoting
various identity functions and operators.) Of course, there are many right inverses for T , but the
boundary conditions B1�u � … � Bn�u � 0 are supposed to single out the one we want. It should be
noted that this viewpoint is different from the standard one, where the boundary conditions are used
for specifying the domain of the differential operator; in this case, there is of course only one inverse.

So we want to find a right inverse that is normally not an inverse in the strict sense—this is
where the concept of the oblique Moore–Penrose inverse enters the stage (see Section 2 for details):
Given the operator T on the Banach space C�a, b� together with arbitrary projectors P, Q onto its
nullspace and range closure, the oblique Moore–Penrose inverse TP,Q

† can be determined by the four
well–known Moore–Penrose equations, which can be seen as four non–commutative polynomial
equations in the indeterminates T , T†, P, Q . By choosing suitable projectors P, Q , it may be
possible to enforce the boundary conditions, which has the consequence that T† � G . In general, the
projectors will thus become polynomials in B1, …, Bn and some extra operators describing their
particular structure. In many cases, one will be able to express some or all of the boundary operators
as well as the differential operator T in terms of these extra operators. So let A1, …, Am be those
boundary and extra operators that are needed; we will collectively call them auxiliary operators.
Substituting them in the Moore–Penrose equations, we will end up with an equation system

(3)�
i�1,…,4

�i�G, A1, …, Am� � 0 ,

where �1, …, �4 are some non–commutative polynomials in the indicated indeterminates.
Our goal is to obtain a partial triangularization this system, i.e. to find an equivalent system

containing an equation of the form G � …, where the right–hand side should not contain G . This
means we want a term representation for the solution operator G : it should be described in terms of
some elementary operators like integration and multiplication. For giving a complete specification,
we must therefore decide which elementary operators E1, …, Ek we want to allow in the solution
term for G . Depending on this choice, the task of triangularizing the equation system may be easy,
difficult or even impossible. This is one of the critical points in our approach that should become
algorithmic in the future (see Section 4 for a brief discussion of this topic): We must either be
creative in finding "good" elementary operators or we need powerful structure theorems for warrant-
ing the completeness of certain basis operators.

Assuming we have established a suitable collection of elementary operators E1, …, Ek , we must
still specify how they are related with the auxiliary operators A1, …, Am occurring in the Moore–
Penrose equations, i.e. we need some polynomial equations that describe their interaction. For
example, if E1 is integration and A1 is differentiation, the obvious relation between them is the
Fundamental Theorem of Calculus. This step is the second half of the "creative" phase just
described; both steps should be taken together. Having found enough interaction equations

(4)�
i�1,…,l

�i�A1, …, Am, E1, …, Ek� � 0 ,

M. Rosenkranz, H. W. Engl

219

we can combine (3) and (4), looking at it as a well–known problem of computer algebra: Given the
ideal J induced by the polynomials �1, …, �4, �1, …, �l , try to find a basis for J containing a
polynomial with leading term G ; see at the end of Section 2 for an example. Having such a basis, we
can write the corresponding equation in the desired form G � ��A1, …, �m, E1, …, Ek� , where � is
a polynomial in the indicated indeterminates. If we have chosen suitable operators
A1, …, Am, E1, …, Ek , we can interpret the solution operator G as the usual Green's operator and
extract from it the Green's function g .

For finding the desired basis, we use the method of Gröbner bases, introduced by the second
author in his PhD thesis [3]; see also the journal version [4] and a concise treatment in [6]. The
advantage of Gröbner bases is that they do not only lead to the desired solution but they also reveal
useful information about the ideal structure. In this paper, however, we will not address these issues.
For a modern survey of the theory of Gröbner bases and their applications, see [7] and the remarks
at the end of this section.

The idea of using the Moore–Penrose inverse for solving linear BVP is not new. One can find a
standard treatment of this subject in [22] and [24]. But what is new, to our knowledge, is the observa
tion that by means of non–commutative Gröbner bases one can actually fertilize the Moore–Penrose
equations for obtaining symbolic solutions. There is an interesting paper [18] from the seventies that
describes a different Moore–Penrose method for approaching linear BVP. It is based on the concept
of adjoint operators and orthogonal projectors (as opposed to the oblique ones used in our method),
but it does not make use of Gröbner bases. This approach seems to result into more complex
computations than ours, but it would be an interesting research topic to combine the two methods.

Non–commutative Gröbner bases have been applied to differential operators for several
decades, see for example the survey article [24] about Gröbner bases and partial differential equa
tions. However, most of the theory in this field is concerned with studying the structure of solutions,
without giving explicit methods for constructing them (the situation becomes even worse when it
comes to BVP). Besides this, Gröbner bases have been used for simplifying complicated operator
expressions as they typically arise in control theory. This approach is described in the papers
[15][16][26] of the San Diego group, which also served as the starting point for our investigations. We
used the software package developed by their group for the Gröbner–basis computations necessary
in our examples; see Section 2 for details.

The difference between the problem considered here and the subject of simplification addressed
by their group is of a fundamental nature. Applications of Gröbner bases—both in the commutative
and in the non–commutative cases—come in three main categories [6]:

� Confluent Rewriting: A Gröbner basis induces a rewrite system for reducing polynomials.
Using a suitable term ordering, this will sometimes lead to a drastically simpler optical
appearance, which is very important for control theorists [26]. However, the essential point
is that the reduced form is not only optically simpler but even canonical, due to the charac-
teristic Church–Rosser property of Gröbner basis. This means that one can decide equality:
Two polynomials are equal in the given ideal if and only if their reduced forms are identical.

� Polynomial Equation Solving: Using a term ordering of the lexicographic type, Gröbner
bases enjoy the so–called elimination property. Basically this means that the equation

Solving Linear Boundary Value Problems via Non–Commutative Gröbner Bases

220

system will be triangularized as much as possible so that it is easy to solve the resulting
system. The elimination property also holds in the non–commutative case; see [2].

� Syzygies: The information contained in the reductions that transform a given set of polynomi
als into a Gröbner basis can be used to determine the complete solution module of a linear
equation system over a polynomial ring.

Seen in this way, research in the San Diego group belongs to the first category whereas our research
belongs to the second. It might be worthwhile to also carry out operator–theoretic investigations in
fields pertaining to the third application category.

The rest of the paper is structured as follows: In Section 2 we take a well–known linear BVP as a
simple but yet interesting example for walking through the whole procedure outlined above. In
Section 3 we briefly present some more examples demonstrating different boundary conditions and
slightly more complicated differential equations. In Section 4 we conclude with some reflections
about the methodology and the potential of automation and generalization.

2. A Detailed Computation

The following problem seems to be one of the classical examples that are most often used for
introducing the concepts of linear BVP [24, p. 42]. It can be interpreted as describing one–dimen
sional steady heat conduction in a homogeneous rod. We will discuss this example in some detail
for illustrating the solution strategy presented in the previous section.

Given: f � C�0, 1� ,
find: u � C2�0, 1�
such that

u '' � f ,
u��0� � u��1� � 0 .

The general problem described above is now given the simple instantiation �a, b� � �0, 1� ,
n � 2, T � D2 , B1 � L , B2 � R . Here D2 denotes the iterated differentiation operator on the Banach
space �C�0, 1�, � � ��� ; it has the subset C2�0, 1� as its dense domain of definition. The left and right
boundary operators L, R are defined in the obvious way: For each u � C�0, 1� , we have L u � u�0�
and R u � u�1� . As described above, we interpret this as an inversion problem in the following
sense: Find a right inverse G of the operator D2 such that the boundary conditions are also fulfilled.
We construct G as a Moore–Penrose inverse.

From the theory [12, p. 567] it is clear that we must fix appropriate projectors P and Q onto the
nullspace and range–closure of D2 , respectively. The latter will always be the identity
1 : C�0, 1�
 C�0, 1� for the type of problems considered here; as a consequence, G is bounded and
defined on all of C�0, 1� . The other projector P maps C�0, 1� onto the nullspace

M. Rosenkranz, H. W. Engl

221

N �� ��D2� � �x � � x � � 	 �, � � �
 ,

so choosing P amounts to specifying for each u � C�0, 1� real numbers �, � such that
�P u���x� � � x � � for all x � �0, 1� . We use this freedom to ensure the boundary conditions, which
leads to

P � �1 � X ��L � X R ,

where X is defined as the operator induced by multiplication with the independent variable.
Substituting this together with Q into the general equations in [12, p. 567], we arrive at the

following concrete Moore–Penrose equations:

(5)

D2�G D2 � D2

G D2�G � G
G D2 � 1 � �1 � X ��L � X R
D2�G � 1

We can see that they form indeed a system of polynomial equations, having the desired Green's
operator G and the auxiliary operators (named A1, …, Am in the introduction) D, X , L, R as
indeterminates. The only thing missing now are the elementary operators (named E1, …, Ek in the
introduction) that we want to allow in the solution term, together with suitable relations describing
their interaction with the auxiliary operators.

Now we come to the "creative" step of our approach (see Section 4 for a brief discussion on the
potential of automation). It is clear that the operators D, X , L, R will not be sufficient for expressing
the solution term for the Green's operator G . Since we would like to have an integral representation
for G , having the corresponding Green's function g as its kernel, we must obviously take the
antiderivative operator A as one elementary operator. It is defined in the obvious way as

�A u��x � �
0

x

u��	��
 	

for all u � C�0, 1� and x � �0, 1� . What other elementary operators might be needed? In view of the
duality in the boundary operators L, R , we may have the idea of adding the operator B adjoint to the
antiderivative operator A . Whereas the operator A integrates from the left boundary, the operator B
integrates to the right boundary, so it is defined as

�B u��x � �
x

1

u��	��
 	

again for all u � C�0, 1� and x � �0, 1� . Having A and B as elementary operators along with the
auxiliary operators D, X , L, R , it turns out that we can express the solution G in the desired way.
The following interaction equations are sufficient for describing their relations:

(6)

D X � X D � 1
D A � 1
A D � 1 � L
D B � �1

Solving Linear Boundary Value Problems via Non–Commutative Gröbner Bases

222

B D � R � 1
R X � R
L X � 0

At this point, we have assembled the complete polynomial equation system, consisting of the
polynomials �1, …, �4 in the concrete Moore–Penrose equations (5) and the polynomials
�1, …, �7 of the interaction equations (6). Our goal is to solve this system for G , i.e. we want to
find the elimination ideal with respect to G . For this we will use the following multigraded lexico-
graphic term ordering:

D � R � L � X � A � B� G

For computing the desired elimination ideal, we use the system NCAlgebra [14], a Mathematica
package for doing non–commutative computer algebra, written by J. William Helton (Mathematics
Department of the University of California, San Diego, California) and Robert L. Miller (General
Atomic Corporation, La Jolla, California). It includes support for non–commutative Gröbner bases,
also described in the papers [15][16][26]. Typically, we must content ourselves with a partial basis, but
this is sufficient for us as long as G is isolated. For the current problem NCAlgebra returns the
following answer:

final � NCMakeGB�initial, 2� �� ColumnForm

�1 � D ��A
�1 � L�A ��D
1 �D ��B
1 �R �B �� D
1 �D ��X �X ��D
�R � R ��X
L ��X
L ��A
�A�B �R �� A

�A�X � D ��X ��A
…

G�A �� X �X ��B �X ��A ��X �X ��B ��X
�R � L ��R
�R � D ��X ��R

�A�B �B �� A�B �� X �X ��A
…

The system has produced 42 polynomials, most of which are left out above as they are not
interesting for our present purposes; e.g. some of them express integration rules for polynomials
such as 2�x2 � 3�x . The only important thing is that there is only one polynomial involving the
solution operator G , and in this polynomial, G does indeed occur isolated. Writing the result in the
usual format, we arrive at:

G � X A X � A X � X B X � X B

M. Rosenkranz, H. W. Engl

223

It is straightforward to rewrite this polynomial into the traditional formulation of the corresponding
Green's function:

g�x, 	� � � �x � 1��	 if 0 � 	 � x � 1
x�	 � 1� if 0 � x � 	 � 1

3. Other Examples

Passing on to other examples, let us first remark that we can use various other types of boundary
conditions without making essential changes in the computation just presented. For example, using
the mixed conditions u '��0� � u�1� � 0 will lead to the nullspace projector

P � X L D � R � L D ,

whereas the conditions u�0� � u '��0� � 0 will lead to the nullspace projector

P � X L D � L .

Everything else remains the same, and the computation results in the correct Green's functions for
these cases. (Specifying the boundary conditions u '��0� � u '��1� � 0, however, would not allow a
unique solution for all right–hand sides f � C�0, 1� . In fact, one can apply the well–known Fred-
holm alternative for characterizing solvability in such cases. If we tried to apply our method to such
a case, we would end up with redundant parameters. New ideas are necessary for dealing with these
cases, but we will not address them here.)

For a slightly more complicated problem, we take Example 2 in Kralle's book [17, p. 109]. The
differential operator of this BVP has damped oscillations as its eigenfunctions [17, p. 107]. Stated in
our terminology, the problem reads as follows:

�
�e2�x�u��x� '� '� e2�x�u��x�
��

e2�x
� f ��x�

u��0� � u���� � 0

Here x is assumed to range over the interval �0, �� . The notation T ' is an abbreviation for

�������

x �T ,

where the differential quantifier
�������

x operates on the term T . For obtaining an operator equation, we

introduce some auxiliary operators. For all u � C�0, ��, v � C1�0, �� and x � �0, �� , we define:

�D v���x� � v��x� '
�E u���x� � ex�u��x�
�F u���x� � e�x�u��x�
�L u���x� � u��0�
�R u���x� � u����

Using these operators, the given BVP can be stated in the following operator–theoretic form:

Solving Linear Boundary Value Problems via Non–Commutative Gröbner Bases

224

��F2 D E2 D � 1��u � f
L u � R u � 0

Going through the procedure explained above, one finds for the nullspace projector

P �
e�
��������
�
�X F R �

1
�����
�
�X F L � F L ,

It turns out that one does not need other operators except A and B as in the previous examples,
but one must add some obvious interaction equations for the new operators E and F . Carrying out
the computation in NCAlgebra, one obtains the following result (after applying some tedious tricks
for representing the "commuting variables" e, �):

G � F A X E � X F B E �
1
�����
�
�X F A X E �

1
�����
�
�X F B X E �

1
�����
�
��� � X ��F A X E �

1
�����
�
�X F B��� � X ��E

This time, the partial basis contains 164 polynomials, but there is still only one among which
involves G , namely exactly the one corresponding to the solved equation above. Going through the
usual translation procedure, one can write G as an integral operator with the following Green's
function also given in [17, p. 110]:

g�x, 	� �
���
���

1����
�
��� � x��	 e	�x if 0 � 	 � x � �

1����
�
��� � 	��x e	�x if 0 � x � 	 � �

The method presented here is not restricted to the classical setting of second–order Sturm–Liouville
theory. For seeing this, we take a practically relevant fourth–order problem [17, p. 49], which
describes the transverse deflection u � C2�0, 1� of a homogeneous beam with distributed transversal
load f � C�0, 1� , simply supported at both ends:

u�4� � f
u��0� � u��1� � u ''��0� � u ''��1� � 0

Its operator–theoretic formulation is as follows:

D4�u � f
L u � R u � L D2�u � R D2�u � 0

Comparing this BVP to the simple heat–conduction problem considered in the beginning, we
observe a strong similarity. In fact, the only difference is the order of the differential operator and
the additional boundary conditions for u '' , so we expect that we can use the same auxiliary and
elementary functions.

This expectation is indeed fulfilled. Going through the same procedure as in the heat–conduction
example, the boundary conditions lead to the following nullspace projector:

M. Rosenkranz, H. W. Engl

225

P �
1
�����
6
�X 3��R D2 � L D2� � 1

�����
2
�X 2�L D2 �

1
�����
6
�X ��6�R � 6�L � 2�L D2 � R D2� � L

Using this operator and the interaction equations from the heat–conduction problem, we obtain a
polynomial system that can be solved for G . The partial basis returned by NCAlgebra consists of 67
polynomials, and exactly one polynomial among them contains the indeterminate G for the Green's
operator. Written as an equation, this polynomial is:

G �
1
�����
3
�X A X �

1
�����
6
�A X 3 �

1
�����
2
�X 2 A X �

1
�����
6

X A X 3 �

1
�����
6

X 3 A X �
1
�����
3
�X B X �

1
�����
2
�X B X 2 �

1
�����
6
�X 3 B �

1
�����
6
�X B X 3 �

1
�����
6

X 3 B X

As usual, we can immediately translate this expression to the more traditional formulation in
terms of a Green's function g defined thus:

g�x, 	� �
���
���

1����3 �x 	 �
1����6 �	

3 � 1����2 �x
2�	 � 1����6 �x 	

3 � 1����6 �x
3�	 if 0 � 	 � x � 1

1����3 �x 	 �
1����2 �x 	

2 � 1����6 �x
3 � 1����6 �x 	

3 � 1����6 �x
3�	 if 0 � x � 	 � �

This is in full accordance with [17, p. 71], where the result was obtained by means of the causa
fundamental solution.

4. Conclusion

We have presented a new method for solving linear boundary value problems by symbolic tech-
niques. It proceeds by transforming the given differential equation and its boundary conditions into
a system of polynomial equations that can be solved for the desired Green's operator via non–
commutative Gröbner bases. Of course, one must specify those operators and properties that should
be used for representing the solution term; using the traditional framework of integral operators, one
obtains a solution in terms of the usual Green's function. For several examples, we have exhibited
suitable interaction equations that lead to a Green's formulation of the solution. (Incidentally, we
have also found other representations of the solution, typically involving multiple integrations.
Though outside the framework of the traditional Green's functions, these representations may be of
numerical interest due to their smoothness properties.)

Let us now briefly analyze the current status of algorithmization in this method. In a typical
application, it will proceed through the following steps:

� Derivation of the concrete Moore–Penrose equations: The major task in this step is to
determine the nullspace projector P since we have seen that the range projector Q is always
the identity. Substituting P , Q and the given differential operator T in the generic Moore–
Penrose equations and renaming the Moore–Penrose inverse T† into G , we obtain the
concrete Moore–Penrose equations. The polynomial for P will contain various auxiliary
operators A1, …, Am , usually made up from parts of the differential and boundary
operators.

Solving Linear Boundary Value Problems via Non–Commutative Gröbner Bases

226

� Compilation of the interaction equations: After selecting suitable elementary operators
E1, …, Ek , we have to find sufficiently many equations describing the relations between
the auxiliary operators A1, …, Am and the elementary operators E1, …, Ek .

� Computation of a partial Gröbner basis: The concrete Moore–Penrose equations are
combined with the interaction equations and supplied to a non–commutative Gröbner basis
system, using a term ordering that isolates the Green's operator G .

� Extraction of the Green's function: The Green's operator G obtained in the previous step is
transformed into the corresponding Green's function g .

