
Verification of Simple Recursive Programs in
Theorema: Sufficient Conditions

Nikolaj Popov and Tudor Jebelean ?

Research Institute for Symbolic Computation,
University of Linz, Austria

popov@risc.uni-linz.ac.at

Abstract. We report work in progress concerning the theoretical basis
and the implementation in the Theorema system of a methodology for the
generation of verification conditions for recursive procedures, with the
aim of practical verification of recursive programs. We develop a method
for proving total correctness properties of programs which have simple
functional recursive definitions, and we discuss its different aspects. Most
of the verification conditions are expressed in first order logic and their
proof does not need a theory of computation, but only the knowledge
which is specific to the functions occuring in the program.

Introduction

We discuss here a practical approach to automatic generation of verification
conditions for functional recursive programs. The implementation is part of the
Theorema system, and complements the research performed in the Theorema
group on verification and synthesis of functional algorithms based on logic prin-
ciples [Buc03a,Buc03b,Pop03].

We consider the correctness problem expressed as follows: given the program
(by its source text) which computes the function F and given its specification by
a precondition on the input IF and a postcondition on the input and the output
OF , generate the verification conditions which are [minimally] sufficient for the
program to satisfy the specification.

For simplifying the presentation, we consider here the “homogeneous” case:
all functions and predicates are interpreted over the same domain. Proving the
verification conditions will require the specific theory relevant to this domain and
to the auxiliary functions and predicates which occur in the program.

The functional program of F can be interpreted as a set of predicate logic
formulae. By correctness of the program we mean both partial correctness (1)
and termination (2):

(∀x ∈ D) (IF [x] ∧ F [x] ↓ =⇒ OF [x, F [x]]), (1)
? The program verification project in the frame of e-Austria Timişoara is supported by

BMBWK (Austrian Ministry of Education, Science and Culture), BMWA (Austrian
Ministry of Economy and Work) and MEC (Romanian Ministry of Education and
Research). The Theorema project is supported by FWF (Austrian National Science
Foundation) – SFB project P1302.



(∀x ∈ D) (IF [x] =⇒ F [x] ↓), (2)

where the ↓ is the predicate expressing termination. As one sees, (3) is a logical
consequence of (1) and (2), but not the vice versa (for example IF and OF are
true but F never terminates, i.e. F [x] ↓ is false for any x.

(∀x ∈ D) (IF [x] =⇒ OF [x, F [x]]), (3)

In order for the program to be correct, the correctness formula (3) must be
a logical consequence of the formulae corresponding to the definition of the
function (and the specific theory). Additionally, one needs to ensure termination,
which we study for a certain class of problems.

The method presented in this paper generates several verification conditions,
which are easier to prove. In particular, only the termination condition needs an
inductive proof, and this termination condition is ”reusable”, because it basically
expresses an induction principle which may be useful for several programs. This is
important for automatic verification embedded in a practical verification system,
because it leads to early detection of bugs (when proofs of simpler verification
conditions fail).

Moreover, the verification conditions are provable in the frame of predicate
logic, without using any theoretical model for program semantics or program
execution, but only using the theories relevant to the predicates and functions
present in the program text. This is again important for the automatic veri-
fication, because any additional theory present in the system will significantly
increase the proving effort.

We start by developing a set of rules for generating verification conditions,
for programs having a particular structure. The rules for partial correctness are
developed using Scott induction and the fixpoint theory of programs, however the
verification conditions themselves do not refer to this theory, they only state facts
about the predicates and functions present in the program text. In particular, the
termination condition consists in a termination property of a certain simplified
version of the original program.

We consider programs, defined in a domain D, like naturals N, reals R etc.
For the purpose of our study, we extend the domain D to a new domain D∪{⊥},
where ⊥ is an additional symbol for expressing the nonterminating constant.
In the extended domain the programs F are functions from D ∪ {⊥} → D ∪
{⊥}. The predicates Q which are used in the programs, become functions from
D ∪ {⊥} → {T,F} ∪ {⊥}. The unary predicate ↓ is defined by the formula:
(∀n)(n ↓⇐⇒ n 6= ⊥) Here we make the natural assumption: For any function F
F [⊥] = ⊥.

In addition we will need the nowhere defined function Ω which is defined as
(∀d)(Ω[d] = ⊥).