For the first step and the last two steps, our method can be viewed as an algorithm (relative to
the solvability of the homogeneous differential equation). For the second step, some ad–hoc inven-
tions are still necessary for each problem instance at hand. In particular, one has to provide suitable
interaction equations for specifying the solution structure. Some experience in handling BVP should
be sufficient for finding these equalities.

Note that, after having found some basic interaction equations, the question of how and in which
order these equations should be applied is exhaustively answered by the method of Gröbner bases,
due to their Church–Rosser property. In a manual calculation, one has to play around with many
possible ways of combining equations, which may or may not lead to success. In this sense, an
essential portion of the usual "tricks" occurring in manual calculations is covered by our method; the
remaining tricks are assoiated with the interaction equations.

We believe that our method can cover various interesting classes of BVP, which we plan to
explore in forthcoming papers (including some of the generalizations discussed below). In an ideal
situation—presumably hard to achieve—one might approach a systematic search of elementary
operators and interaction equations in a manner similar to the structure theorems of Liouville
theory, which are used for indefinite integration and ordinary differential equations [10, p. 186].
Fixing certain algebraic input domains (e.g. the elementary transcendental functions) for the coeffi-
cients of the differential and boundary operators, one might be able to isolate a suitable "Green's
domain" � such that the Green's function g will always be in � . We think that such an expectation
is realistic because it is well–known that one can express g in terms of solutions of certain initial
value problems. (Note also that we do not claim that the solution of the BVP itself, namely G f for
a given right–hand side f , should have any algebraically simple form.)

Having found a Green's domain � , it is probably not difficult to isolate appropriate elementary
operators along with their interaction equations. Some of these operators might be multiplication
operators induced by functions from the input domains and � , similar to F and G in Section 3. It
should also be observed that most of the interaction equations considered in this paper would come
out quite naturally when the elementary operators are introduced in systematic exploration cycles as
described in [5].

Finally, let us propose further lines of future research. The problems considered in this paper have
some obvious generalizations. Increasing the number of independent variables leads us to BVP for
partial differential equations like the well–known Dirichlet problem for div�a grad u� � f . These
equations will typically involve differential operators div, grad, rot , … from vector analysis: We

M. Rosenkranz, H. W. Engl

227

can either regard them as operators in their own right or assemble them from the partial differential
operators �x , �y , �z . The general methodology presented in this paper should be applicable in both
cases; identities like the Divergence Theorem of Gauss will take over the role of the Fundamental
Theorem of Calculus.

Passing over to non–linear problems is a much bigger challenge. In this case, compound
operators may not be expressible as polynomials anymore. For example, take the non–linear opera-
tor Q�u���x� � u '��x��u�x� . One would like to write this operator in terms of an elementary multiplica-
tion operator M �u, v���x� � u�x��v�x� as Q�u� � M �D�u�, u� . Then we would have the product rule as
an interaction equation D � M , namely D M �u, v� � M �D�u�, v� � M �u, D�v�� . But this is not a
purely operator–theoretic description anymore since we cannot get rid of u and v . This means
general rewriting is necessary now: we need substitution in addition to replacement (reduction of
polynomials is replacement on equivalence classes). Maybe this could be handled by a combination
of Gröbner bases and the Knuth–Bendix algorithm. Actually this is a rather subtle topic, but there
are promising results recently [1][20].

Orthogonal to these generalizations, one could also investigate weak solutions. In this paper, we
have only considered classical solutions, but the results also make sense in a more general Sobolev
setting. On the one hand, this simply changes domain and codomain of some operators; this does not
harm the polynomial formulation since it abstracts from all topological notions. On the other hand,
the solution concept itself must be modified by introducing suitable testing functions v and partial
integrations. Logically this means that we have a universal quantifier over v on top of the equations,
so we cannot take v as an indeterminate. Again, new ideas are necessary.

Apart from these generalizations, there is another issue that may be worth investigating. We
have already observed after Equation (5) that the concept of polynomials is not fully adequate for
capturing operator composition since it does not restrict the admissible combinations. This becomes
even more apparent when we introduce operators like div and grad. In this case, we would like to
distinguish vectors from scalars. For example, the composition div grad is admissible whereas
div div does not make sense. But the question of domain adequacy is not of a purely aesthetic
nature: It would prevent a great deal of unnecessary S–polynomials during the search for a Gröbner
basis. We would need a notion of restricted polynomials in X1, …, Xn such that each indeterminate
Xi has an associated domain, dom�Xi� , and codomain, cod�Xi� , where we can build up monomials
Xi�X j�Xk �� only if dom�Xi� � cod�X j� and dom�X j� � cod�Xk� , etc. Since the structure of restricted
polynomials is, by its very intention, not closed under multiplication, it figures as an algebraically
rather unwieldy concept. It would be interesting to develop some alternative that combines practical
needs and algebraic elegance.

References

[1] L. Bachmair, H. Ganzinger. Buchberger's algorithm: A constraint–based completion procedure. In: J.–P.
Jouannaud, editor, First International Conference on Constraints in Computational Logics. Volume 845 of
Lecture Notes in Computer Science, Springer Verlag, München, 1994, pp. 285–301.

[2] M. A. Borges, Mijail Borges. Gröbner Bases Property on Elimination Ideal in the Noncommutative Case.
In [7], pp. 323–337.

Solving Linear Boundary Value Problems via Non–Commutative Gröbner Bases

228

[3] B. Buchberger. An Algorithm for Finding a Basis for the Residual Class Ring of Zero–Dimensional
Polynomial Ideal (German). PhD Thesis, University of Innsbruck, Institute for Mathematics, 1965.

[4] B. Buchberger. An Algorithmic Criterion for the Solvability of Algebraic Systems of Equations (German).
Aequationes Mathematicae 4, 1970, pp. 374–383.

[5] B. Buchberger. Theory Exploration Versus Theorem Proving. Invited talk at the Calculemus '99 Confer-
ence, Trento, Italy, July 1999. Available as RISC technical report at ftp://ftp.risc.uni–
linz.ac.at/pub/techreports/1999/99–46.tar.gz .

[6] B. Buchberger. Introduction to Gröbner Bases. In [7], pp. 3–31.

[7] B. Buchberger, Franz Winkler (eds.). Gröbner Bases and Applications. London Mathematical Society,
Lecture Note Series 251, Cambridge University Press 1998.

[8] E. A. Coddington, N. Levinson. Theory of Ordinary Differential Equations. McGraw–Hill Book Company,
New York, 1955.

[9] R. Courant, D. Hilbert. Die Methoden der mathematischen Physik, Volumes 1 / 2. Springer Verlag, 4th
edition, 1993.

[10] J.H. Davenport, Y. Siret, E. Tournier. Computer Algebra. Academic Press, London 1988.

[11] H.W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer, Dordrecht, 1996.

[12] H. W. Engl, M. Z. Nashed. New Extremal Characterizations of Generalized Inverses of Linear Operators.
Journal of Mathematical Analysis and Applications 82, 1981, pp. 566–586.

[13] G. Grosche, V. Ziegler, D. Ziegler. Teubner–Taschenbuch der Mathematik I. Teubner, Stuttgart, 1996.

[14] J. W. Helton, Robert L. Miller. The system NCAlgebra. Homepage at http://math.ucsd.edu/~ncalg,
manual at http://math.ucsd.edu/~ncalg/NCBIGDOC/NCBIGDOC.html.

[15] J. W. Helton, Mark Stankus, John Wavrik. Computer Simplification of Engineering Systems Formulas.
IEEE Trans. Autom. Control 43, No. 3, 302-314 (1998).

[16] J. W. Helton, John Wavrik. Rules for Computer Simplification of the Formulas in Operator Model Theory
and Linear Systems. Operator Theory: Advances and Applications 73 , 1994, 325—354.

[17] A. M. Krall. Applied Analysis. D. Reidel Publishing Company, Dordrecht, 1986.

[18] W. Loud. Some Examples of Generalized Green's Functions and Generalized Green's Matrices. SIAM
Review, 12(2), 1970.

[19] Y.–K. Man. Computing Closed Form Solutions of First Order ODEs Using the Prelle–Singer Procedure.
Journ. Symb. Comp. 16, 1983, pp. 423–443.

[20] C. Marché. Normalized Rewriting: An Alternative to Rewriting Modulo a Set of Equations. Journ. Symb.
Comp. 11, 1996, pp. 1–36.

[21] M. Z. Nashed. Generalized Inverses and Applications, Proceedings of an Advanced Seminar Sponsored by
the Mathematics Research Center, Universiy of Wisconsin–Madison, October 1973. Academic Press, New
York 1976.

[22] M. Z. Nashed. Aspects of Generalized Inverses in Analysis and Regularization. In [21], pp. 193–244.

[23] M. J. Prelle, M. F. Singer. Elementary First Integrals of Differential Equations. Trans. AMS, 279(1), 1983,
pp. 215–229.

[24] D. C. Struppa. Gröbner Bases in Partial Differential Equations. In [7], pp. 235–245.

[25] I. Stakgold. Green's Functions and Boundary Value Problems. John Wiley & Sons, New York, 1979.

M. Rosenkranz, H. W. Engl

229

[26] J. Wavrik. Rewrite Rules and Simplification of Matrix Expressions. Computer Science Journal of Mold
ova, 4 (2/11), 1996.

Solving Linear Boundary Value Problems via Non–Commutative Gröbner Bases

230

A Divide-and-Conquer Method for

Integer-to-Rational Conversion ∗

Tateaki Sasaki1, Yoshinori Takahashi2 and Takuya

Sugimoto3

1Institute of Mathematics, University of Tsukuba, Tsukuba, Japan
2Master’s Program in Education, University of Tsukuba

3Master’s Program in Science and Engineering, University of Tsukuba

Abstract

The integer-to-rational conversion is to find integers N and D for given
relatively prime integers M > 0 and S, such that DS ≡ N (mod M),
0 < D <

√

M/2 and |N | <
√

M/2. The conversion plays an essential
role in the modular computation of Gröbner bases over the rationals. This
paper describes a divide-and-conquer method for the integer-to-rational
conversion and compares it experimentally with Wang’s algorithm and
its enhanced version using Lehmer’s technique. The experiment shows
the superiority of the divide-and-conquer method clearly.

KEYWORDS: divide-and-conquer method, integer-to-rational conversion,
modular Gröbner basis computation, rational number reconstruction

1. Introduction

Many algebraic algorithms performing successive arithmetic operations on
polynomials with rational coefficients, such as algorithms for Gröbner basis com-
putation, often cause extreme intermediate coefficients growth. In such cases,
modular techniques are very useful. For example, Winkler [Win88] and Sasaki
and Takeshima [ST89] proposed modular algorithms to compute Gröbner bases
over the rationals; the former utilizes the Hensel lemma and the latter uses
the Chinese remainder theorem. The latter algorithm, for example, proceeds
as follows: 1) choose prime numbers p1, p2, . . . , pn, pn+1 of word-size, 2) for i =
1, 2, . . . , n+1, compute Gröbner basis modulo pi, 3) construct a Gröbner basis
modulo M = p1p2 · · · pn+1 by the Chinese remainder theorem, 4) convert the

∗Work supported in part by Japanese Ministry of Education, Science and Culture under
Grants 12480065.

231

Divide-and-Conquer Method for Integer-to-Rational Conversion

integer coefficients to rationals modulo M , and 5) check finally that the result-
ing Gröbner basis is a required one. Here, conversion of an integer to a rational
modulo M is called integer-to-rational conversion.

Wang [Wan81] introduced the concept of integer-to-rational conversion (he
called the conversion rational number reconstruction), and proposed an algorithm
for it; see also [WGD82] and [SS92]. Wang’s algorithm is the extended Euclidean
algorithm with a special stopping condition. The algorithm is very simple and
useful for integers of small and medium size, however, it is inefficient for integers
of large size. On the other hand, integers of 1000 decimal digits or more appear
frequently in actual applications, then the integer-to-rational conversion occupies
a considerable part of the total computation time.

There are many studies on the integer GCD; see [Knu69] for old algorithms
and [Sor94] for rather new algorithms. In particular, Schönhage [Sch71] proposed
a divide-and-conquer method, and the method was applied to the univariate
polynomial GCD by Moenck [Moe73]. (Schönhage’s idea is easiest to understand
in the univariate polynomial case, for which see [GG99], Sec. 11.1.) However,
there are few studies on the integer-to-rational conversion, although Schönhage’s
idea is directly applicable to the integer-to-rational conversion.

Very recently, the present authors [STS01] and Pan and Wang [PW02] studied
divide-and-conquering of the integer-to-rational conversion. We must analyze
the mess of carries and the effect of truncation of integers, which are common
to the GCD computation, and consider how to stop the remainder sequence
computation at the bottom level of divide-and-conquering. In [PW02], a detailed
analysis to solve these problems is given, which is different from ours, but it lacks
a consideration on the “propagation of the errors” (see Subsection 4.4 for details).
This paper is a complete version of [STS01].

After explaining the integer-to-rational conversion and Wang’s algorithm in
Section 2, we describe the idea of our divide-and-conquer method in Section 3.
The details and verification of the method are given in Section 4. We have im-
plemented our method in Lisp and compared it with Wang’s algorithm and its
enhanced version using Lehmer’s technique; for Lehmer’s technique, see [Knu69].
Although our implementation is a crude one, the comparison shows the superi-
ority of the divide-and-conquer method clearly.

2. Integer-to-rational conversion

Let M and S be relatively prime integers, where M > 0. If there exist integers
D and N satisfying

DS ≡ N (mod M), 0 < D <
√

M/2, 0 < |N | <
√

M/2, (2.1)

then we say that the integer S is converted to the rational N/D modulo M .
Note that N and D may not exist, in particular, for small M . It is well-known
that integers D and N satisfying (2.1) and gcd(D, N) = 1 are unique, so long as

232

T. Sasaki, Y. Takahashi, and T. Sugimoto

they exist. If N/D ≡ S (mod M) for S > 0 then −N/D ≡ −S (mod M), and if
S ≥ M/2 then N/D ≡ (S −M) ≡ −(M −S) (mod M). Therefore, without loss
of generality, we assume in this paper that

M/2 > S > 0. (2.2)

Remark 1: If M and S have a common divisor g = gcd(M, S) > 1, then we
search for integers D and N such that S ≡ gN/D (mod M), or

D(S/g) ≡ N (mod M/g), 0 < D <
√

M/2g, 0 < |N | <
√

M/2g. (2.3)

Remark 2: In many practical cases, we can compute gcd(M, S) easily. In
modular methods, we usually employ either the Hensel lemma or the Chi-
nese remainder theorem (with Newton’s interpolation method) to construct the
resulting expression modulo M . In the Hensel construction, M = pn+1 and
S = snp

n + · · · + s1p + s0, where p is a prime and p > si ≥ 0 (i = 0, 1, . . . , n).
Hence, we can find gcd(M, S) at once. In the Chinese remainder construction,
M = pn+1pn · · · p1 and S = snpn · · · p1 + · · · + s1p1 + s0, where pn+1, pn, . . . , p1

are usually primes and pi+1 > si ≥ 0 (i = 0, 1, . . . , n). Therefore, we can easily
calculate gcd(M, S) by dividing S by p1, p2, p3, · · ·, successively. 2

Wang’s algorithm for the integer-to-rational conversion is as follows. Putting
S0 = M and S1 = S, we compute a remainder sequence (S0, S1, S2, · · · , Sκ) and
cofactor sequences (C0, C1, C2, · · · , Cκ) and (D0, D1, D2, · · · , Dκ) iteratively (the
extended Euclidean algorithm):



















Qi := quo(Si−1, Si), i = 1 ⇒ 2 ⇒ · · · ⇒ κ−1,

Si+1 := Si−1 − QiSi (i.e., Si+1 = rem(Si−1, Si)),

Ci+1 := Ci−1 − QiCi with C0 := 1 and C1 := 0,

Di+1 := Di−1 − QiDi with D0 := 0 and D1 := 1.

(2.4)

Here, quo and rem denote quotient and remainder, respectively. Then, we have

CiM + DiS = Si (i = 0, 1, 2, . . . , κ). (2.5)

(Actually, the sequence (C0, C1, C2, · · · , Cκ) is unnecessary). Note that each re-
mainder Si is positive due to (2.2). The sequence (S1, S2, · · · , Sκ) is descending,
while the sequence (|D1|, |D2|, · · · , |Dκ|) is ascending. Hence, if we obtain the case
that |Dκ| <

√

M/2 and |Sκ| <
√

M/2 then D = |Dκ| and N = sign(Dκ) Sκ,
otherwise there exist no D and N satisfying (2.1). We list some properties of Si,
Ci and Di for S > 0 and i ≥ 2; see [GG99], Sec. 3.2.

Si > 0, sign(Ci) = (−1)i, sign(Di) = (−1)i+1, (2.6)

|Ci| < |Di|, |Ci| < |Ci+1|, |Di| < |Di+1|, (2.7)

with exceptions C2 ≤ |D2|, C2 ≤ |C3|,
{

S0 = |Di|Si−1 + |Di−1|Si =⇒ |Di| < S0/Si−1,

S1 = |Ci|Si−1 + |Ci−1|Si =⇒ |Ci| < S1/Si−1.
(2.8)

233

Divide-and-Conquer Method for Integer-to-Rational Conversion

3. A divide-and-conquer method

In this section, we describe an idea of divide-and-conquer method; details and
verification of the method will be given in the next section.

First of all, we specify the representation of “big-integers”. Let B be a word-
size integer such that B = 232 or B = 1016. We assume that S (and M , too) is
represented as

S = snB
n + sn−1B

n−1 + · · · + s1B + s0,

sn 6= 0, B > si ≥ 0 (i = n, n−1, . . . , 0).
(3.1)

We call S an n digit integer, and define digit(S) to be digit(S) = n. We also call
sm the mth digit of S. Below, we put digit(M) = n.

Our divide-and-conquer method is based on the following facts.

Fact 1: In the integer-to-rational conversion, we obtain D and N of about n/2
digits by eliminating about n/2 higher digits of M and S.

Fact 2: The cofactor sequences (C2, C3, · · · , Cκ) and (D2, D3, · · · , Dκ) can be
computed by only the quotient sequence (Q1, Q2, · · · , Qκ−1), and the cofac-
tor sequences allow us to compute remainder sequence (S2, S3, · · · , Sκ) by
formula (2.5).

Fact 3: The quotient Qi = quo(Si−1, Si) can be computed only by leading 2l+2
digits of Si−1 and leading l+1 digits of Si, where l = digit(Si−1)−digit(Si).

Fact 4: Let Si > Sj > Sk > 0. If we have two tuples of cofactors such that

(c′u, d
′

u, c
′

v, d
′

v) : Sj−1 = c′uSi−1 + d′

uSi, Sj = c′vSi−1 + d′

vSi,

(c′′u, d
′′

u, c
′′

v, d
′′

v) : Sk−1 = c′′uSj−1 + d′′

uSj, Sk = c′′vSj−1 + d′′

vSj,
(3.2)

then (Sk−1, Sk) can be expressed by (Si−1, Si) as

Sk−1 = cuSi−1 + duSi, Sk = cvSi−1 + dvSi, (3.3)
{

cu = c′′uc
′

u + d′′

uc
′

v, du = c′′ud
′

u + d′′

ud
′

v,

cv = c′′vc
′

u + d′′

vc
′

v, dv = c′′vd
′

u + d′′

vd
′

v.
(3.4)

Let U and V be big-integers corresponding to two successive elements of the
remainder sequence generated by M and S, hence U > V � 1. Let U and V be
represented as (um 6= 0)

U = umBm + um−1B
m−1 + · · · + u1B + u0, B > ui ≥ 0 (i = m, . . . , 0),

V = vmBm + vm−1B
m−1 + · · · + v1B + v0, B > vi ≥ 0 (i = m, . . . , 0).

(3.5)
We divide U and V into m− µ higher digits and µ− 1 lower digits; the value of
µ depends on the elimination step and will be specified below.

U = ÛBµ + Ŭ , Û = umBm−µ + · · · + uµ, Ŭ = uµ−1B
µ−1 + · · · + u0,

V = V̂ Bµ + V̆ , V̂ = vmBm−µ + · · · + vµ, V̆ = vµ−1B
µ−1 + · · · + v0.

(3.6)

234

T. Sasaki, Y. Takahashi, and T. Sugimoto

U

m m/2Û
hhhhhh

((((((Ŭ
hhhhhh

((((((

V

V̂
hhhhhh

((((((V̆
hhhhhh

((((((

Step 1 : Eliminate about m/4 higher digits of Û and V̂ .

Step 2 : Construct U ′ and V ′ of about 3m/4 digits.
(Ŭ ′ and V̆ ′ will be almost erroneous numbers hence useless)

U ′

3m/4 m/4Û ′

hhhhhh

((((((Ŭ ′

P
P
P

�
�

�

...

V ′

V̂ ′

hhhhhh

((((((V̆ ′

P
P
P

�
�

�

...

Step 3 : Eliminate about m/4 higher digits of Û ′ and V̂ ′.

Step 4 : Compute cofactors cu, du, cv, dv of about m/2 digits.
At the top level : Compute remainders U ′′ and V ′′ of about n/2 digits.

U ′′

n/2

V ′′

Figure 1: Illustration of our divide-and-conquer method

We perform the elimination of about m/2 higher digits of U and V by the
following 4 steps, as illustrated by Figure 1.

recursive procedure Eliminate(U ,V) ==
% Eliminate about m/2 higher digits of U and V , and
% return the cofactors cu, du, cv, dv of about m/2 digits.
% At the top level, construct and return U ′′ and V ′′.

Step 1: Put µ ' m/2 and divide U and V into Û , Ŭ and V̂ , V̆ , respectively,
as in (3.6). Then, by calling Eliminate recursively, eliminate about m/4
higher digits of Û and V̂ , and obtain cofactors c′u, d

′

u, c
′

v, d
′

v of about m/4
digits.

Step 2: Construct integers U ′ and V ′ of about 3m/4 digits, as follows (U ′ and

235

Divide-and-Conquer Method for Integer-to-Rational Conversion

V ′ correspond to Sj−1 and Sj, respectively, in (3.2)).

U ′ = c′uU + d′

uV, V ′ = c′vU + d′

vV. (3.7)

Step 3: Put µ′ ' m/4 and divide U ′ and V ′ into Û ′, Ŭ ′ and V̂ ′, V̆ ′, respectively,
as in (3.6):

U ′ = Û ′Bµ′

+ Ŭ ′, V ′ = V̂ ′Bµ′

+ V̆ ′. (3.8)

Then, by calling Eliminate recursively, eliminate about m/4 higher digits
of Û ′ and V̂ ′, and obtain cofactors c′′u, d

′′

u, c
′′

v, d
′′

v of about m/4 digits.

Step 4: Compute cofactors cu, du, cv, dv of about m/2 digits, by formulas in
(3.4). At the top level where U = M and V = S, construct U ′′ and V ′′ as
follows (U ′′ and V ′′ correspond to Sk−1 and Sk, respectively, in (3.2)).

U ′′ = cuM + duS, V ′′ = cvM + dvS. (3.9)

2

Setting U = M and V = S initially, we see that the elimination of about n/2
higher digits of M and S is divided into two eliminations of about n/4 higher
digits of four integers which are of about n/2 digits. Therefore, calling procedure
Eliminate recursively, we can divide and conquer the elimination.

4. Details and verification of the method

In this section, we verify the divide-and-conquer method described in the
previous section, by specifying details of the method. The problems we must
solve are as follows.

Problem 1: The division of U and V shown in (3.6) is not trivial. For example,
consider an extreme case that digit(U) > 2 digit(V). The division of V in
(3.6), with µ ' m/2, will give V̂ = 0. How do we treat such cases ?

Problem 2: There are many pairs of integers 〈D′, N ′〉 which satisfy D′S ≡
N ′ (mod M). Among the pairs, we must find only one pair 〈D, N〉 that
satisfies the conditions 0 < D <

√

M/2 and |N | <
√

M/2. How do we find
the required pair ?

Problem 3: If we are careless, the elimination by divide-and-conquering often
gives results such that |dv| >

√

M/2 at the top level of the elimination.
How do we control the computation to avoid such cases ? Note that the
upper equality in (2.8) gives M = S0 < 2|Di|Si−1 because |Di−1| ≤ |Di| and
0 < Si < Si−1, hence |Si−1| > M/(2|Di|) >

√
M so long as |Di| <

√
M/2.

Problem 4: In our divide-and-conquer method, we do not handle remainders
S0, S1, · · · , Sκ but some higher digits of them. We must obtain the correct
result even if we discard lower digits of S0, S1, · · · , Sκ. How do we control
the computation to do so ?

236

T. Sasaki, Y. Takahashi, and T. Sugimoto

4.1. On Problems 1 and 2

We solve the Problem 1 as follows.

Abnormal case: The case that digit(U) − digit(V) > digit(U)/8 is called
abnormal.

Algorithm detail 1: In the abnormal case, we compute W = rem(U, V) and
continue divide-and-conquering by setting U := V and V := W . (If we still
encounter the abnormal case, we continue the remainder computation.)

Algorithm detail 2: If digit(U) ≤ 5 then we stop divide-and-conquering and
compute cofactors cu, du, cv, dv by the extended Euclidean algorithm.

On Problem 2. The required pair 〈D, N〉 can be found in the remainder se-
quence (S1, S2, · · · , Sκ, · · ·) and the cofactor sequence (D1, D2, · · · , Dκ, · · ·). Let
(Sκ−1, Sκ) be a pair of successive elements of the remainder sequence, such that
Sκ = |N |. In order to obtain the required pair 〈D, N〉, we must eliminate n′

higher decimal digits of M , where n′ is definite but unknown. We cannot per-
form such an elaborate elimination by the divide-and-conquering only. Therefore,
we find the required pair as follows.

Algorithm detail 3: We use the divide-and-conquer method to obtain a pair
(Sκ′

−1, Sκ′), κ′ ≤ κ hence Sκ′ ≥ Sκ, and find the required pair (Sκ−1, Sκ)
by computing the remainder sequence of Sκ′

−1 and Sκ′ . How to control the
computation, see details 4 and 5 given below.

4.2. On Problem 3

Problem 3 is very important actually. There are two ways to solve this problem.
The first way is to use the fact that, given Ci, Ci+1, Di and Di+1 for i > 2, we
can compute Ci−1 and Di−1 as

Ci−1 = rem(|Ci+1|, |Ci|) · sign(Ci+1),

Di−1 = rem(|Di+1|, |Di|) · sign(Di+1).
(4.1)

Therefore, if we find that |dv| >
√

M/2 then we back the cofactor sequences.
The second way is to stop the remainder sequence computation at the bottom

level of divide-and-conquering as specified below. (2.7) tells us that

|d′

v| = max{|c′u|, |d′

u|, |c′v|, |d′

v|}, |d′′

v| = max{|c′′u|, |d′′

u|, |c′′v|, |d′′

v|}. (4.2)

Since (Si−1, Si) and (Sj−1, Sj) in (3.2) are pairs of two successive elements of a
remainder sequence, (2.6) tells us that c′uc

′

v < 0, d′

ud
′

v < 0, c′ud
′

u < 0, c′vd
′

v < 0,
and similar inequalities for c′′u, d

′′

u, c
′′

v, d
′′

v. Therefore, in (3.4), we have

|cu| = |c′′uc′u| + |d′′

uc
′

v|, |du| = |c′′ud′

u| + |d′′

ud
′

v|,
|cv| = |c′′vc′u| + |d′′

vc
′

v|, |dv| = |c′′vd′

u| + |d′′

vd
′

v|,
=⇒ |dv| = max{|cu|, |du|, |cv|, |dv|} < 2|d′

vd
′′

v|.
(4.3)

237

Divide-and-Conquer Method for Integer-to-Rational Conversion

Let λ be the number of recursive calls of procedure Eliminate; λ = 1 at the
top level of divide-and-conquering and λ ' log2 |digit(M/U)|. We call λ depth

of the divide-and-conquer. The remainder sequence computation at the bottom
level must be stopped so that we will have |dv| <

√

M/2 at the top level. If we

set the stopping condition at the depth λ as |dv| = |dk| < λ

√

M/2 ≤ |dk+1| then

we will quite often have |dv| >
√

M/2 at the top level. Therefore, we set the
stopping condition as given below, then the last inequality in (4.3) assures that
|dv| <

√

M/2 at the top level.

Algorithm detail 4: At the bottom level of divide-and-conquering of the
depth λ, where we compute the cofactor sequences (d′

0, d
′

1, d
′

2, · · ·) and
(d′′

0, d
′′

1, d
′′

2, · · ·) of (U, V, U2, · · ·) and (U ′, V ′, U ′

2, · · ·), respectively, by the ex-
tended Euclidean algorithm, we stop the remainder sequence computation
and return cofactors c′k−1, d

′

k−1, c
′

k, d
′

k etc., if we have

|d′

k| <
(M/2)1/2λ

2λ
≤ |d′

k+1|, |d′′

k| <
(M/2)1/2λ

2λ
≤ |d′′

k+1|. (4.4)

4.3. On Problem 4

Suppose U and V are integers obtained by discarding lower `−1 digits of Si−1

and Si, respectively. Then, we can express Si−1 and Si as

Si−1 = (U + εu) × B`, 0 ≤ εu < 1,

Si = (V + εv) × B`, 0 ≤ εv < 1.
(4.5)

We call εu and εv errors of U and V , respectively. Similarly, suppose that U ′

and V ′ correspond to Sj−1 and Sj, respectively, errors ηu, ηv of Û , V̂ in (3.6) and

errors η′

u, η
′

v of Û ′, V̂ ′ in (3.8) are defined by (ν = ` + µ)

Si−1 = (Û + ηu) × Bν , Sj−1 = (Û ′ + η′

u) × Bν′

,

Si = (V̂ + ηv) × Bν , Sj = (V̂ ′ + η′

v) × Bν′

.
(4.6)

Remark 3: In (4.5) and (4.6), the errors are assumed to be less that 1.
However, the errors will be accumulated during the computation, as will be
explained later. Therefore, in the actual program, we treat εu and εv etc. as
accumulated errors, hence they may be negative or greater than 1. 2

By (U0 =Si−1, U1 =Si, U2, · · · , Ul, · · ·) and (Û0 = Û , Û1 = V̂ , Û2, · · · , Ûl, · · ·), we
denote the remainder sequences generated by (Si−1, Si) and (Û , V̂), respectively.
The corresponding quotient sequences are denoted by

(q1, q2, · · · , ql, · · ·), ql = quo(Ul−1, Ul) (l = 1, 2, . . .),

(q̂1, q̂2, · · · , q̂l, · · ·), q̂l = quo(Ûl−1, Ûl) (l = 1, 2, . . .).
(4.7)

We denote the cofactor sequences of (Û0, Û1, · · · , Ûl, · · ·) by (c0, c1, . . . , cl, . . .) and

238

T. Sasaki, Y. Takahashi, and T. Sugimoto

(d0, d1, . . . , dl, . . .). (We omit ˆ for cofactor sequences.) Note that the sequences
(q1, q2, · · · , ql−1, · · ·) and (U2, U3, · · · , Ul, · · ·) are not computed.

In the rest of this subsection, we put U = Si−1 and V = Si for simplicity,
hence U = (Û + ηu)×Bν and V = (V̂ + ηv)×Bν , instead of equalities in (4.6).
Furthermore, we use indices i, j and k differently from the usage in Section 3.

We first consider necessary digits to assure that quo(U, V) = quo(Û , V̂); the
following proposition is used for computing the remainder correctly in the ab-
normal case.

Proposition 1: Let q = quo(U, V) and q̂ = quo(Û , V̂). We have q = q̂ iff

q̂ηv − ηu ≤ rem(Û , V̂) < V̂ + (q̂ + 1)ηv − ηu. (4.8)

Proof We have rem(U, V) = U − qV = [(Û − qV̂)+ηu− qηv]B
ν = [(Û − q̂V̂)+

ηu− q̂ηv +(q̂−q)(V̂ +ηv)]B
ν . Substituting the rightmost expression for rem(U, V)

in inequality 0 ≤ rem(U, V) < V = (V̂ +ηv)×Bν and using rem(Û , V̂) = Û− q̂V̂ ,
we obtain

0 ≤ rem(Û , V̂) + ηu − q̂ηv + (q̂ − q)(V̂ + ηv) < V̂ + ηv. (4.9)

If q̂ = q then this inequality is identical to that in (4.8), hence 〈q = q̂〉 =⇒
(4.8). If q̂ > q then the r.h.s. inequality in (4.9) gives rem(Û , V̂) + ηu − q̂ηv < 0,
contradicting (4.8). Similarly, if q̂ < q then the l.h.s. inequality in (4.9) gives
rem(Û , V̂)+ ηu − q̂ηv ≥ V̂ + ηv, contradicting (4.8). Hence, (4.8) =⇒ 〈q = q̂〉. 2

Next, we consider the normal case in which we can compute the remainder
sequence (Û0 = Û , Û1 = V̂ , Û2, · · ·). We assume that the value of ν has been chosen
so that q1 = q̂1. Then, the quotient sequences in (4.7) will be such that, for some
k, we have

qi = q̂i (i = 1, · · · , k−1), qk 6= q̂k. (4.10)

The following proposition clarifies the relationship between k and ηu, ηv, and it
is used to stop the computation at the bottom level of divide-and-conquering.

Proposition 2: The relations in (4.10) hold iff

• for any j, 0 < j < k :

−(cj+1ηu + dj+1ηv) ≤ Ûj+1 < Ûj − (cj+1 − cj)ηu − (dj+1 − dj)ηv, (4.11)

• for j = k :

either Ûk+1 < −(ck+1ηu + dk+1ηv),

or Ûk+1 ≥ Ûk − (ck+1 − ck)ηu − (dk+1 − dk)ηv.
(4.12)

239

Divide-and-Conquer Method for Integer-to-Rational Conversion

Proof We have q1 = q̂1. Assume that qi = q̂i (i = 1, . . . , j−1), then we have

ciÛ + diV̂ = Ûi, ciU + diV = Ui (i = 2, . . . , j).

Hence, Uj+1 can be expressed as follows.

Uj+1 = rem(Uj−1, Uj) = (cj−1U + dj−1V) − qj (cjU + djV)

= [(cj−1 − qjcj) (Û + ηu) + (dj−1 − qjdj) (V̂ + ηv)] × Bν

= [Ûj−1 − qjÛj + (cj−1 − qjcj) ηu + (dj−1 − qjdj) ηv] × Bν

= [Ûj−1 − q̂jÛj + (cj−1 − q̂jcj) ηu + (dj−1 − q̂jdj) ηv] × Bν

+ (q̂j − qj) (Ûj + cjηu + djηv) × Bν .

Since Ûj−1 − q̂jÛj = Ûj+1, cj−1 − q̂jcj = cj+1, dj−1 − q̂jdj = dj+1 and Ûj + cjηu +

djηv = cj(Û + ηu) + dj(V̂ + ηv) = (cjU + djV)/Bν = Uj/B
ν , we obtain

Uj+1 = (Ûj+1 + cj+1ηu + dj+1ηv) × Bν + (q̂j − qj)Uj.

Substituting the above r.h.s. expression for Uj+1 in inequality 0 ≤ Uj+1 < Uj,
we obtain

0 ≤ Ûj+1 + cj+1ηu + dj+1ηv + (q̂j − qj)Uj/B
ν < Uj/B

ν . (4.13)

If q̂j = qj then this inequality is identical to that in (4.11), because Uj = (Ûj +
cjηu + djηv)B

ν , hence 〈qj = q̂j〉 =⇒ (4.11). If q̂j > qj then the r.h.s. inequality

in (4.13) gives Ûj+1 + cj+1ηu + dj+1ηv < 0, or the upper inequality in (4.12)
with k = j, contradicting (4.11). Similarly, if q̂j < qj then the l.h.s. inequality in

(4.13) gives Ûj+1 + cj+1ηu + dj+1ηv ≥ Ûj + cjηu + djηv, or the lower inequality in
(4.12) with k = j, contradicting (4.11). Hence, (4.11) =⇒ 〈qj = q̂j〉. Therefore,
we obtain Proposition 2 because 〈¬ (4.11) for j = k〉 = (4.12). 2

With Proposition 2, we control the computation as follows, then we obtain
the correct cofactors by handling truncated integers with errors.

Algorithm detail 5: At the bottom level of divide-and-conquering, where
we compute the cofactors by the extended Euclidean algorithm, we stop
the computation of remainder sequence if the inequality in (4.11) becomes
unsatisfied (and inequality for Û ′

j and Û ′

j+1, too).

4.4. Propagation of errors

Let us finally consider the propagation of errors. At the top level of divide-
and-conquering, we have U = M and V = S hence εu = εv = 0. Suppose, at a
lower level, U and V have errors εu and εv, respectively. These errors affect the
errors ηu and ηv in (4.6) only a very little; in fact, by (4.5) and (4.6) we obtain

ηu = (Ŭ + εu)/B
µ, ηv = (V̆ + εv)/B

µ. (4.14)

240

T. Sasaki, Y. Takahashi, and T. Sugimoto

In Step 2, c′u, c
′

v and d′

u, d
′

v are multiplied to U and V , respectively, which mag-
nifies the errors of U and V by amounts of O(Bm/4) in U ′ and V ′. Thus, Ŭ ′ and
V̆ ′ will be almost erroneous numbers. However, the errors η′

u and η′

v in (4.6) are
not large; they are given by

η′

u = (Ŭ ′ + c′uεu + d′

uεv)/B
µ′

, η′

v = (V̆ ′ + c′vεu + d′

vεv)/B
µ′

. (4.15)

Note that η′

u and η′

v may be negative because c′ud
′

u < 0 and c′vd
′

v < 0. If we are
not at the bottom level, we must still divide-and-conquer (Û , V̂) and (Û ′, V̂ ′),
by resetting (U, V, εu, εv) as

(U, V, εu, εv) := (Û , V̂ , ηu, ηv), (U, V, εu, εv) := (Û ′, V̂ ′, η′

u, η
′

v). (4.16)

Actually, the conditions in detail 4 are stronger than those in detail 5 for
stopping the remainder sequence computation. Therefore, we may represent the
errors by single precision numbers.