We say that a function f is total with respect to a precondition I if and only
if (∀d ∈ D)(I[d] =⇒ f [d] ↓)

We will use the restricted graph function defined as

(∀f)(RGraph[f ] = {〈x, y〉 : f [x] = y ∧ y ↓}).



We approach the correctness problem by splitting it into two parts: partial
correctness (prove that the program satisfies the specification provided it ter-
minates), and termination (prove that the program always terminates). Prov-
ing partial correctness may be achieved by Scott induction [dBDS69], [Sie87],
[Man74], [Sto77], [Gun92].

Simple Recursive Programs

We define here a class of recursive programs, defined by the program scheme (4).
A program defined by (4) is called simple recursive program.

Given a domain D, let (4) be the program for a function F :

(∀x ∈ D) F [x] = If Q[x] then S[x] else C[x, F [R[x]]], (4)

where Q is a predicate on D and S,C, and R are auxiliary functions (S is a
“simple” function whose definition does not use F , C is a “combinator” function,
and R is a “reduction” function).

We consider only the scheme when the functions F , S andR and the predicate
Q are of arity 1 and the function C of arity 2. However, if D is a vector domain,
then different arities will be treated by the same method (see the example of
rem (30)).

Considering the fixpoint theory [Man74,Sto77,Gun92], we look at program
definitions as definitions of operators. The programs are functions, defined by
the least fixpoint of the corresponding operators. In our case, the operator Γ
corresponding to (4), is

λF.λx. If Q[x] then S[x] else C[x, F [R[x]]], (5)

The finite approximations of Γ are defined recursively as follows:

F0 = Ω

Fn = Γ [Fn−1].

The least fixpoint FΓ of Γ is defined as the union of the finite approximations

FΓ =
⋃
n

Fn. (6)

From this prospective, it is easy to see how Scott induction principle works. Let
φ be a property on functions such that

– φ[Ω] holds;
– φ[f ] =⇒ φ[Γ [f ]] holds for any f ;
then we can infer φ[FΓ ].
As it is known, not every property φ is admissible. However, properties which

express partial correctness (7) are known to be admissible. A property φ is said
to be partial Correctness property if and only if there are predicates I and O,
such that:

(∀f)(φ[f ] ⇐⇒ (∀a)(f [a] ↓ ∧I[a] =⇒ O[a, f [a]])). (7)



Partial Correctness

Here we present the Partial Correctness Verification Conditions and we prove
their sufficiency for the program (4) to be partially correct.

Now, we make several assumptions which we will use till the end of this pa-
per. Given a domain D, let (4) be a simple recursive program computing the
function F . Let IF [x], OF [x, y] be the precondition and the postcondition of F .
Let IS [x], OS [x, y], IC [x, y], OC [x, y, z], IR[x], OR[x, y] be the preconditions and
the postconditions of the auxiliary functions. Assume that the correctness for-
mula holds for each of them, i.e., the total correctness of the auxiliary functions
is assumed. In this case, the following statement holds:

Lemma 1. If the following three formulae:

(∀x ∈ D) (IF [x] ∧Q[x] ∧ S[x] ↓ =⇒ OF [x, S[x]]) (8)

(∀x ∈ D) (IF [x] ∧ ¬Q[x] ∧R[x] ↓ =⇒ IF [R[x]]) (9)

(∀x ∈ D) (IF [x] ∧ C[x, F [R[x]]] ↓ ∧¬Q[x] ∧OF [R[x], F [R[x]]] =⇒
OF [x,C[x, F [R[x]]]]) (10)

are valid, then the program (4) is partially correct, that is (1) holds.

Proof. Assume that (8), (9) and (1) hold. Consider the following property:

(∀f)(φ[f ] ⇐⇒ (∀a)(f [a] ↓ ∧IF [a] =⇒ OF [a, f [a]])).

It is a partial correctness property and we apply Scott induction for inferring
φ[F ].

–φ[Ω] holds.
–Assume φ[f ] for some f , that is

(∀a)(f [a] ↓ ∧IF [a] =⇒ OF [a, f [a]]). (11)

Show φ[f ′], where f ′ = If Q[x] then S[x] else C[x, F [R[x]]], that is

(∀a)(f ′[a] ↓ ∧IF [a] =⇒ OF [a, f ′[a]]). (12)

Take arbitrary but fixed a and assume that f ′[a] ↓ and IF [a].
a)case: Q[a]. So, we have f ′[a] = S[a]. From f ′[a] ↓, we obtain that S[a] ↓.