Algorithm detail 6: We represent the errors by interval numbers.

5. Implementation and experiments

We have implemented our divide-and-conquer method on NS-Lisp (Nara Stan-
dard Lisp implemented by Kako, Nara Women’s University, Japan) which is
equipped with Karatsuba’s method for the multiplication of big-integers; for
Karatsuba’s method, see [GG99], Sec. 8.1. We represent M, S, U, V, U ′, V ′, U ′′, V ′′

etc. by user-defined lists; for example, U = umBm + um−1B
m−1 + · · ·+ u0 is rep-

resented by a list ((m, εu), um, um−1, · · · , u0). On the other hand, we treat cofac-
tors c′u, d

′

u, c
′

v, d
′

v etc. as Lisp numbers, and Karatsuba’s method is applied to the
multiplication of them. The multiplications c′u ×U etc. are done by Karatsuba’s
method by converting U etc. to Lisp numbers. We set B in two ways as

B = 108 and B = 224. (5.1)

For comparison, we have also implemented Wang’s algorithm (extended Eu-
clidean method) and its enhanced version using Lehmer’s technique. We repre-
sent Si as well as M and S by user-defined lists as explained above, while Qi,
Ci and Di by Lisp numbers. The multiplications Qi × Si etc. are done by the
classical method by preserving the list representation of Si.

Table I shows the result of experiments on Pentium II (300MHz), where M
and S were generated randomly satisfying digit(M) = digit(S). (Note that “digit
1000”, for example, in the table means that M and S are integers of about 8000
decimal digits.) Although our current program is in a crude level, the result
shows clearly the superiority of the divide-and-conquer method.

Remark 4: In (3.7), only about higher m/2 digits are necessary in the sub-
sequent computation. Therefore, we can speed up the computation in Step

241

Divide-and-Conquer Method for Integer-to-Rational Conversion

Case of B = 108 (sec) Case of B = 224 (sec)

digit Euclid Lehmer DivConq Euclid Lehmer DivConq
100 0.896 0.212 0.0530 0.778 0.213 0.0540
200 3.41 0.778 0.129 2.94 0.783 0.124
300 7.66 1.70 0.220 6.56 1.71 0.21

400 13.5 2.98 0.332 11.6 3.01 0.311
500 21.1 4.62 0.465 17.6 4.65 0.438
600 30.0 6.64 0.595 26.0 6.69 0.561

700 40.8 8.99 0.773 35.3 9.02 0.724
800 53.5 11.7 0.927 46.0 11.8 0.863
900 67.3 14.8 1.12 58.5 14.9 1.04

1000 83.2 18.2 1.34 71.7 18.3 1.26

Table 1: Result of experiments

2 considerably. However, neither our implementation nor the following time-
complexity analysis takes this speed-up into account. 2

We give the time-complexity of the divide-and-conquer method. By M(m, m′)
we denote the time for multiplying two integers of m and m′ digits. By T (n)
and E(n), we denote the total computation time and the cost of elimination,
respectively, for n digit integers. Then, we have

T (n) = 4M(n/2, n) + E(n),

E(m) = 2E(m/2) + 4M(m/4, m) + 8M(m/4, m/4).
(5.2)

Here, 4M(n/2, n) is the cost of multiplications in (3.9), and 8M(m/4, m/4) is
the cost of computation of cu, du, cv and dv in Step 4. Bounding M(n/2, n) and
M(m/4, m) as M(n/2, n) ≤ 2M(n/2, n/2) and M(m/4, m) ≤ 4M(m/4, m/4),
we can estimate T (n) as follows.

T (n) ≤ 8M(n/2, n/2) + nE(1) + 6

log
2

n
∑

k=2

2kM(n/2k, n/2k). (5.3)

For Karatsuba’s method, we have M(m,m) ≈ 9m1.59 hence E(n) ≤ 95n1.59.
Let us briefly explain why the divide-and-conquer method is fast. In the ex-

tended Euclidean algorithm, we compute a quotient Qi = quo(Si−1, Si) at each
step, and Qi is multiplied to Si, Ci and Di which are big integers during the
most stage of computation. Qi is usually a small number of one or several deci-
mal digits, hence the fast multiplication algorithms are powerless for computing
QiSi, QiCi and QiDi. On the other hand, the most time-consuming operations
in the divide-and-conquer method are multiplications in (3.4), (3.7) and (3.9).
The multiplicands in these cases are big integers, and we can apply the fast
multiplication algorithms.

242

T. Sasaki, Y. Takahashi, and T. Sugimoto

References

[GG99] J. von zur Gathen and J. Gerhard: Modern Computer Algebra. Cam-
bridge University Press 1999.

[Knu69] D. E. Knuth: The Art of Computer Programming, Vol. 2 (Seminumerical
Algorithms). Addison Wesley, 1969, Section 4.5.

[Moe73] R. Moenck: Fast computation of GCDs. Proceedings of 5th ACM Annual

Symposium on Theory of Computing, pp. 142–171, ACM Press, New York,
1973.

[PW02] V. Y. Pan and X. Wang: Acceleration of Euclidean algorithm and ex-
tensions. Proceedings of 2002 International Symposium on Symbolic and Al-

gebraic Computation, pp. 207–213, ACM Press, New York, 2002.

[Sch71] A. Schönhage: Schnelle Berechnung von Kettenbruchentwicklungen.
Acta Informatica Vol. 1, 1971, pp. 139–144.

[Sor94] J. Sorenson: Two fast GCD algorithms. J. Algorithms, Vol. 16, 1994, pp.
110-114.

[SS92] T. Sasaki and M. Sasaki: On integer-to-rational conversion algorithm.
SIGSAM Bulletin, Vol. 26, ACM, 1992, pp. 19–21.

[ST89] T. Sasaki and T. Takeshima: A modular method for Gröbner-basis com-
putation over Q and solving system of algebraic equations. J. Inf. Proces.,
Vol. 12, 1989, pp. 371–379.

[STS01] A preliminary version of the present paper was presented at RIMS

Symposium on Theory and Application of Formula Manipulation (University
of Kyoto, Japan), November, 2001.

[Wan81] P. S. Wang: A p-adic algorithm for univariate partial fractions. Pro-

ceedings of ACM Symposium on Symbolic and Algebraic Computation, pp.
212–217, ACM, 1981.

[WGD82] P. S. Wang, M. J. T. Guy and J. H. Davemport: P -adic reconstruction
of rational numbers. SIGSAM Bulletin, Vol. 16, ACM, 1982, pp. 2–3.

[Win88] F. Winkler: p-adic methods for the computation of Gröbner bases. J.
Symb. Comput., Vol. 6, 1988, pp. 287-304.

243

Syzygies, and the Stabilization of the

Numerical Buchberger Algorithm∗

Carlo Traverso

Dipartimento di Matematica, Via Buonarroti 2, I-56127 PISA

traverso@dm.unipi.it

Abstract

We give two variants of Buchberger algorithm to compute an approximate
Gröbner basis of an unstable set of polynomials given approximately. Both
algorithms use syzygies in a different way: the first is a revisiting of the
classical trace lifting algorithm in a generalized context, and can be used
when the problem is generic in an explicitly given family; the second can
be used in general, and uses intervals to discover possible vanishing and
optimization techniques to validate a possible zero identified by interval
arithmetic.

The first algorithm has been completely implemented and tested, the
second is still in the preliminary design and experimenting phase.

KEYWORDS: Gröbner basis, floating point arithmetic, unstable approx-
imate systems

1. Introduction

In (Traverso and Zanoni, 2002) we have discussed the possibility of using some
forms of floating point arithmetics to perform a Gröbner basis computation
through Buchberger algorithm, and shown in all the test cases that the result
coincides (up to some approximation) with the result obtained using integer
or rational arithmetic, but with a lower cost for the arithmetic computations,
provided that the precision of the floating point arithmetic is sufficient; and
otherwise the algorithm exhibits the complete loss of precision, and exits with an
error condition. The result computed is an approximation to the result computed
with exact arithmetic, even when the original problem is unstable.

When the input data are inexact, this is sometimes not what is sought; we
∗This work was supported by the projects “Tecniche per Immagini”, cluster C15, progetto

n. 7 “Sviluppo, Analisi ed Implementazione di Metodi Matematici Avanzati per il Trattamento
di Immagini” and “Algebra Commutativa e Computazionale”, PIN-2001.

244

Syzygies and numerical Buchberger algorithm

compute an approximation of the solution of a problem that is “near” to the
“true” problem, but the solution of the nearby problem may be very far from
the solution of the original problem; an example is when the original problem
is an overdetermined system of equations (one with more equations than un-
knowns) in which a solution exists for physical reasons, and the coefficients are
experimentally (hence inexactly) determined.

In this case, one has to use some additional information (e.g. the physical
existence of a solution) to recover an approximation of the “exact” result.

When a qualitative information of this kind is not available, one is usually
interested in finding an approximation of a solution of the “most degenerate”
problem compatible with the data; for example, finding an approximate GCD
one is interested in the highest degree such GCD compatible with the bounds.

We describe in this paper two different approaches, both of them based on the
consideration of syzygies.

The first approach uses the syzygies of a different problem generic in a family
containing the problem of which our data are an approximation to deduce syzy-
gies for our computation. This approach requires the knowledge of some data,
in particular the irreducibility of the family, and the genericity of our original
problem. Otherwise it may fail.

This first approach generalizes the well-known modular trace lifting Buchberger

algorithm, see (Traverso, 1988), that is a special case of this algorithm. Our gen-
eralized algorithm has been implemented, and works remarkably well on some
important practical tests. The algorithm may fail if the problem under consider-
ation is not generic (and in this case the algorithm detects the non-genericity),
and may also fail if the data for the pilot computation are not generic but only
random, like in the case of the trace-lifting algorithm, when an unlucky prime
is chosen. This is however unlikely to happen.

The second approach uses interval arithmetic and the extended Buchberger

algorithm, see (Caboara and Traverso, 1998), to deduce interval equations, and
a subsequent step allows to validate either the vanishing of a solution in an
interval of confidence (hence deducing a non-generic syzygy) or proving that
such a solution does not exist, hence refining some computed intervals.

This last step can be solved either through quadratic programming, or through
an ad-hoc iterative procedure; this part is however up to now theoretical only,
and experiments have to be conducted to test the practical behaviour of this
algorithm. A first full implementation is planned, although most components
needed to test this approach are available.

To our knowledge, the only prior results in this domain are contained in (Gi-
anni et al., 1998); their approach is to reduce the problem to a linear algebra
problem and to solve a problem of singular values; the approach is however only
possible for zero-dimensional ideals. Our approach is instead fully general, and
makes no assumption on the geometrical properties of the result.

The sections 2 and 3 contain a review of previous results, some of them of

245

C. Traverso

general type but possibly not known to the audience of this paper, and some of
previously published research of the same author. The original part is contained
in the following sections. Some of the ideas of this paper have been anticipated
in (Traverso and Zanoni, 2002) (more in the conference than in the proceedings)
and (Traverso, 2002), but both the implementation and the formalization as gen-
eralized trace lifting algorithm and the reduction of zero-decision ad refinement
of an interval to a quadratic optimization problem are new.

2. Families of ideals and Buchberger algorithm

We begin with some notation; a product of variables is called a power product (PP
for short); we assume to have a term-ordering, i.e. a noetherian total ordering
on the set of power products; if f is a polynomial, it has a leading coefficient

Lc(f) and a leading PP Lpp(f); to avoid to treat the zero polynomial in a special
way, we define a special PP, NAPP (NotAPowerProduct in analogy with NAN ,
NotANumber ; hence Lc(0) = NAN , Lpp(0) = NAPP . NAPP is considered to
be smaller than any other PP.

For the purpose of Buchberger algorithm, an ideal is represented by a set of
generators (a basis), consisting in a set of polynomials in a polynomial ring k[X]
over the ground field k. An ideal I ⊆ k[X] together with a basis (fi) is called
a based ideal. Buchberger algorithm transforms a based ideal into an equivalent

Gröbner-based ideal, for obvious definitions of what is undefined above.
Such a structure allows a parametric representation: consider an ideal I gener-

ated by a set of polynomials fi in R[X], R being a ring, and let p be a geometric
point (a map R → K into a field K, the map being denoted as p : a 7→ a(p));
then we have and ideal I(p) in K[X] generated by fi(p), the map p being
extended trivially to a map R[X] → K[X].

Special cases are R = Z (and in this case the points are, substantially, Q and
the various Zp) and R = k[ti], and giving a point consists in giving a value to the
parameters ti. Here substantially means up to an extension of the ground field,
that does not affect Buchberger algorithm. In this viewpoint, a based ideal of
R[X] is seen as a family of based ideals on Spec(R).

When I is a based ideal with coefficients in a field k, we can embed it in a family
replacing every non-leading non-zero coefficient with a different invertible inde-
terminate: if fi =

∑
J ai,JXJ consider R = k[ti,J , t−1

i,J] and Ī = (f̄i =
∑

J ti,JXJ).
We call this the universal family associated to I.

We want to study the behaviour of Buchberger algorithm, and in particular
the Gröbner basis, when p varies. This behaviour can be formalized through
traces.

We assume for simplicity that the input polynomials of Buchberger algorithm
are uniquely identified by their Lpp, and that Buchberger algorithm generates
polynomials that have different Lpp (this second assumption is true for the clas-
sical Buchberger algorithm, but may be false for variants); if this assumption

246

Syzygies and numerical Buchberger algorithm

is false, one has to modify slightly the definition, using instead of PPs unique
identifiers for polynomials that contain their Lpp.

A Buchberger trace† is a list of triples of PP. To each critical pair consid-
ered in Buchberger algorithm we associate a triple consisting of the Lpp of the
polynomials of the pair, and the Lpp of the polynomial that is the result of the
simplification procedure. (the third element of a triple can hence be a NAPP ,
and not a “true” PP). A Buchberger trace is a summary of the Buchberger
algorithm,

Since Buchberger algorithm is an algorithm scheme depending on strategies,
we assume that the strategies do not depend on coefficient values, as long as
they are not zero; this is restrictive, since stability considerations for floating
point computations might require that strategies consider coefficients, but on
the other side floats are not even a ring. To simplify some statements, we even
assume that the strategies only depend on the leading terms of the polynomials
involved in the algorithm. This is sometimes not true for some implementations,
that might consider polynomial lengths, but is true in first approximation.

It is well known, and anyway trivial, that the behaviour of Buchberger algo-
rithm in a family is constant on a (Zariski) open subset of the family; the reason
is that the branching points of the algorithm depend on the vanishing of coeffi-
cients, and coefficients during the algorithm are rational functions of the input
coefficients; hence the behaviour is constant on the open set where no coefficient
vanishes that does not vanish everywhere. (If the ring R has no zero divisor this
open set is non empty, otherwise one can slightly modify the argument). On this
open set, we say that the Buchberger algorithm has generic behaviour.

One can subdivide a family into locally closed subfamilies (intersection of an
open and a closed subfamily) in each of whose the behaviour of Buchberger
algorithm is constant. Such a subdivision is called a Buchberger stratification.
Remark that it may not be a stratification, in technical terms, since it is possible
that the closure of a stratum meets another stratum without containing it.

If Buchberger algorithm has the same behaviour in two different points, the
staircase of the Gröbner basis is the same at the two points; the converse is of
course false. The subdivision of the parameter space induced by the staircase
is not a stratification (and its elements are not even locally closed, but only
constructible, i.e. finite union of locally closed subsets).

3. Floating point arithmetics for Buchberger algorithm

In this section we recall the essential points of (Traverso and Zanoni, 2002).
When handling inexact arithmetics inside of algebraic algorithms, the main

problem is the handling of equality, in particular the equality to zero, i.e. the
zero test. When we have to decide if a coefficient of a polynomial is zero, we

†in (Traverso, 1988) this was called a Gröbner trace, but the name Buchberger trace seems
more adequate, since the trace depends on the special instance of Buchberger algorithm that
is chosen

247

C. Traverso

can have have absolute tests, context tests (when we compare a coefficient with
the other coefficients) and historical tests (when we compare a coefficient with
the coefficients that have originated it). And the result of a zero test is not a
simple yes/no, but may allow a “maybe”, that requires further action, that may
depend on the context. This action might include raising an error condition that
makes the algorithm fail. Defining an arithmetic consists not only in specifying
the arithmetic operations, but also in specifying a zero test; this is also needed in
inverting a number, that is possible only after a zero test with negative result. We
say that a number may be zero if the zero test returns either “true” or “maybe”.

Another important issue is to decide if the accumulated error has made a num-
ber completely unreliable, or more generally to estimate the residual precision.

A final issue is that we need to map a dense subset of the rationals into the
floats, and this map is an “approximate homomorphism” in some sense that we
do not need here to make more precise.

Pure floating arithmetic‡ is unable to handle these issues, hence we have de-
signed and tested three different arithmetics, that can be combined, and that
are useful in different contexts.

Hybrids

The first is the Hybrid arithmetic, in which a number is composed of a float
and an integer modulo a prime p; the two parts correspond to two different
approximations of a rational, hence if the modular part is not zero then the
number is not zero; if it is zero then the number is surely non invertible, but the
zero test is positive only if it is corroborated by another context information;
either the number originates from a difference of almost equal numbers (more
explicitly, it is a result of an operation a = r + s, and the absolute value |a| ≤
ε1r for a predetermined small positive constant ε1), or a is a coefficient of a
polynomial

∑
aIX

I and a ≤ ε2aI for each aI whose modular part is non zero.
This last test includes the condition that a polynomial that is identically zero
mod p is zero.

A map from a rational to a hybrid is obvious if no denominator is multiple of p;
a map to a float to an hybrid is possible, starting from any rational approximation
of he float; however the mod p part is in this case completely random, since in
every intervals of the reals exist rationals having any residue mod p. Hence,
substantially, one maps floats to hybrids assigning randomly the modular part.

Hybrid arithmetics does not allow to check the residual precision, but allows
reduction mod p; hence for them a classical trace lifting algorithm is possible.

‡Under floats we design not only machine floats as the types float and double, but also
bigfloats like e.g. gmp bigfloats, (Granlund, 1991-2002).

248

Syzygies and numerical Buchberger algorithm

Double-floats

A second arithmetics is the double-float arithmetic; a number is represented by
two floats with different length, e.g. a float and a double, a short and a long

component.
A double-float allows to check the loss of precision, being the number of trailing

bits of the short that are different from the corresponding bits of the long, since
we expect the error to be random, and to influence approximately the same
number of bits of the short and of the long, hence we expect that the first dirty
bits of the short are exact in the long. It allows a zero-test, that is true when
the absolute value of the short is larger than a suitable multiple of the long. To
understand this, remark that a zero can only be obtained through cancellation in
a sum; in this case, the floats are not “exactly zero”, but have a “noise” that is,
in base 2 logarithm, of size equal to the number of inexact bits minus the number
of total bits of the float; we may expect that the influence of error accumulation
is approximately the same on the long and on the short, hence when we compute
inexactly a zero, we expect that the short is about 2d times larger than the long,
where d is the difference in bits between the long and the short.

Double-floats allow to deduce the precision of the computed result, through
the number of common bits of the two components (equivalently—almost. . .—
through the binary logarithm of the quotient of the first component by the
difference of the two).

Intervals

The third arithmetic is interval arithmetic: a number is represented by a pair of
numbers, representing an interval, and arithmetic operations are performed in
a way that represents elementwise operations on sets. Hence a number may be
zero if zero is in the interval, but there is no test to decide zero equality.

Interval arithmetic can be used stating that a number is zero if and only if it
may be zero, but as far as Buchberger algorithm is concerned this is of little use.
since error accumulation usually leads to overestimating the zero test, unless
the input precision of the initial intervals is much larger than the usual data
precision. See the section 6 for further reasons why pure interval arithmetic is
unsuitable for Buchberger algorithm.

Composite arithmetics

It is possible to combine features of different arithmetics: we can for example
consider the double hybrids that combine a double float with an integer mod p

(or equivalently an hybrid based on a double-float arithmetic).
Other possibilities are multi-hybrids, combining several integers mod pi with

a float or a double-float, pointed-intervals that combine an interval and a double-
float inside it, and the “grand-total” hybrid-pointed-intervals combining a pointed-
interval and an integer mod p (or several ones. . .).

For these mixed arithmetics it is necessary to specify which action we have

249

C. Traverso

to take when the different subcomponents give discording results on some zero
test; for example, when the interval and the modular part give discording values
of the may-be-zero test. This may be algorithm-dependent.

4. Trace lifting revisited

The trace lifting algorithm defined in Traverso (1988) computes a Gröbner basis
for an ideal generated by a basis with integer coefficients, first performing a
pilot computation of the ideal obtained reducing the basis modulo a prime p,
keeping a Buchberger trace; this trace is used in the Buchberger algorithm for
the original ideal, to flag “useless” pairs to be discarded. The third element in a
triple is used to check that the result of the simplification with integer (rational)
coefficients has the expected PP. The algorithm fails when this test fails, and
might give wrong results if the prime chosen is unlucky.

The trace lifting algorithm can be described in the setting of families. Since
the original basis has integer coefficients, we consider Z as ground ring, and
consider Spec Z as basis of the family; the geometrical points of Z are Q (that
is a generic point, i.e. its Zariski closure coincides with Spec Z) and Zp; the
Buchberger stratification consists of a generic component, containing Q and all
the Zp with p “lucky”, and some components composed each of a finite number
of “equally unlucky” primes. The trace lifting algorithm tries to compute the
Buchberger trace of the ideal over Q computing the Buchberger trace of the
ideal over a random prime, hoping not to hit an “unlucky” prime, that makes
the algorithm either fail or to give a wrong result.

We can apply the same ideas to more general families, and to the case of
floating arithmetic (when the coefficient ring is only approximately a ring, the
coefficients are imperfectly known, the zero test may return “maybe”), and more-
over we know that the input is in the family, but we do not know for sure that
it is a generic element of the family. This last generalization corresponds, in the
classical integer arithmetic case, to use the Buchberger trace computed mod p to
compute the Gröbner basis modulo a different prime q that cannot be assumed
to be lucky.

More precisely, we use the trace computed for a member of a family with an
exact arithmetic (usually, on a point that is a map to a finite field) both as an
hint to discard useless pairs and as an hint to decide equality to zero when the
arithmetic test answers “maybe”.

The algorithm can be used in two flavors; in one we discard a pair if the trace
says that it is useless, in the other the pair is not discarded, and we check that
the pair is indeed useless; the trace is only used to decide zero test in uncertain
cases.

The algorithm pre-computes the trace, then performs a loop on it as follows:
the Gröbner basis is accumulated in G, and we assume that an element of G is
uniquely identified by its PP (otherwise the standard modifications are applied);

250

Syzygies and numerical Buchberger algorithm

we assume that every element of G has a leading coefficient such that the zero-
test returns “False”; let (PP1, PP2, PP3) be the trace element under consideration:

• (optional step): If PP3 = NAPP do nothing and return; otherwise

• Take f1, f2 ∈ G having PP1, PP2 as leading PP; compute their S-polynomial,
and reduce it through the elements of G, obtaining g.

• If the leading PP of g is larger than PP3, and its coefficient is maybe-zero,
erase the leading term and repeat.

• If the leading PP of g is larger than PP3 and surely not zero, report a
failure;

• If the leading coefficient of g is maybe-zero, or the leading PP is smaller
than PP3, report a failure;

• otherwise, add g to the basis and continue the loop.

The failures are hence of three types; we have different diagnoses and recoveries
possible:

1. the leading PP anticipated by the trace is smaller than the computed one:

(a) the pilot computation has been performed at a non-generic (unlucky)
point; one can recompute a different pilot computation;

(b) the floating computation experienced a loss of precision mistaking a
zero for a surely non zero element.

2. the leading PP anticipated by the trace is larger than the computed one:

(a) the original problem is not generic;

(b) the floating computation experienced a loss of precision mistaking a
non zero element for a zero.

3. the leading coefficient is maybe zero.

(a) the original problem is not generic;

(b) the floating computation experienced a loss of precision mistaking a
non zero element for a zero;

(c) the indetermination of the floating coefficients is such that different
traces are possible, one has to decide which branch to follow.

The failures 1b, 2b, 3b can be detected with an arithmetic controlling the loss
of precision, e.g. through double-floats; 1a requires to redo the pilot computation;
2a, 3a and 3c require to abandon the trace algorithm, and determine (if possible)
a new family, or resort to completely new ideas, like those exposed in section 6.

Remark that if during the Buchberger algorithm one discovers a potential ba-
sis element whose leading coefficient is maybe zero, there is the possibility of
delaying the decision (i.e. put aside the polynomial, hoping that later another
basis element with a sound leading coefficient can erase it), but otherwise even-
tually the issue has to be decided, either on the zero or on the non-zero side,

251

C. Traverso

possibly forking the computation; indeed, in the original Buchberger algorithm
one has to divide by the leading coefficient (that cannot be invertible if it may
be zero), and in a denominator-free version allowing such a leading coefficient in
a basis element may cause completely wrong results.

5. Overdetermined systems

A very special case, but quite important for applications, is the case of an overde-
termined system, with more equations than unknowns, in which we know that
one root exists. Such systems of equations appear quite frequently, for example
in vision and computer aided design; such systems do not appear frequently in
test collections related to symbolic computation, since they indeed cannot be
handled symbolically. The usual symbolic recipe is to solve an equidetermined
subsystem identifying all the roots, then select the “best” one; the numerical
recipe instead is to add variables and solve a minimum problem.

We can embed our system in the family of all systems having the same support
and at least one root; if all the equations have a constant term, this family is
an irreducible one, since given an explicit root any system can be moved to one
having that root changing the constant. It is easy to find a generic element in
this family with coefficients modulo a prime p.

It is still possible that our algorithm fails, for example if the system has more
roots, but in any case in which a result is obtained then the result is correct, (if
the hypothesis of the existence of a root is correct) and can be checked checking
the root. The root will be approximate, and can be a good starting point of an
iterative numerical solving method.

One such example is the kruppa example in (Mourrain, 1996-2002), being
a system of 6 equations in 5 unknowns. Our algorithm is better than solving
a subsystem, since it involves fewer polynomials and of lower degree, and uses
floating arithmetic instead of a costly exact arithmetic.

6. Special approximate systems and interval arithmetic

Sometimes it may be that we cannot identify a family of which our problem,
imperfectly specified, is a generic element. In that case it is usually important
to find the “most degenerate” member of a family that satisfies a set of initial
constraints. This means that whenever a leading coefficient of a polynomial may
be zero (i.e. its being zero is compatible with the initial constraints) we have
to consider the coefficient as being zero, and add this constraint to the set of
constraints. Remark that this possibility may be indicated by an answer “maybe”
to the zero test, but the arithmetics may give “false maybe” because of different
types of error accumulation.

The initial constraints are usually of the type of an interval in which each
input coefficient lies; it is possible that some input coefficients are exact, while

252

Syzygies and numerical Buchberger algorithm

others are variable in an interval, our analysis will apply to both types, and other
types of constraints too.

In this case, some form of interval arithmetic is needed. In our analysis and
preliminary experiments we have used coefficients composed of a double-float
and an interval enclosing it. The double-float (the central value) is used to give
an answer “yes” to the zero test, and the interval (the confidence interval) is
used to give the answer “maybe” to the zero test; if both fail, the answer is “no”.
To avoid problems with the use of floating arithmetic for the interval ends, in
the case of exact coefficients we take intervals that are very small, but wider
than the smallest interval representable in the arithmetic used.

This said, interval arithmetic is subject to error accumulation, mainly due
to the fact that the associative property is not true: if A, B, C are intervals,
A(B + C) ⊆ AB + AC, and equality is false when B and C have opposite signs
(an interval is positive, or negative, when both endpoints are such; otherwise its
sign is “maybe zero”).

We show how we can reduce the effect of error accumulation, through the use
of syzygies, and how we can validate a “maybe zero” test.

Instead of Buchberger algorithm, we use the extended Buchberger algorithm,
(Caboara and Traverso, 1998), that consists in the following: instead of consid-
ering f1, . . . , fn ∈ k[X] we consider vectors (f1, 1, 0, . . . , 0), . . . (fn, 0, . . . , 0, 1) ∈
k[X]n+1, and in the k[X]-module k[X]n+1 we consider a term-ordering in which
any PP in initial position is larger than any PP in any other position (for mod-
ules, the term ordering is defined on pairs (PP,position)).

In this way, exactly as in the extended euclidean algorithm, every polynomial
computed during Buchberger algorithm is supplemented by a generation, i.e.
a representation g =

∑
φifi; the different representations of 0 obtained are the

syzygies with respect to the input basis, but we are rather interested to the other
elements, in which we represent a non-zero element g; indeed, we are interested
in the case in which the leading coefficient is maybe zero (as interval).

Assume now that fi =
∑

ai,αXα, φi =
∑

bi,βXβ, hence g =
∑

cγX
γ, where

cγ =
∑

i,α+β=γ

ai,αbi,β. (1)

We now regard equations (1) for varying γ as a system of linear equations,
in the indeterminates cγ, bi,β; the system is homogeneous, but some of the bi,β

can be exactly determined as being non zero (coming from S-polynomials), and
some of the cγ are exactly determined as 0.

Of this system we have an approximate solution as intervals, and the highest
of the non-zero cγ (let it be c) is an interval containing zero.

The first step is hence to refine this solution, through interval linear algebra; in
general, the confidence intervals will be narrowed, and it may happen that c has
now a determined sign, hence the “maybe zero” test is resolved to the negative.
The Buchberger algorithm can go on, with the refined confidence intervals.

253

C. Traverso

There is however a second problem: the coefficient matrix has a Toeplitz-like
structure, since although every ai,α is an interval, every ai,α in every equation
cγ = . . . has the same exact real value. It may be that with this further constraint
on the coefficients the realizable interval for cγ is smaller than what can be
computed with interval linear algebra.

We have hence to consider not only the cγ, bi,β as indeterminates, but also
the ai,α. Hence equations 1 are quadratic equations. There are moreover further
constraints given by the Toeplitz-like structure, some of the cγ are zero, and the
initial intervals for the ai,α are further linear constraints.

Assume now that c, that is, as we recall, an interval plus an internal double-
float value, has the internal value positive; then we add a further constraint
c ≥ 0, and we try to minimize c.

If c = 0 is realizable, we kill the leading coefficient of g (we’ll have to keep
track of the additional constraints between the ai,α deriving from this added
constraint when trying to kill other coefficients), otherwise we find an optimal
value for c, i.e. a new lower bound for the coefficient of g, that is proved to be
non zero, and the Buchberger algorithm can continue.

To solve the optimization problem involved in this refinement of the interval
c one might use general methods of quadratic optimization; we are currently
investigating this and other ad-hoc methods.

Another point that can be included in at least some variants of the algorithm,
is that we don’t need to handle the case of a possibly zero leading coefficient
immediately when it appears; it is also possible to delay the decision, hoping
that later another polynomial appears with the same leading term but a better
leading coefficient, with a confidence interval not containing zero. This resembles
a feature of tangent cone algorithm, in which a decision on a simplification is
delayed when it would increase the écart, see (Mora et al. , 1991).

The details of these ideas still have to be worked out completely, and experi-
ments and implementations need to be carried out.

7. Conclusions

We have shown two new algorithms generalizing Buchberger algorithm in a way
that allows to handle inexact input for unstable systems of equations. Both rely
on syzygies, the first generalizes the trace lifting algorithm, has been completely
implemented, has proved to be reliable in some well-known test cases, and will be
available in the next release of the PoSSoLib; for the second, the implementation
has been completed up to the finding of a “may be zero” leading coefficient; but
the handling of this coefficient, with a decision on the realizability of the zero or
on the finding of better confidence intervals through quadratic optimization has
still to be completed.

254

Syzygies and numerical Buchberger algorithm

References

Caboara, M., Traverso, C., Efficient algorithms for ideal operations, ISSAC98,
ACM press (1998)

Gianni, P., Seppälä, M., Silhol, R., Trager, B., Riemann surfaces, plane algebraic
curves and their period matrices, J. Symb. Comput. 26, No.6, 789-803 (1998)

Granlund, T., The GNU multiprecision package, http://www.gmp.org (1991-
2002)

Mora, T., Pfister, G., Traverso, C., An introduction to the tangent cone algo-
rithm, Issues in non-linear geometry and robotics, C. Hoffman, ed., JAI Press
(1991)

Mourrain, B., FRISCO test suite http://www.inria.fr/saga/POL/ (1996-
2002)

Traverso, C., Gröbner trace algorithms, pp. 125-138, ISSAC 88, LNCS 358,
Springer Verlag (1988)

Traverso, C., Groebner bases of of inexactly known instable systems, Workshop
on Under- and Over-Determined Systems of Algebraic or Differential Equa-
tions (ADE), Karlsruhe (2002)

Traverso, C., Zanoni, A., Numerical stability and stabilization of Groebner basis
computation, ISSAC 2002, ACM press, (2002)

255

Comprehensive Gröbner Bases and Regular

Rings

Dedicated to Bruno Buchberger

Volker Weispfenning

Fakultät für Mathematik und Informatik

Universität Passau

D-94030 Passau, Germany

e-mail: weispfen@uni-passau.de

Abstract

Commutative von Neumann regular rings can be viewed as certain sub-
direct products of fields. So in some sense they can code arbitrary sets of
fields. It was shown in 1987 that most of the Gröbner basis theory over
fields initiated by B. Buchberger can be extended to finitely generated ide-
als over commutative von Neumann regular rings. On the other hand the
construction of Comprehensive Gröbner Bases (CGBs) over fields shows
that the Gröbner basis theory over fields can be extended to polynomials
with parametric coefficients. Here we show that there is a surprisingly
close relationship between Comprehensive Gröbner bases over fields and
non-parametric Gröbner bases over commutative von Neumann regular
rings. Thus the latter can be viewed as an alternative to CGBs. More-
over we show that Gröbner bases over commutative von Neumann regu-
lar rings do in fact also cover parametric Gröbner bases over these rings.
These facts offer also new algorithmic perspectives on parametric Gröbner
bases. They form a strong generalization of the earlier results of Y. Sato
and A. Suzuki.

KEYWORDS: comprehensive Gröbner bases, von Neumann regular rings,
uniformity

1. Introduction

For every concept and construction in computer algebra the question of unifor-
mity in the input parameters is of crucial importance both from a theoretical and
practical viewpoint. This applies in particular to the concept of Gröbner bases

256

and their construction via some variant of the Buchberger algorithm. Since their
invention by Bruno Buchberger in 1965 this concept and the associated construc-
tions and applications have turned out to be of central importance in algorith-
mic commutative algebra and algebraic geometry. Concerning the dependency of
Gröbner bases on term orders uniformity has been achieved by the construction
of universal Gröbner bases and the related Gröbner fans Weispfenning [1987a],
Mora and Robbiano [1988]. Concerning the dependency of Gröbner bases on the
coefficients of the input polynomials uniformity has been achieved by the con-
struction of comprehensive Gröbner bases and the associated Gröbner systems
Weispfenning [1992]. In its original version comprehensive Gröbner bases apply
to finite sets of polynomials, whose coefficients are elements of some polynomial
ring K[U1, . . . , Um] in finitely many parameters over a field K and specializations
of the parameters Ui. Recently both the concept and the construction have been
generalized to finite sets of polynomials with coefficients in an arbitrary domain
R and specializations that are arbitrary homomorphisms of R into some field K ′

Weispfenning [2002]. In this general form comprehensive Gröbner bases can be
viewed as coding simultaneously a whole family of Gröbner bases in polynomial
rings over the different base fields arising from all specializations of R.

This flavour of uniformity is also present in the concept of Gröbner bases in
polynomial rings over commutative von Neumann regular rings. In the follow-
ing a regular ring always means a commutative von Neumann regular ring. Up
to isomorphisms these rings are subdirect products of field that are closed un-
der formation of componentwise inverses of elements with the convention that
0−1 = 0. So they also code in some sense all the fields arising as factors in the
subdirect product (compare Saracino and Weispfenning [1975], Loullis [1979] for
more precise versions of this heuristic principle). A construction of Gröbner bases
for ideals in polynomial rings over regular rings R was established in Weispfen-
ning [1987b] and further optimized in Sato [1998]. It is not surprising that these
Gröbner bases code in some sense a whole family of Gröbner bases in the polyno-
mial rings over the fields arising as factors in a subdirect product representation
of R. So if the family of these factor fields is large enough these Gröbner bases
should be able to serve as a replacement for comprehensive Gröbner bases. This
observation was recently made for the classical setting of a ring of multivariate
polynomials over a parameter ring R = K[U1, . . . , Um], where K is a field in
Sato and Suzuki [2002]. They embed R in a natural way into the regular ring

K
K

m

, where K is the algebraic closure of K, by passing from polynomials to
polynomial functions, and then construct in an explicit fashion the regular clo-

sure S of R in the regular ring K
K

m

. Then they show that a Gröbner basis G in
a multivariate polynomial ring over S can serve as a kind of parametric Gröbner
basis for an ideal in a multivariate polynomial ring over R.