From here, by (8) we obtain OF [a, S[a]]) and so OF [a, f ′[a]]).
b)case: ¬Q[a]. So, we have f ′[a] = C[a, f [R[a]]]. From f ′[a] ↓, we obtain that

C[a, f [R[a]]] ↓ (13)

f [R[a]] ↓ (14)

R[a] ↓ . (15)

From IF [a], by (9), we obtain IF [R[a]]. From here and (14), by (11) we obtain
that OF [R[a], f [R[a]]]. From here, by (1), we obtain OF [a,C[a, f [R[a]]]] and
hence OF [a, f ′[a]].

From here we infer that the property φ holds for the least fixpoint F , hence
(1) holds.



Termination

Here we present the Termination Verification Conditions and we prove their
sufficiency for the program (4) to terminate. In addition to the assumptions
from the beginning of the previous section, we assume that (8), (9) and (1) hold.

The following lemma expresses that for an input a, if there exists a finite
number n of applications of R to a, such that Q holds then F terminates on a.

Lemma 2. If the following three formulae:

(∀x ∈ D) (IF [x] ∧Q[x] =⇒ IS [x]) (16)

(∀x ∈ D) (IF [x] ∧ ¬Q[x] =⇒ IR[x]) (17)

(∀x ∈ D) (IF [x] ∧ ¬Q[x] ∧OF [R[x], F [R[x]]] =⇒ IC [x, F [R[x]]]) (18)

hold, then

(∀x ∈ D) (IF [x] =⇒ (∃n ∈ N)(Q[Rn[x]] =⇒ F [x] ↓))

holds as well.

Proof. Assume that (16), (17) and (18) hold. Assume, also a ∈ D, IF [a] and
Q[Rn[a]] for some n ∈ N.

1)case: n = 0. This means that Q[a] and hence F [a] = S[a]. From here and
(16) by knowing that S is totally correct, we obtain that S[a] ↓, which implies
F ′[a] ↓ .

2) case: n > 0. Assume that n is the first such that Q[Rn[a]], that is ¬Q[Ri[a]]
for any 0 ≤ i < n.
Using induction on i, we will show that F [Rn−i[a]] ↓ andOF [Rn−i[a], F [Rn−i[a]]].

a) Base case: i = 0.
F [Rn−i[a]] = F [Rn[a]] = S[a], hence F [Rn−i[a]] ↓.
From IF [a] and ¬Q[Ri[a]] for any 0 ≤ i < n, by (9) we obtain IF [R[a]], ...

IF [Rn[a]].
From IF [Rn[a]] and Q[Rn[a]] by (16) we obtain IS [Rn[a]]. From here, by

knowing that S is totally correct, we obtain that S[Rn[a]] ↓, which implies
F [Rn−0[a]] ↓ .

From here and Q[Rn[a]], by (8) we obtain OF [Rn[a], F [Rn[a]]].
b) Induction step: i > 0.
Assume that F [Rn−i[a]] ↓ and OF [Rn−i[a], F [Rn−i[a]]].
F [Rn−(i+1)[a]] = F [Rn−i−1[a]] = C[Rn−i−1)[a], F [R[Rn−i−1[a]]]] =

= C[Rn−i−1)[a], F [Rn−i[a]]]
From the induction hypothesis, by (18) we obtain IC [Rn−i−1)[a], F [Rn−i[a]]].

From here, by knowing that C is totally correct, we obtain that
C[Rn−i−1)[a], F [Rn−i[a]]] ↓, which implies F [Rn−i−1[a]] ↓.

From here, by (8) we obtain OF [Rn−i−1[a], F [Rn−i−1[a]]], which completes
the proof of the lemma.



Here we define a new program F ′ and we call it “Simplified version of F”.

(∀x ∈ D) F ′[x] = If Q[x] then 0 else F [R[x]] (19)

The following lemma expresses that the termination of the simplified version
F ′ on an input a, ensures that there exists a finite number n of applications of
R to a, such that Q holds.

Lemma 3.

(∀x ∈ D) (IF [x] ∧ F ′[x] ↓ =⇒ (∃n ∈ N)(Q[Rn[x]])).