Here we investigate the connections between comprehensive Gröbner bases
and Gröbner systems one the one hand side and Gröbner bases over regular
rings in much greater generality. We describe a number of algorithmic transitions

257

between these concepts that show a surprisingly close relationship between both
under very general conditions.

2. Von Neumann Regular Rings and ∗-rings

In this section we review some facts that are presented in detail in Saracino
and Weispfenning [1975]. All rings in this paper will be commutative rings with
1. A ring R is (von Neumann) regular if for every a ∈ R there exists b ∈ R
with a2b = a; a∗ = a · b and a−1 = a · b2 are then uniquely determined by a
and satisfy a · a∗ = a, a · a−1 = a∗ · a∗ is the idempotent of a, a−1 the quasi
inverse of a. B(R) denotes the Boolean algebra of idempotents of R (with the
operations defined by ∼ a = 1 − a, a u b = a · b, a t b = a + b − a · b). Any
regular ring is a ∗-ring, i.e. a ring with an operation a 7−→ a∗ associating with a
the smallest idempotent e = a∗ ∈ B(R) with e ·a = a. Examples of regular rings
(∗-rings) are direct products R of fields (of integral domains), where a−1(a∗) is
the pointwise inverse of a [with 0−1 = 0] (the characteristic function of a). More
generally, any subring of R closed under −1 (under ∗) is a regular ring (a ∗-ring).
Conversely, any regular ring (any ∗-ring) can be canonically represented in this
way as subdirect product of fields (of integral domains):

Let for a ring R Spec(R) denote the prime spectrum of R i. e. the set of all
prime ideals of R, and let Spec(B(R)) be the set of all boolean prime ideals
of B(R). In a ∗-ring R a ∗-ideal of R is an ideal of R that is closed under the
operation ∗. We denote the set of prime ∗-ideals of R by Spec∗(R). In a regular
ring R every ideal is a ∗-ideal, and so Spec(R) = Spec∗(R). Let now R be an
arbitrary ∗-ring. Then the map Spec∗(R) −→ Spec(B(R)), p 7→ p∗ := {a∗ | a ∈
p} = p∩B(R) is a bijection. For given boolean prime ideal q the unique preimage
under this map is q∼ := {a ∈ R | a∗ ∈ q}. As a consequence Spec∗(R) can be
identified with Boolean space Spec(B(R)) of prime ideals of the Boolean algebra
B(R). Then the Stone representation of B(R) extends uniquely to representation
of R as subdirect product of factors Rp := R/p∼, where p ∈ Spec(B(R)). In this
representation, the support of any element of R is a clopen set equal to the
support of a∗ and of a−1. For a subset Q of R and p ∈ Spec(B(R)) we let
κp : R −→ Rp be the canonocal homomorphism, and Qp the image of Q under
κp.

For the present paper, our interest in ∗- rings arises from the following fact:
Let R be a ∗-ring and let S = R[X1, . . . , Xr] be a polynomial ring over
R. Then S is a ∗-ring with B(S) = B(R) and for f ∈ S, f ∗ is the
union of all a∗, where a ranges over the coefficients of f. Morover for all
p ∈ Spec(B(S)) = Spec(B(R)), Sp is canonically isomorphic to Rp[X1, . . . , Xr]
and hence will be identified with this polynomial ring. More generally any
homomorphism σ : R −→ R′ extends canonically to a homomorphism
σ : S −→ R′[X1, . . . , Xr] by applying σ coefficientwise.

Similarly, any module M over a ∗-ring R has a canonical representation as

258

subdirect product of Rp-modules Mp = p∼ · M , where p ∈ Spec(B(R)); this
applies in particular to ideals I of R.

To conclude, we indicate how (countable) regular ground rings R can be
handled computationally: If R is a finite direct product of computable fields,
no problem arises. In other cases, R may frequently be regarded as a regular
subring of the bounded Boolean power K[B] of a computable field K by the
universal countable Boolean algebra B. Then the elements of R are sums
e1k1 + . . . + enkn with ei in B, ki in K. In the canonical representation, the
elements of R are locally constant functions from Cantor space C into K. The
elements of B can be represented as disjoint unions of basic clopen subsets of
C = 2N coded by finite strings of zeros and ones.

3. Gröbner Bases over Regular Rings

For the Gröbner basis theory over regular rings we extend the notation of Becker
et al. [1998] for the Gröbner basis theory over fields:

Let R be a regular ring, let S = R[X1, . . . , Xr] be a polynomial ring over R;
for any p ∈ SpecB(R), we let Sp = Rp[X1, . . . , Xr] be the canonical factor
of the ∗- ring S at p. T denotes the set of terms s, t, t′, . . . , i.e. of power-
products of the indeterminates Xi. Monomials are products a · t with 0 6= a ∈
R, t ∈ T . A monomial a · t occurs in a polynomial f ∈ S if a · t is a summand
in f ; t occurs in f for some 0 6= b ∈ R. For fixed term order < on T we
let HT (f), HM(f), HC(f), HI(f) denote the highest term occuring in f , the
highest monomial occuring in f , the highest coefficient a of f (i.e. the coefficient
of HT (f)), and the highest idempotent a∗ of f , respectively. f is quasimonic if
HC(f) is an idempotent.
The most important fact about term orders and their induced quasiorders is that
both are Noetherian, i.e. do not admit infinite decreasing chains of elements.
This is a well-known consequence of Dickson’s lemma (compare Becker et al.
[1998]. Reduction relations on S (with respect ot a fixed term order < on T)
can be defined verbatim as for polynomials over fields, with inverses replaced by
quasiinverses.

As in the case of polynomials over fields we have:

Theorem 3.1: For any finite list F of non-zero polynomials in S, the reduction
−→

F
is Noetherian.

Corollary 3.1: Let F be a finite list of polynomials in S: Then the following
assertions about the reduction relation −→ mod F are equivalent:

(1) −→ is confluent.

(2) −→ is locally confluent.

259

(3) −→ has the Church-Rosser property.

(4) Every g ∈ S has a unique normal form mod F .

In order to avoid certain problems that do not occur for polynomials over fields
we restrict our attention from now on to Boolean closed sets of polynomials. The
corresponding definitions are as follows: A polynomial q ∈ S is Boolean closed
(b.c.) if q = HI(q) · q. So for any q ∈ S, HI(q) · q is b.c.. We call HI(q) · q the
Boolean closure BC(q) of q, and (1−HI(q))·q the Boolean remainder BR(q) of q.
So for q 6= 0, BR(q) < q and q = BC(q) + BR(q). A finite list Q of polynomials
in S is Boolean closed (b.c.) if every member q of Q is b.c. An easy algorithm
(see Saracino and Weispfenning [1975]) produces from a given finite set Q ∈ S
a finite Boolean closed set BC(Q) in S such that Q and BC(Q) generate the
same ideal in S; moreover for every p ∈ Spec(B(R)) we have Qp = (BC(Q))p.
We call BC(Q) the Boolean closure of Q.

Among the many equivalent definitions of a Gröbner basis for polynomial
ideals over fields, the following is quite natural: A finite list G of polynomials is
a Gröbner basis (GB), if for every f ∈ (G), f

∗

−→
G

0. Wo we take this as definition

of a Gröbner basis in S as well. For finite b.c. sets G, the equivalent definitions
known for polynomials over fields are still valid.

Lemma 3.1: Let G be a finite b.c. set of non-zero polynomials in S, and let −→
be the induced reduction. Then the following assertions are equivalent:

(1) G is a Gröbner basis.

(2) For all 0 6= f ∈ (G), f is reducible mod G.

(3) For all f, g ∈ S, f − g ∈ (G) implies f↓g.

(4) −→ is confluent.

The following characterization (see Saracino and Weispfenning [1975]) of
Gröbner bases G in terms of their images Gp will be of great importance in the
following. It uses essentially the compactness of the Boolean space Spec(B(R)).

Theorem 3.2: Let G be a finite b.c. set of non-zero polynomials in S. Then G
is a Gröbner basis iff for all p ∈ Spec(B(R)), Gp is Gröbner basis in Sp.

4. Comprehensive Gröbner Bases

We begin with a very general definition of comprehensive Gröbner bases.

Definition: Let R be a ring, let R′ = R[X1, . . . , Xn], let < be a term order on
the set T of terms in R′, let Σ be a class of ring, and let G be a finite subset of R′.
Then G is a comprehensive Gröbner basis wrt. < and Σ if for all homomorphisms
δ : R −→ S with S ∈ Σ, δ(G) is a Gröbner basis in S ′ = S[X1, . . . , Xn]. Here
δ : R′ −→ S ′ is the coefficientwise extension of δ and Gröbner bases in S ′ are

260

defined as strong Gröbner bases.
If in addition I is an ideal in R′ and G is a comprehensive Gröbner basis in R′

wrt. <, Σ, then we say G is a comprehensive Gröbner basis of I wrt. <, Σ, if I
is the ideal generated by G in R′. When Σ is the class of fields we may also omit
the reference to Σ.

In almost all cases considered so far in the literature, Σ is the class of fields
(except in Sato and Suzuki [2001], where Σ is the class of regular rings). In
the by now classical case Weispfenning [1992], R is moreover a polynomial ring
K[U1, . . . , Um] over a field or domain K. In Weispfenning [2002] this was gen-
eralized to an arbitrary domain R; this paper also provides a construction of a
comprehensive Gröbner basis from a given finite ideal basis in R′.
On the negative side it was shown in Weispfenning [1992] that for R = Z

an arbitrary term order < and Σ = {Z} there are ideals in R′ that have no
comprehensive Gröbner basis wrt. < and Σ.

Here we note the following positive results:

Theorem 4.1: 1. Let R be a field, R′ = R[X1, . . . , Xn], < a term order on
the set T of terms in R and let G be a Gröbner basis in R′ wrt. < . Then
G is also a comprehensive Gröbner basis wrt. < .

2. Let R be a ring, R′ = R[X1, . . . , Xn], < a term order on the set T of
terms in R and let G be a comprehensive Gröbner basis in R′ wrt. <, and
let H := {ag | g ∈ G, a a coefficient of g}. Then H is a comprehensive
Gröbner basis wrt. < and the class Σ′ of regular rings.

Proof 1.) Since every homomorphism σ of R into a field K is an embeddding,
σ(G) is also a Gröbner basis in K[X1, . . . , Xn], since the Gröbner basis property
is preserved by ground field extensions (see Becker et al. [1998]).
2. Let S be a regular ring, S ′ = S[X1, . . . , Xn], let ϕ : S −→

∏
p∈Spec(S)

S/p be

the canonical representation of S a subdirect product of fields S/p, and let for
q ∈ Spec(S), πq :

∏
p∈Spec(S)

S/p −→ Sq be the projection on the q-th factor. Then

for any homomorphism δ : R −→ S and every p ∈ Spec(S), πp◦ϕ◦δ : R −→ S/p
is a specialization of R into a field S/p and so by our hypotheses πp◦ϕ◦δ(G) is a
Gröbner basis wrt. < in S/p[X1, . . . , Xn]. The same applies to H; moreover δ(H)
is “essentially” boolean closed. Consequently by Weispfenning [1987b], δ(H) is
a Gröbner basis wrt. < in S ′ = S[X1, . . . , Xn]. This proves the theorem.

A comprehensive Gröbner basis of an ideal I in in R′ = R[X1, . . . , Xn] with
respect to a term order < and a class Σ of rings is as a rule constructed via a
Gröbner system. A fairly general definition of such systems is as follows: Let GS
be a finite set of triples (P, Q, F), where P and Q are finite subsets of R, and
F is a finite subset of R′. Then GS is a Gröbner system for I wrt. < and Σ if
for every homomorphism σ : R −→ S with S ∈ Σ there exists at least one triple
(P, Q, F) ∈ GS, such that for all p ∈ P, σ(p) = 0, for all q ∈ Q, σ(q) 6= 0, and

261

σ(F) is a Gröbner basis of the ideal generated by σ(I) in S ′ = S[X1, . . . , Xn].
If moreover for all triples (P, Q, F) ∈ GS, F ⊆ I, then we call GS a faithful
Gröbner system for I wrt. < and Σ. From every faithful Gröbner system for I wrt.
< and Σ a comprehensive Gröbner basis G for I wrt. < and Σ is simply obtained
by putting G = {F | (P, Q, F) ∈ GS}. For non-faithful Gröbner systems this is
not generally true.

5. Connections

In this section we explore the connections between comprehensive Gröbner bases
and Gröbner systems on the one hand and Gröbner bases over regular rings on
the other hand.

We begin with the passage from a comprehensive Gröbner basis to a Gröbner
basis over a regular ring:

Theorem 5.1: Let R be a domain, R′ = R[X1, . . . , Xn], T the set of terms in
R′ and < a term order on T . Let S be an arbitrary regular ring extending R,
let G be a comprehensive Gröbner basis in R′ wrt. <, and let H be the boolean
closure of G in S ′ = S[X1, . . . , Xn]. Then H is a Gröbner basis wrt. < in
S ′ = S[X1, . . . , Xn].

Proof Let S ↪→
∏

p∈Spec(B(S))

Sp be a representation of S as subdirect product

of fields and let κp : Sp denote the canonical homomorphisms. Since each κp |
R : R −→ Sp is a specialization of R, it follows that for the natural extension

κp|R : R[X1, . . . , Xn] −→ Sp[X1, . . . , Xn]

κp|R(G) is a Gröbner basis in Sp[X1, . . . , Xn] for every p ∈ Spec(B(S)). By
a remark above we have moreover that for each p ∈ Spec(B(S)) κp|R(G) =
κp|R(H). Since H is boolean closed, this entails by theorem 3.2, that H is a
Gröbner basis in S ′.

Together with the standard passage from a faithful Gröbner system GS to
the associated comprehensive Gröbner basis G := {F | (P, Q, F) ∈ GS}, this
theorem provides in addition a passage from a faithful Gröbner system to a
Gröbner basis over a regular ring.

The next theorem describes more generally a passage from an arbitrary - not
necessarily faithful - Gröbner system to a Gröbner basis over a regular ring:

Theorem 5.2: Let R be a domain, R′ = R[X1, . . . , Xn], T the set of terms in
R′, < a term order on T, and let I be an ideal in R′. Let S be an arbitrary
regular ring extending R, let GS be a Gröbner system for I in R′ wrt. <, and
let G be obtained from GS as follows:

G =
⋃

(P,Q,F)∈GS

{
∏

h∈P

(1 − h∗)
∏

q∈Q

q∗ f | f ∈ F}

262

Then the Boolean closure H of G in S ′ = S[X1, . . . , Xn] is a Gröbner basis of
the extension ideal J of I wrt. < in S ′ = S[X1, . . . , Xn].

Proof Let again S ↪→
∏

p∈Spec(B(S))

Sp be a representation of S as subdirect

product of fields and let κp : Sp denote the canonical homomorphisms. Let again

κp|R : R[X1, . . . , Xn] −→ Sp[X1, . . . , Xn]

denote the natural extension of κp|R. Call a triple (P, Q, F) ∈ GS good wrt. κp,
if it has the property that for all h ∈ P, κp(h) = 0, for all q ∈ Q, κp(q) 6= 0, and
κp(F) is a Gröbner basis of the ideal generated by κp(I) in Sp[X1, . . . , Xn] wrt.
< . Notice that for all non-good triples (P ′, Q′, F ′) ∈ GS and all f ∈ F we have
κp(

∏
h∈P (1 − h∗)

∏
q∈Q q∗ f = 0. Consequently

κp(G) =
⋃

{κp(F) | (P, Q, F) ∈ GS is good}

is a Gröbner basis of the ideal generated by κp(I) in Sp[X1, . . . , Xn]. ¿From this
fact we conclude as in the previous proof that H is a Gröbner basis in S ′.

The next theorem shows that conversely Boolean closed Gröbner bases over
regular rings are in fact automatically comprehensive Gröbner bases:

Theorem 5.3: Let S be a regular ring, let S ′ = S[X1, . . . , Xn], let T the set of
terms in S ′ and < a term order on T. Let G be a Boolean closed Gröbner basis
in S ′ wrt. < . Then G is also a comprehensive Gröbner basis wrt. < and the
class Σ′ of regular rings.

Proof By theorem 4.1, 2. it suffices to show that G is also a comprehensive
Gröbner basis wrt. < and the class Σ of fields. Let K be a field and let σ : S −→
K be a homomorphism. Then the kernel of σ is a prime ideal in S, and hence
of the form p for some p ∈ Spec(B(R)). Thus the factor ring Sp embeds into
K. Modulo an isomorphism we may assume that in fact σ(S) = Sp ⊆ K. By
theorem 3.2 the image σ(G) is a Gröbner basis in Sp[[X1, . . . , Xn] wrt. <, and
hence also in K[[X1, . . . , Xn] wrt. < by the lemma on ground fields extensions.

This fact can be generalized to arbitrary rings R without nilpotent elements
as ground rings, in particular to domains R :

Corollary 5.1: Let R be a ring without nilpotent elements. We regard R
as subring of

∏
p∈Spec(R) Quot(R/p) via the embedding ϕ mapping r ∈ R to

{r + p | p ∈ Spec(R)}. Let S be the regular closure of R in the regular ring∏
p∈Spec(R) Quot(R/p). Let I be an ideal in R′ = R[X1, . . . , Xn], let J be the ex-

tension ideal of I in S ′ = S[X1, . . . , Xn]. Let < be a term order and let G be
a boolean closed Gröbner basis of J wrt. < in S ′. Then for every specialization
σ : R −→ K, σ(G) is defined and constitutes a Gröbner basis for the ideal
generated by I in K[X1, . . . , Xn].

263

Proof By the fact that R has no nilpotent elements, R embeds indeed
via ϕ into

∏
p∈Spec(R) R/p. So we may regards R as subring of the regu-

lar ring
∏

p∈Spec(R) Quot(R/p), and thus form the regular closure S of R in∏
p∈Spec(R) Quot(R/p). Then it follows from Saracino and Weispfenning [1975]

that for all p ∈ Spec(R), R/p = Sp∗ . Let now K be a field and let σ : R −→ K
be a homomorphism. Then the kernel of σ is a prime ideal in R, and hence in
Spec(R). Thus the factor ring R/p = Sp∗ embeds into K. Modulo an isomor-
phism we may assume as above that in fact σ(S) = Sp∗ ⊆ K. By theorem 3.2
the image σ(G) is a Gröbner basis in Sp∗ [[X1, . . . , Xn] wrt. <, and hence also in
K[[X1, . . . , Xn] wrt. < by the lemma on ground fields extensions.