Proof. By contradiction.
Take arbitrary but fixed a and assume IF [a].
Assume F ′[a] ↓ and (∀n ∈ N)(¬Q[Rn[a]]).
From here we obtain that F ′[a] 6= ⊥ and hence ∃b ∈ D)(〈a, b〉 ∈ RGraph[F ′]).
Let f0, f1, ... fm are the finite approximations of F ′, i.e., F ′ =

⋃
i fi.

From 〈a, b〉 ∈ RGraph[F ′] = RGraph[
⋃
i fi] follows

(∃k > 0)(〈a, b〉 ∈ RGraph[fk]) (k > 0 because a, b 6= ⊥). From here, we obtain
that fk[a] = b which implies fk[a] 6= ⊥. By the definition
f ′k[a] = If Q[a] then 0 else fk−1[R[a]]. From (¬Q[[a]]) (it is so, because we
have (∀n ∈ N)(¬Q[Rn[a]])), we obtain fk[a] = fk−1[R[a]]. Since fk[a] ↓, we
have fk−1[R[a]] ↓. Applying the same reason k times, we obtain that fk[a] =
fk−k[Rk[a]] and hence fk−k[Rk[a]] ↓. This contradicts to the definition of f0 = Ω.

The next statement gives the Termination Verification Conditions. It basi-
cally expresses that if all the calls to the auxiliary functions obey their input
conditions and in addition the simplified version terminates, then the main pro-
gram terminates as well.

Lemma 4. If (16), (17), (18) and

(∀x ∈ D) (IF [x] =⇒ F ′[x] ↓) (20)

are valid, then the program (4) terminates, that is (2) holds.

Proof. Assume that (16), (17), (18) and (20) hold. Take arbitrary but fixed a
and assume IF [a].

a)case: Q[a]. So, we have F [a] = S[a]. From (16) follows IS [a], hence S[a] ↓
and F [a] ↓.

b)case: ¬Q[a]. So, we have F [a] = C[a, F [R[a]]]. It suffices to prove that
(1) R[a] ↓
(2) F [R[a]] ↓
(3) C[a, F [R[a]]] ↓
Prove (1): From IF [a] and ¬Q[a] by (17), we obtain R[a] ↓.
Prove (2): It follows by Lemma 2.
Prove (3): From IF [a] and ¬Q[a] by (9), we obtain IF [R[a]]. From this and

F [R[a]] ↓ by the partial correctness of F , we obtain OF [R[a], F [R[a]]]. From
here, by (18), we obtain C[a, F [R[a]]] ↓.



Total Correctness

Here we present the Total Correctness Verification Conditions which are obtained
as a combination of the Partial Correctness and the Termination Verification
Conditions. This a “Soundness” theorem, because it ensures that the correctness
of the Verification Conditions implies the correctness of the program.

Theorem 1. If the following seven formulae:

(∀x ∈ D) (IF [x] ∧Q[x] =⇒ OF [x, S[x]]) (21)

(∀x ∈ D) (IF [x] ∧ ¬Q[x] =⇒ IF [R[x]]) (22)

(∀x ∈ D) (IF [x] ∧ ¬Q[x] ∧OF [R[x], F [R[x]]] =⇒ OF [x,C[x, F [R[x]]]]) (23)

(∀x ∈ D) (IF [x] ∧Q[x] =⇒ IS [x]) (24)

(∀x ∈ D) (IF [x] ∧ ¬Q[x] =⇒ IR[x]) (25)

(∀x ∈ D) (IF [x] ∧ ¬Q[x] ∧OF [R[x], F [R[x]]] =⇒ IC [x, F [R[x]]]) (26)

(∀x ∈ D) (IF [x] =⇒ F ′[x] ↓) (27)

are valid, then the program (4) is totally correct, that is (3) and (2) hold.

Proof. Assume that (21), (22), (23), (24), (25), (26) and (27) hold. First we show
termination. From here, by Lemma 4 we obtain that (2) holds.

Now we show partial correctness. From (21) follows (8). From (22) follows
(9). From (23) follows (1). From here, by Lemma 1 we obtain (1) and by (2)
obtain (3), which completes the proof of the theorem.

As one sees, all the verification conditions without the last one, are first order
predicate logic formulae. The proof of their validity would involve only the theory
of the domain D, without any additional knowledge concerning computation, ⊥
etc.

An alternative to (27) is the following verification condition:

(∀x ∈ D) (IF [x] =⇒ (∃n ∈ N)(Q[Rn[x]])). (28)

However, we prefer to keep (27), because it is more intuitive. Moreover, it
might be used in the following manner: We form a set of F ′–like functions whose
termination is proven (or assumed as axioms). Then, whenever we need to prove
(27), we first check for membership to this set. If yes, then we are done. If not,
we try to prove it separately. Within this proof, we may replace (27) by its
alternative form (28), and prove it as first order predicate logic formula. Once
we manage, we add it to the set.

The so formed set plays a very important from the automatic theorem proving
point of view role, because its elements are reusable. For example, (29) is the
simplified version of all the primitive recursive programs on one argument.

Prim[x] = If x = 0 then 0 else Prim[x− 1], (29)

with: D = N and IPrim[x] ⇐⇒ T.



Examples

For better understanding, we give here an example of a program and its speci-
fication and we show the verification conditions.

Consider the following program:

rem[x, y] = If x < y then x else rem[x− y, y] (30)

The specification of rem is: The domain D = N
2, the precondition

Irem[x, y] ⇐⇒ y > 0

and the postcondition

Orem[x, y, z] ⇐⇒ (∃q ∈ N)(x = z + y ∗ q ∧ z < y).

The (automatically) generated verification conditions for the total correctness
of the function rem are:

(∀x, y ∈ N) (y > 0 ∧ x < y =⇒ (∃q ∈ N)(x = x+ y ∗ q ∧ x < y))
(∀x, y ∈ N) (y > 0 ∧ x ≥ y =⇒ (y > 0)
(∀x, y, b ∈ N) (y > 0 ∧ x ≥ y ∧ (∃q ∈ N)(x− y = b+ y ∗ q ∧ b < y) =⇒

(∃q ∈ N)(x = b+ y ∗ q ∧ b < y))
(∀x, y ∈ N) (y > 0 ∧ x < y =⇒ T)
(∀x, y ∈ N) (y > 0 ∧ x ≥ y =⇒ T)
(∀x, y ∈ N) (y > 0 ∧ x ≥ y ∧ (∃q ∈ N)(x− y = b+ y ∗ q ∧ b < y) =⇒ T)
(∀x, y ∈ N)(y > 0 =⇒ F ′[x, y] ↓,

where
F ′[x, y] = If x < y then 0 else F ′[x− y, y].

Here the symbol T stands for the logical constant true. In the example the
preconditions of all the auxiliary functions are T.

If we manage to proof the verification conditions, then we are sure that the
program meets its specification.

Note that, although the functions rem and − and the predicate < have arity
2, the program scheme is still (4), by taking D = N

2.

Conclusions and Further Work

The problem of verifying recursive programs having certain shape we transfer
into a problem of proving first order predicate logic formulae by generating
verification conditions.

Starting from the most elementary recursive scheme (simple recursion (4)),
we are investigating in more general schemes in our ongoing work. Among the
immediately coming steps, one needs to mention:



– Recursive schemes having multiple recursive calls;
– Recursive schemes having more then one else branch;
– Corecursive schemes.
Another direction we are investigating, is proving the generated verification

conditions by the Theorema system in a fully automatic manner. Moreover, the
concrete proof problems are used as test cases for our provers and for experi-
menting with the organization of the mathematical knowledge.

References

[Buc03a] A. Craciun; B. Buchberger. Functional Program Verification with Theo-
rema. In CAVIS-03 (Computer Aided Verification of Information Systems),
Institute e-Austria Timisoara, February 2003.

[Buc03b] B. Buchberger. Verified Algorithm Development by Lazy Thinking. In IMS
2003 (International Mathematica Symposium), Imperial College, London,
July 2003.

[dBDS69] J. W. de Bakker; D. Scott. A Theory of Programs. In IBM Seminar, 1969.
Vienna, Austria, 1969.

[Gun92] C. Gunter. Semantics of Programming Languages: Structures and Tech-
niques. MIT Press, 1992.

[Man74] Z. Manna. Mathematical Theory of Computation. McGraw-Hill Inc., 1974.
[Pop03] T. Jebelean; L. Kovacs; N. Popov. Verification of Imperative Programs

in Theorema. In 1st South-East European Workshop in Formal Methods
(SEEFM03), 2003. Thessaloniki, Greece, 20 November 2003.

[Sie87] J. Loeckx; K. Sieber. The Foundations of Program Verification. Teubner,
second edition, 1987.

[Sto77] J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach. MIT
Press, 1977.