The main result of Sato and Suzuki [2002] is a essentially a special case of
this corollary. They take R = K[U1, . . . , Um] as a polynomial ring in parameters

Ui over a field K and S as the regular closure of R in the regular ring K
K

m

,
where K is the algebraic closure of K. By Hilbert’s Nullstellensatz this ring can
be taken as a substitute for the ring

∏
p∈Spec(R) Quot(R/p). A central part of

the paper consists then in an explicit construction of the regular closure of R in

K
K

m

.
There is still another variant of this result that under the same hypotheses

provides a passage from G to a Gröbner sytem GS in R′. A Boolean specialization
of B(S) is a Boolean homomorphism σ : B(S) −→ {0, 1}. Boolean specializations
are in one-to-one correspondence to Boolean prime ideals of B(S); so we can
identify the set of Boolean specializations of B(S) with Spec(B(S)).

Corollary 5.2: Assume the hypotheses of the previous corollary. For every
Boolean specialization σ ∈ Spec(B(S)) let σ(G) be obtained by replacing every
idempotent coefficient in a polynomial in G by its image under σ. Then GS :=⋃

σ∈Spec(B(S)) σ(G) is a Gröbner system of J in R′.

Proof Immediate from the previous proof.
Notice that in the last corollary we could also replace Spec(B(S)) by the set

of all maps σ : B(S) −→ {0, 1}. This set is higly redundant but computationally
easier to handle. Notice also that GS is in general not a faithful Gröbner system.
For this to be the case one would need to know that each σ(G) ⊆ J. This is in fact
true if the Gröbner basis G is constructed exactly as described in Weispfenning
[1987b]. Thus in this case, we do in fact obtain algorithmically a comprehensive
Gröbner basis H in R′ from G via the passage through the faithful Gröbner
system GS.

6. Conclusions

We have shown that two apparently unrelated theories, namely comprehensive
Gröbner bases and Gröbner systems on the one hand side, and Gröbner bases
over regular rings are in fact two facets of the same general idea. We have shown
a number of algorithmic constructions leading from a concept of the first kind to

264

an essentially equivalent concept of the second kind, and vice versa. Our results
form a strong generalization of the results in Sato and Suzuki [2000, 2001, 2002]
that connect the two aspects in special situations.

The transitions from one aspect to the other could also provide new ideas on
more effient constructions for Gröbner bases for parametric polynomials.

References

Thomas Becker, Volker Weispfenning, and Heinz Kredel. Gröbner Bases, a Com-
putational Approach to Commutative Algebra, volume 141 of Graduate Texts
in Mathematics. Springer, New York, corrected second printing edition, 1998.

George Loullis. Sheaves and boolean valued model theory. J. Symbolic Logic, 44
(2):153–183, 1979.

T. Mora and L. Robbiano. Gröbner fan of an ideal. Journal of Symbolic Com-
putation, 6:183–208, 1988.

D. Saracino and V. Weispfenning. On algebraic curves over commutative regular
rings. In Model Theory and Algebra, volume 498 of LNM, pages 307–383.
Springer, 1975.

Y. Sato and A. Suzuki. Gröbner bases in polynomial rings over von Neumann reg-
ular rings - their applications. In ASCM’2000, The 4th Asian Symposium on
Computer Mathematics, Lecture Notes Series on Computing, Singapore/River
Edge, December 2000. World Scientific Publ.

Y. Sato and A. Suzuki. Discrete comprehesive Gröbner bases. In B. Mourrain,
editor, ISSAC’2001, pages 292–206, New York, 2001. ACM-Press.

Y. Sato and A. Suzuki. An alternative approach to comprehensive Gröbner
bases. In T. Mora, editor, ISSAC’2002, New York, 2002. ACM-Press.

Yosuke Sato. A new type of canonical Gröbner bases in polynomial rings over
vonNeumann regular rings. In O. Gloor, editor, ISSAC’98. ACM-Press, Au-
gust 1998.

V. Weispfenning. Constructing universal Gröbner bases. In Proceedings AAEEC,
Menorca, volume 356 of LNCS. Springer Verlag, 1987a.

Volker Weispfenning. Gröbner bases for polynomial ideals over commutative
regular rings. In Proceedings: EUROCAL’87 (Leipzig 1987), volume 378 of
Lecture Notes of Computer Science, pages 336–347. Springer, 1987b.

Volker Weispfenning. Comprehensive Gröbner bases. Journal of Symbolic Com-
putation, 14:1–29, July 1992.

Volker Weispfenning. Canonical comprehensive Gröbner bases. In T. Mora,
editor, ISSAC 2002. ACM Press, 2002.

265

An Automated Prover for Zermelo-Fraenkel

Set Theory in Theorema

Wolfgang Windsteiger
∗

RISC Institute

A-4232 Hagenberg, Austria

E-mail: Wolfgang.Windsteiger@RISC.Uni-Linz.ac.at

Abstract

This paper presents some fundamental aspects of the design and the im-
plementation of an automated prover for Zermelo-Fraenkel set theory
within the well-known Theorema system. The method applies the “Prove-
Compute-Solve”-paradigm as its major strategy for generating proofs in
a natural style for statements involving constructs from set theory.

KEYWORDS: Automated Theorem Proving, Set Theory, Theorema

1. Introduction

The set theory prover in Theorema adapts the “Prove-Compute-Solve” (short:
PCS) prove strategy for proofs containing language constructs from set theory.
The PCS paradigm was introduced originally in (3) and it has already been
applied successfully for proofs in elementary analysis in (12). The main strategy
in a PCS-oriented prover is to structure the proof generation into phases of

• proving (P), i.e. application of logical inference rules for propositional con-
nectives and for quantifiers,

• computing (C), i.e. rewriting w.r.t. formulae in the knowledge base,

• solving (S), i.e. instantiation of existential variables.

Having the computer algebra system Mathematica in the background of Theo-
rema, we aim towards applying known solution methods from computer algebra
during the S-phase, such as the Gröbner bases method for systems of algebraic
equations or Collins’ CAD method for systems of inequalities over the reals.

∗This work has been supported by the “SFB Numerical and Symbolic Scientific Computing”
(F013) at the University of Linz and the european union “CALCULEMUS Project” (HPRN–
CT–2000–00102).

266

A Zermelo-Fraenkel Set Theory Prover in Theorema

The current design of provers in the Theorema system requires a so-called
“user prover” to be composed from “special provers” (see (11)). A special prover
consists of a collection of inference rules, whereas the user prover guides the
strategy, through which the proof search procedure applies the inference rules.
Consequently, the set theory user prover consists of a set theory proving unit han-
dling set-theory-related connectives and quantifiers in the goal or in the knowl-
edge base, a set theory computing unit, and a set theory solving unit. In addition
to these set theory specific components, the set theory prover utilizes several
special provers already available in the Theorema system, such as BasicND for
handling basic quantifiers from predicate logic using natural deduction, QR for
rewriting using quantified formulae in the knowledge base, and CDP for applying
case distinction (invented in (4); see (12) for detailed description).

Following the philosophy of most of the Theorema provers, the set theory
prover aims at generating automated proofs in a human-like natural style. Since
many mathematicians are used to building up their theories in the frame of set
theory, computer support for doing proofs in this area of mathematics is a basic
ingredient for computerized mathematics. In our experience, the acceptance of
machine-generated proofs depends heavily on the readability of the proof for
a human. In the automated theorem proving community, however, this aspect
has not played a central role for a long time. Of course, as long as one does
not display the proof, one can expand set-theoretic language constructs into
first-order predicate logic and then apply powerful first-order theorem provers,
like Otter, Vampire, or SPASS. The Theorema set theory prover, on the other
hand, implements proof strategies applied by humans in an attempt to generate
machine-proofs in a style acceptable by a human. Apart from others, this will
have enourmous impact on computer-aided maths education.

The description is structured as follows: Section 2 describes the theoretical
basis upon which the set theory user prover SetTheoryPCSProver is built, Sec-
tion 3 introduces the set theory proving units STP and STKBR, Section 4 describes
the set theory computing unit STC, Section 5 presents the set theory solving unit
STS, and finally we conclude with some examples of proofs generated by the
SetTheoryPCSProver in Section 6.

The relation of this work to Bruno Buchberger’s work is more than obvious
since Bruno Buchberger is the founder and leader of the Theorema project, he
implemented early prototypes of several provers and the entire Theorema system
design and development is based on his experience of more than thirty years of
doing proofs and teaching students how to do proofs. The set theory specific
components of the prover have been developed exclusively by the author in the
frame of (13). More details on implementation and a number of case studies using
the set theory prover can be found in (13). These units have been embedded into
the Theorema system through existing mechanisms developed over the years by
various members of the Theorema working group. Significant contributions from
the author went into language design and the design and implementation of the

267

W. Windsteiger

Theorema rewrite engine, which is applied also during the C-phase in the set
theory prover.

2. The Theoretical Basis for the Set Theory Prover

The use of set theory in Theorema is not tied to one particular axiomatization
of set theory. Instead, we introduce “sets” on the level of the language by pro-
viding the braces ‘{’ and ‘}’ as a flexible arity matchfix function symbol used
for constructing finite sets and the set quantifier. Providing these language con-
structs, we implicitly assume that sets such as {a}, {1, b}, {x |

x

Px} (the set of

all x satisfying Px), or {Tx |
x

Px} (the set of all Tx, when x satisfies Px) actually

exist, which is typically guaranteed by some axioms of the underlying set theory.
There are different approaches, in the Zermelo-Fraenkel axiomatization (ZF) as
described e.g. in (5) the existence of the singleton {a} follows from an axiom
on power sets and the existence of {1, b} follows from the existence of singletons
together with an axiom on unions, whereas in an axiomatization given in (10),
which also follows the spirit of ZF, the existence of {1, b} is guaranteed by an
axiom of pairing and the singleton {a} is then just defined to denote the pair
{a, a}.

A Theorema language construct that deserves closer inspection in this context
is the so-called set quantifier, i.e. the expression {x |

x

Px}, which allows one to

define a set from a property Px ? In the literature, this is often addressed as the
abstraction of a set from a property and it goes back to G. Cantor, the founder of
modern set theory. As explained in (nearly) every introductory course in math-
ematics, the unrestricted use of abstraction soon leads to contradictions such as
the well-known Russel paradox. With R denoting the “Russel-set” {x |

x

x 6∈ x}

it is straight-forward to derive the contradiction R ∈ R ⇔ R 6∈ R. ZF set the-
ory resolves this paradox by imposing a certain structure on the formula Px in
an abstraction {x |

x

Px}, which disallows constructions like R. Von-Neumann-

Gödel-Bernays’ axiomatization (NGB) of set theory (see e.g. (1) or (8)) distin-
guishes between sets and classes and allows the membership predicate only for
sets. Russel’s paradox is avoided by showing that R is not a set an therefore
R ∈ R is not a well-formed assertion. Russel himself introduced types as a way
out by allowing membership only for sets of different type (see (9)). R ∈ R is
not allowed on the grounds that R and R are not of different type.

The Theorema system as such does not force the user into one of the above
mentioned axiomatizations. The Theorema language allows unrestricted use of
both the set quantifier and the membership predicate, therefore allowing both
the definition of R and formulae such as R ∈ R ⇔ R 6∈ R. The set theory prover,
however, relies on ZF and therefore refuses to apply inference rules on formulae
involving constructs such as R. In other words, the Theorema set theory prover

268

A Zermelo-Fraenkel Set Theory Prover in Theorema

does not support all of what the Theorema language offers for set theory. If a
user desires to work e.g. in NGB set theory the Theorema language would allow
this but our set theory prover would not support it.

Among mathematicians using set theory, however, there is a common under-
standing of the intuition behind constructs from set theory, which is more or
less independent of its concrete axiomatization. Following this spirit, we provide
definitions of the basic constructs of set theory supported by the Theorema set
theory prover, which follow the ZF-style of axiomatizing set theory. This should
mean that the consistency of these definitions is guaranteed by axioms of ZF.
Thus, the Theorema set theory prover should be a useful tool for mathemati-
cians embedding their work in some set theory, which is consistent with these
definitions. We do not invent a new set theory that promises to be better suited
for automated theorem proving, an approach that is taken elsewhere, e.g. in (6).

The set theory prover is based on the following definitions†.

Definition:
a ∈ {x |

x∈S

Px} :⇐⇒ a ∈ S ∧ Px→a (1)

a ∈ {Tx |
x∈S

Px} :⇐⇒ ∃
x∈S

(Px ∧ a = Tx) (2)

∅ := {x |
x∈S

x 6= x} (for some set S) (3)

a ∈ {a1, . . . , an} :⇐⇒ a = a1 ∨ . . . ∨ a = an (for n ≥ 1) (4)

a ∈ S1 ∪ . . . ∪ Sn :⇐⇒ a ∈ S1 ∨ . . . ∨ a ∈ Sn (for n ≥ 2) (5)

a ∈
⋃

S :⇐⇒ ∃
s∈S

a ∈ s (6)

⋃
x∈I
Cx

Sx :=
⋃

{Sx |
x∈I

Cx} (7)

a ∈ S1 ∩ . . . ∩ Sn :⇐⇒ a ∈ S1 ∧ . . . ∧ a ∈ Sn (for n ≥ 2) (8)

a ∈
⋂

S :⇐⇒ ∀
s∈S

a ∈ s (9)

⋂
x∈I
Cx

Sx :=
⋂

{Sx |
x∈I

Cx} (10)

S1 ⊆ S2 :⇐⇒ ∀
a

a ∈ S1 ⇒ a ∈ S2 (11)

S1 = S2 :⇐⇒ ∀
a

a ∈ S1 ⇔ a ∈ S2 (12)

We list only the most important definitions. In the concrete implementation,
the prover can handle some more like e.g. cross product, power-set, or set dif-
ference, see (13). When using the Theorema set theory prover one accepts these
definitions and assumes an underlying axiomatic system such as ZF that guar-
antees the existence of all sets defined above.

†
Px→a stands for P with each free occurrence of x substituted by a.

269

W. Windsteiger

2.1. Preliminaries on Terminology

We will use the following terminology in the description of the prove modules: a
proof situation κ ` G is made up from a knowledge base of assumptions κ and a
goal G, and it should be understood as an abbreviation for the phrase: “We have
to prove G from κ”. Typically, the goal will be a single formula of the Theorema
language, whereas the knowledge base consists of a collection of formulae, called
the assumptions.

Now, the task of the special provers is essentially the execution of individual
proof steps that reduce the proof situation, where the rules applied by the special
provers guiding the transformations of proof situations are called inference rules.
Thus, an inference rule turns a proof situation κ ` G into a proof situation
κ
′ ` G′ with a new goal G′ and a new knowledge base κ

′. In the description of
inference rules, we will denote an inference rule named I transforming κ ` G

into κ
′ ` G′ by

I :
κ
′ ` G′

κ ` G

(read as: “The rule I justifies a proof step to reduce the proof of G from κ

to a proof of G′ from κ
′”). This notation is similar to notations used in logic

for describing inference rules in formal prove calculi (e.g. the natural deduction
calculus or the Gentzen calculus). Certain similarities to these formalisms are
desired, but we use it purely as a symbolic description for proof steps, and we
do not refer to any meaning of the symbols in any known logic system.

An example of a well-known inference rule written in this style is

ArbitraryButFixed :
κ ` Px→x0

κ ` ∀
x

Px
(where x0 is a new constant)

meaning that, in order to prove ∀
x

Px (from κ) it suffices to prove Px→x0
(from

κ) for a new constant x0.

3. STP and STKBR: The Set Theory Proving Units

The PCS proof strategy imposes a structure on proofs as alternating phases of
proving, computing, and solving, as already described in Sect. 1. Proving can
in this context be interpreted as eliminating theory-specific language constructs,
in particular eliminating quantifiers. The set theory prover is a prover that can
handle language constructs from set theory in addition to standard predicate
logic. Therefore, it re-uses the special provers available in the Theorema system
for handling propositional connectives and the ∀-quantifier (see (4), (12), and
(13)). Set theory specific proving is covered by the two new special provers STP

and STKBR. During the Prove-phase, we alternate steps of reducing the goal with
steps of expanding the knowledge base. While STP reduces set theory specific

270

A Zermelo-Fraenkel Set Theory Prover in Theorema

language constructs in the proof-goal, STKBR expands them in the knowledge
base.

3.1. Inference Rules used in STP

Set theory specific goal reduction is implemented as a special prover named STP.
As most of the special provers in Theorema, STP implements individual inference
rules as individual function definitions for one overloaded Mathematica function
STP, which differ in the patterns specifying the parameters describing the proof
situation. The choice of which inference rule to apply next, is made by the
global Theorema proof-search procedure. As its main strategy it applies pattern
matching on the current proof situation against proof situation patterns defined
in one of the special provers. A few inference rules are influenced in addition
by global variables used by STP, some strategies depend on the proof progress
stored in STP’s local proof context, which is the third parameter in a call to STP

in addition to the proof-goal and the knowledge base.
The inference rules are grouped into rules for membership, rules for inclusion,

and rules for set equality. The rules for membership contain at least one inference
rule for each “kind of set” introduced in Def. 2.1, in some cases we provide
tailored rules in order to offer special treatment for special cases. We show some
of the membership rules as they are used in STP.

MembershipAbstraction :
κ ` t ∈ s ∧ Px→t

κ ` t ∈ {x |
x∈s

Px}

We give an impression of what the result of this inference rule is in a concrete
example. If, during a concrete proof, the proof search procedure arrives at a proof
situation, where we need to prove a ∈ {x |

x∈s

x < 10} w.r.t. some knowledge

base KB, then the special prover STP would be called in the following format:

STP[•lf["1", a ∈ {x |
x∈s

x < 10}, •finfo[]], •asml[KB], af]

where •lf[. . .] represents the proof-goal labelled “1”, •asml[KB] is the current
knowledge base, and “af” are the additional facts containing among others STP’s
local proof context. Note, that this is not how the user needs to call the prover,
the actual call of the special prover is based on internal data structures, which are
built-up automatically during the proof search. It is the task of the Theorema
User Language (see (13)) to serve as an interface between the user and the
internal data structures as they show up above. The result of this call is the new
proof situation

{"AndNode",

{"MembershipAbstraction", .usedFormulae["1"],

.generatedFormulae[.lf["1’",And[Element[a,s],a<10],.finfo[]]]},

271

W. Windsteiger

{{"ProofSituation", .lf["1’",And[Element[a,s],a<10],.finfo[]],

.asml[kb], af}}, {}, {}, "pending"}

The proof search procedure will insert this node into the Theorema proof object.
The node contains enough information in order to later simplify a successful
proof (object) and to generate the natural language text from it. Note, however,
that it does not contain the natural language text representation itself! When
later generating the proof presentation from a proof object, this step of the proof
would read as follows:
In order to prove (1) we have to show:
(1’) a ∈ s ∧ a < 10.

The correctness of the inference rule “MembershipAbstraction” follows im-
mediately from the definition of set abstraction. Some of the inference rules,
however, condense several inference steps into one compact rule to be applied.
In these cases, we provide hand-proofs for the correctness of the respective rules‡.
An example of such a rule is the elimination of the union-quantifier in the goal.

MembershipUnionOf :

κ ` ∃
x∈s

(t ∈ Sx ∧ Cx)

κ ` t ∈
⋃
x∈s
Cx

Sx

MembershipUnionOf reduces the proof of t ∈
⋃
x∈s
Cx

Sx to prove ∃
x∈s

(t ∈ Sx∧Cx).

Proof: Assume ∃
x∈s

(t ∈ Sx ∧ Cx), thus t ∈ Sx0
∧ Cx0

for some constant x0 ∈ s.

With z := Sx0
we can infer from this t ∈ z ∧ Cx0

∧ z = Sx0
, hence

∃
z

(∃
x∈s

t ∈ z ∧ Cx ∧ z = Sx) . (13)

Separating the quantifiers in (13) gives ∃
z

(t ∈ z ∧ ∃
x∈s

(Cx ∧ z = Sx)), which,

by (2), is equivalent to ∃
z

(t ∈ z ∧ z ∈ {Sx |
x∈s

Cx}). By (6) this is equivalent to

t ∈
⋃
{Sx |

x∈s

Cx}, thus t ∈
⋃
x∈s
Cx

Sx by (7). 2

Set inclusion reduces, by definition, to membership and set equality reduces to
membership. In addition to these reductions, we implemented several inference
rules for special cases that reduce the search depth for the proof search, e.g.

ConjunctionSubset :
proved

κ ` {x |
x

. . . ∧ x ∈ S ∧ . . .} ⊆ S

‡Ideally, the Theorema Predicate Logic Prover should be capable of producing these proofs
when having Def. 2.1 in its knowledge base. Unfortunately, however, some of the definitions,
notably (1), and some inference rules “live” on the language expression level and they refer to
variable substitution, free variables and the like. In its current status, the Theorema language
cannot express these things on the object level!

272

A Zermelo-Fraenkel Set Theory Prover in Theorema

EqualsEmptySet :
κ ` ¬Px→x0

κ ` {Tx |
x

Px} = ∅ where x0 is some new constant,

and some extensions so that the prover can also deal with cardinality and func-
tion properties such as bijectivity. For details see (13).

3.2. The Structure of STKBR

The special prover STKBR (for Set Theory Knowledge Base Rewriting) uses a
level saturation technique (see also (7)), to infer new knowledge from the knowl-
edge base by unfolding definitions of set theoretic language constructs. It differs
drastically from most of the other special provers in the Theorema system in
that it does not implement inference rules as separate definitions for one Math-
ematica function. This “classic” implementation scheme for Theorema special
provers, which introduces one definition per proof situation, is not suitable for
an efficient implementation of a level saturation mechanism, because inferring
new formulae one at the time would result in a massive growth of the required
search depth for the proof search. The STKBR function, instead, is implemented
as just one definition, which produces all possible new formulae during only one
application. This has the advantage, that several inference rules can be applied
in parallel during one STKBR-step instead of adding only one new formula at the
time to the knowledge base.

As a consequence, the STKBR function does not specify the syntactic pattern
of the proof situation in its parameters but it is considered to be applicable to
the current proof situation as soon as new formulae occur in the knowledge base
compared to STKBR’s previous run. This check is done with the help of an entry in
the local proof context that stores the labels of all assumptions that have already
been treated in the preceding saturation level. In case new formulae have been
added to the assumptions, the saturation of the current knowledge level happens
in two phases:

• In a first phase, new formulae are, if desired, simplified by computation
using built-in semantic knowledge available in the Theorema language se-
mantics§, see also STC in Sect. 4. In case this type of simplification is not
desired, this phase can be skipped through a user option in the call of the
prover.

• In a second phase, new knowledge is inferred from the simplified new for-
mulae using inference rules for set theory. These inference rules are again
grouped into two groups,

– Group One containing rules for inferring new knowledge from one
known formula and

§Here we see that STKBR contributes to both the P- and the C-phase, hence, we should not
call it a pure proving unit! For reasons of efficiency we allowed this mixture of P- and C-phase
in one special prover in the current implementation.

273

W. Windsteiger

Knowledge Base: New Formulae
Formulae already handled
in the previous saturation run

Saturated Knowledge Level

Phase one

Phase two

SimplifiedAssumptions

AugmentedKnowledgeBase

NewKnowledgeFromOne NewPairs

NewKnowledgeFromTwo

Join

Figure 1: Schematic flow of the STKBR level saturation

– Group Two containing rules for inferring new knowledge from two
known formulae.

Matching rules from Group One are applied to the simplified new formulae,
matching rules from Group Two are applied to all new pairs of formulae
that can be formed using additionally the simplified new formulae¶.

All formulae generated during these two phases are adjoined to the knowledge
base for the new proof situation. The augmented knowledge base is considered
to contain all knowledge, that can be made available at that point, thus, we call
it a saturated knowledge level. The schematized flow of STKBR level saturation
mechanism is shown in Fig. 1, where the boxed names are the names of the
respective functions in the actual implementation.

Phase one is accomplished by calling the function ‘SimplifiedAssumptions’
with two arguments, the entire knowledge base and a list of labels specifying
that part of the knowledge base that has already been used in the previous
saturation phase. Each formula from the knowledge base, whose label is not
among the handled labels, is sent through the function ‘EvaluateFromProve’,

¶Up to now, no inference rules have been implemented that depend on three formulae. As
soon as such inference rules are needed, we will provide a Group Three of inference rules, which
will be applied to all possible triples of formulae.

274

A Zermelo-Fraenkel Set Theory Prover in Theorema

which computes a simplified version of the formula w.r.t. semantic knowledge
from the Theorema language. ‘EvaluateFromProve’ is the function used also in
the STC module for goal simplification by computation, see Sect. 4. Note, that
‘EvaluateFromProve’ is based on the function ‘EvaluateStandard’, which is the
basic evaluation function for computations using Theorema semantics, which
is used also by Compute, the top-level user function to initiate computations.
This guarantees utmost coherence between all computations happening in the
Theorema system, be it on the user level by calling Compute, be it on the prover
level by doing simplifications on the goal or on the knowledge base.

Phase two is covered in the implementation by the function ‘Augmented-
KnowledgeBase’, which receives two arguments: the simplified knowledge base re-
sulting from phase one and the list of already handled labels as above. ‘NewKnowl-
edgeFromOne’ applies Group One of inference rules componentwise to all new
assumptions, ‘NewKnowledgeFromTwo’ applies Group Two of inference rules to
all new pairs that can be formed using the new assumptions and the results are
added to the knowledge base. The inference rules applied by STKBR can more or
less be read off Def. 2.1, hence we do not list them here.

4. STC: The Set Theory Computing Unit

The Theorema language contains semantics essentially for finite sets, namely

• sets that are constructed using the set braces ‘{’ and ‘}’ as set constructor
applied to finitely many arguments, and

• sets that are constructed using algorithmic versions of the set quantifier (see
also (2)), i.e. set quantifiers with finite and computable range specifications
(see (13)). In particular, integer ranges and set ranges for finite sets are
algorithmic ranges, which lead to finite sets when used in combination with
the set quantifier.

The Theorema semantics enables the construction of finite sets as an enumera-
tion of the (finitely many) elements contained in the set. Set operations (such as
union, intersection, power set, etc.) on finite sets are implemented in a construc-
tive fashion. Proving properties (such as membership, inclusion, or set equality)
of finite sets therefore reduces to testing finitely many cases, which is imple-
mented in the frame of the Theorema language as well.

From the user’s point of view, computation using built-in semantics knowledge
is available in the Theorema system through the top-level user function Compute.
A typical computation involving finite sets is

Compute[{3x |
x∈{1,2,3,4}

is-prime[x]}]

resulting in the finite set {6, 9}.
It is the intention of the STC special prover to integrate the knowledge available

for computations seamlessly into the Theorema proving machinery. Otherwise,

275

W. Windsteiger

all algorithmic knowledge about finite sets needed to be re-implemented inside
the set theory prover, which would make it next to impossible to guarantee
identical behavior in proving and computing. In order to avoid this duplication
of code and knowledge, the STC prover simplifies the goal by sending the formula
to the same evaluation function that is also used in Compute and in STKBR.

Basically, when the STC prover applies to a proof situation, one proof step con-
sists of calling the evaluation function ‘EvaluateFromProve’ (see also Sect. 3.2)
and, in case the result differs from the original form, of adding a node to the
proof object, from which the effect and a complete trace of the computation can
be displayed. Again, the use of ‘EvaluateFromProve’ preserves coherence with
STKBR and Compute. Many details on combining computation with proving can
be found in (13).

5. STS: The Set Theory Solving Unit

The special prover STS collects inference rules for eliminating existential quan-
tifiers‖. Methods used for instantiating existential goals range from matching
against formulae in the knowledge base, over unification and introduction of
solve constants until to employing the Mathematica ‘Solve’ function to obtain
solutions of equational goals. We present only one typical inference rules from
STS.

IntroSolveConstant :

κ ` Qy→y∗ ∧ ∃
x∈s

(Px ∧ y∗ = Tx) ∧ Ry→y∗

κ ` ∃
y

(Qy ∧ y ∈ {Tx |
x∈s

Px} ∧ Ry)

where Qy and Ry are possibly empty conjunctions of formulae and y∗ is a solve
constant.

A solve constant∗∗ is some constant, which we still have to assign a concrete
value. Solve constants are introduced in order to eliminate existential quanti-
fiers by substituting a constant for the quantified variable, where at the moment
of introducing the constant, its concrete value can not yet be determined. For
the proof to succeed, all solve constants that have been introduced must be
eliminated by substituting appropriate ground terms in such a manner that the
resulting formula can be proven. Of course, the strategy after introducing solve
constants must always be to isolate the solve constants, which is typically done
by solving, using methods depending on the nature of the remaining formula.
Applying this strategy reduces proving to solving over various domains, and it

‖In fact, it should contain only the set theory specific part of solving. Since the solving
components in the Theorema system are not yet far-advanced, we started with STS collecting
inference rules for proof situations as they appear in typical proofs in set theory.

∗∗What we call solve constant is often addressed as meta variable by other authors. The
technique of meta variables is well known and used also in other systems. Essentially, it imitates
what a human does when instantiating existential quantifiers, in particular, in the well-known
proof on limits, continuity, etc.

276

A Zermelo-Fraenkel Set Theory Prover in Theorema

offers the possibility to benefit from the great advances that have been accom-
plished in developing powerful solution methods in computer algebra.

The inference rule described above might appear random. It is part of STS

since it applies exactly to proof situations left after expanding membership in a
union, i.e. goals of the form t ∈

⋃
{Tx |

x∈s

Px}. The rule eliminates the outer-

most existential quantifier, but it introduces another existential quantifier. STS
contains further rules, which allow the elimination of the existential quantifier in
this particular and even in other more general situations (see (13)). In addition
to rules introducing solve constants, the STS prover, of course, also contains sev-
eral rules for instantiating solve constants as soon as they appear in an isolated
position.

6. Two Examples of Automatically Generated Proofs

This section contains representative proofs that were generated completely au-
tomatically by the Theorema set theory prover. The optical appearance of the
proofs in the system corresponds exactly to how they are typeset in this paper.

The first example illustrates the interplay between P-, C-, and S-phases in one
proof.
Prove: (G) 36 ∈

⋃
i∈IN

{j2 |
j∈IN

j ≥ i ∧ j ≤ i + 5} under the assumption

(A) ∀
m,n

n > m ⇒ ∃
i

i ≤ n ∧ i ≥ m ∧ i ∈ IN .

In order to show (G) we have to show

(1) ∃
i

36 ∈ {j2 |
j∈IN

j ≥ i ∧ j ≤ i + 5} ∧ i ∈ IN .

In order to prove (1) we have to show

(2) ∃
i

∃
j

j ≥ i ∧ j ∈ IN ∧ j ≤ i + 5 ∧ i ∈ IN ∧ 36 = j2 .

Since j := 6 solves the equational part of (2) it suffices to show

(3) ∃
i

i ∈ IN ∧ 6 ≥ i ∧ 6 ∈ IN ∧ 6 ≤ 5 + i .

Using available computation rules we evaluate (3):

(4) ∃
i

i ≤ 6 ∧ i ≥ 1 ∧ i ∈ IN .

Formula (4), using (A), is implied by:

(5) 6 > 1 .

Using available computation rules we evaluate (5):

(6) True .

277

W. Windsteiger

The derivations of formulae (1) and (2) result from applying STP inference rules
for membership in a union and membership in a set abstraction, respectively.
Reduction of (2) to (3) is accomplished by instantiating j by a solution of a
quadratic equation done in STS. Simplifications from (3) to (4) and from (5) to
(6) were made using available semantic knowledge by STC (6 ∈ IN and 6 > 1,
respectively) and, finally, reduction from (4) to (5) and the detection of proof
success were made by standard predicate logic inference rules.

The second example is taken from the set theory section of the TPTP library.
Prove: (G) B \ (C ∩ D) = (B \ C) ∪ (B \ D) .

⊆: We assume
(1) B1 ∈ B \ (C ∩ D)

and show
(2) B1 ∈ (B \ C) ∪ (B \ D) .

From (1) we can infer
(3) B1 ∈ B

(4) B1 6∈ C ∩ D .

From (4) we can infer
(5) B1 6∈ C ∨ B1 6∈ D .

In order to prove (2) we may assume

(6) B1 6∈ B \ D

and show
(7) B1 ∈ B \ C

From (6) we can infer
(8) B1 6∈ B ∨ B1 ∈ D .

We have to prove (7), thus, we first show:

(9) B1 ∈ B :

Formula (9) is true because it is identical to (3).
For proving (7) it still remains to show

(10) B1 6∈ C :

From (3) and (8) we obtain

(11) B1 ∈ D .

From (5) and (11) we obtain

(12) B1 6∈ C .

278

A Zermelo-Fraenkel Set Theory Prover in Theorema

Formula (10) is true because it is identical to (12).
⊇: Now we assume (2) and show (1).
From (2) we can infer

(13) B1 ∈ B \ C ∨ B1 ∈ B \ D .

We have to prove (1), thus, we first have to show

(14) B1 ∈ B .

(We skip the proof of (14). It quickly succeeds by case distinction based on (13).)
For proving (1) it still remains to show:

(15) B1 6∈ C ∩ D .

Assume
(16) B1 ∈ C ∩ D

From (16) we can infer
(17) B1 ∈ C

(18) B1 ∈ D .

Case (13.1) B1 ∈ B \ C:
From (13.1) we can infer

(19) B1 ∈ B

(20) B1 6∈ C .

(17) and (20) are contradictory.
Case (13.2) B1 ∈ B \ D:
From (13.2) we can infer

(21) B1 ∈ B

(22) B1 6∈ D .

(18) and (22) are contradictory. 2

The computation time for proof generation, simplification and display is ap-
prox. 6 seconds on a 400 MHz Linux machine. The proof of the same theorem
in Otter did not finish within 300 seconds on the same hardware.

References

[1] P. Bernays and A. Fraenkel. Axiomatic Set Theory. Studies in Logic and
the Foundations of Mathematics. North-Holland Publishing Company, 2
edition, 1968.

[2] B. Buchberger. Mathematics: An Introduction to Mathematics Integrating
the Pure and Algorithmic Aspect. Volume I: A Logical Basis for Mathe-
matics. Lecture notes for the mathematics course in the first and second
semester at the Fachhochschule for Software Engineering in Hagenberg, Aus-
tria, 1996.

279

W. Windsteiger

[3] B. Buchberger. The PCS Prover in Theorema. In R. Moreno-Diaz, B. Buch-
berger, and J. Freire, editors, Proceedings of EUROCAST 2001 (8th Inter-
national Conference on Computer Aided Systems Theory - Formal Methods
and Tools for Computer Science), Lecture Notes in Computer Science 2178,
2201, pages 469–478. Springer, Berlin - Heidelberg - New York, 2001.

[4] B. Buchberger and D. Vasaru. The Theorema PCS Prover. Jahrestagung
der DMV, Dresden, September 18-22, 2000.

[5] H. Ebbinghaus. Einführung in die Mengenlehre. Wissenschaftliche Buchge-
sellschaft Darmstadt, 2 edition, 1979. ISBN 3-534-06709-6.

[6] A. Formisano. Theory-based resolution and automated set reasoning. PhD
thesis, Universita degli Studi di Roma “La Sapienza”, 2000.

[7] B. Konev and T. Jebelean. Combining Level-Saturation Strategies and
Meta-Variables for Predicate Logic Proving in Theorema. In Proceedings of
IMACS ACA 2000, St.Petersburg, Russia, June 2000.

[8] W. Quine. Set Theory and its Logic. Belknap Press of Harvard University
Press, Cambridge, Massachusetts, 1963.

[9] B. Russell and A. Whitehead. Principia Mathematica. Cambridge Univer-
sity Press, 1910. Reprinted 1980.

[10] G. Takeuti and W. Zaring. Introduction to Axiomatic Set Theory. Graduate
Texts in Mathematics 1. Springer Verlag, 1971. ISBN 0-387-05302-6.

[11] E. Tomuta. An Architecture for Combining Provers and its Applications
in the Theorema System. PhD thesis, The Research Institute for Symbolic
Computation, Johannes Kepler University, 1998. RISC report 98-14.

[12] D. Vasaru-Dupré. Automated Theorem Proving by Integrating Proving, Solv-
ing and Computing. PhD thesis, RISC Institute, May 2000. RISC report
00-19.

[13] W. Windsteiger. A Set Theory Prover in Theorema: Implementation and
Practical Applications††. PhD thesis, RISC Institute, May 2001.

††http://www.risc.uni-linz.ac.at/people/wwindste/Public/Reports/PhdThesis

280

Author Index

Ajwa, I.A. 13

Barendregt, H. 3
Beeson, M. 24
Beth, T. 39
Bokut, L. 48
Borges-Quintana, M. 61
Borges-Trenard, M. A. 61
Broy, M. 4
Buchberger, B. 9

Carra’ Ferro, G. 70
Castro-Jiménez, F. J. 81
Cioffi, F. 97

DePauli-Schimanovich, W. 108

Engl, H. W. 217

Gerritzen, L. 123
Gianni, P. 138

Heiß, W. 147

Menzel, W. 162
Mnuk, M. 177
Mora, T. 187
Müller-Quade, J. 39

Nakagawa, K. 202

Oberst, U. 147
Orecchia, F. 97

Pauer, F. 147
Pérez-Rosés, H. 61

Rosenkranz, M. 217

Sasaki, T. 231
Scott, D. S. 6
Steinwandt, R. 39
Stephan, F. 162
Sugimoto, T. 231

Takahashi, Y. 231
Trager, B. 138
Traverso, C. 244

Ucha, J. M. 81

Vesnin, A. 48

Wang, P.S. 13
Weispfenning, V. 256
Windsteiger, W. 266
Wolfram, S. 7

Zeilberger, D. 8

