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Abstract: In this paper we rebuild the discriminant sequence of a polynomial with
indeterminates in the framework of the subresultant and polynomial remainder
sequences. In section 3 we prove an invariance property of discriminants. In section
4 we show an example to construct new inequalities using discriminants.
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§ 1. Introduction

Many problems about automated proving for inequalities concerning certain real
geometric configurations lead to finding the real zeros of a system of polynomials.
Sometimes we need only to examine the existence of real zeros. As there are various
elimination methods to transform a system of polynomial in general form to a

triangular form:

fi(x) =0,
Sfr(x,x,) =0,

S (x,xy,000,x,) =0,
it is of the first importance to clarify the structure of a univariate polynomial. For a
polynomial with constant coefficients, using the well-known Sturm’s Theorem and
Euclidean successive polynomial division can easily do this. Contrarily if the

coefficients are indeterminates or polynomials, say,
L) =a,x +a, x" +-+ax +a,

and a,,a, ,,"-,a,,a, eR[ul,uz,---,uS],then the Euclidean successive polynomial

division cannot be performed in the coefficient domain. In this case, there are



classical works on computing polynomial remainder sequences of two polynomials
through subresultant chain (see [1-4], [6] and [7]). This makes it possible to
construct a Sturm sequence via the subresultants of a polynomial and its derivative
in a recursive way, and then compute the number of real roots for the polynomial by
counting the variation in signs of the leading coefficients of the obtained Sturm
sequence(see [5] for an example). This process becomes much complicated if the
subresultant chain is defective. It would be more convenient if one could simply take
the principal subresultants coefficients for counting the variation in signs. This idea
is actually feasible. Yang Lu and his cooperators have proved (see [11-12]) that
Sturm’s theorem can be translated to the principal minor determinants (called
“discriminant sequence”) of a slightly modified Sylvester resultant matrix by way of
the variation in sign of a so-called “revised sign list”. This quite surprising result has
been found useful in many applications. But the original proof seems a bit isolated.
The goal of this paper is to provide a constructive description to this work in the
accepted context of subresultants and polynomial remainder sequences. In Section 3
we will prove an invariance property of discriminant sequences. In section we will

show an example about the application of discriminant sequences.

§ 2. Link between Subresultant Chain and Discriminant Sequence
In this section, we rebuild the discriminant sequence for a polynomial start from the
Fundamental Theorem of p.r.s.’s(polynomial remainder sequences). In the beginning

we shall make a brief recall to subresultants with the notation used in [8].

Definition. Let 4, = Zj’zoayxf ,1<j <k, be a sequence of polynomials over an
integral domain /. Then the k x[matrix associated with 4,,A,,---, A, 1s

mat(4,, 4,,--, 4,) =(a,,_,),
where /=1+4+max, . (n).

Definition. Let M be a kx/ matrix over /, k<I. By M"Y denotes the

submatrix of M consisting of the first £ —1 columns and the jth column of



M ,k < j <1.The determinant polynomial is:
det pol(M) =| M | x™ +---+ | M"|.
If M =mat(A,,---,A4,),wewrite det pol(A4,,---,A,) instead of det pol(M).
Definition. Let f,ge[x] with deg(f)=m>0 and deg(g)=n>0. Fork,
0 <k <min(m,n), set
M, =mat(x""" f(x), -, f(x),x" g (x), -, g(x)).
Then S, =sres, (f,g)=det pol(M,) is the kth subresultant of f and g. Note
that S, is a polynomial of degree 0 which is the Sylvester resultant of f and g.
Since M, has m+n—-2k rowsand m+n—k columns,
degS, <(m+n-k)y—(m+n-2k)=k,
and S, can be regarded as a polynomial of formal degree k& with the principal

minor determinant
Rk = psc, (fa g) = det(mat(xn_k_lf(x)a ) f(x)a xm—k—lg(x)’ ) g(x))
as formal leading coefficient (called “the principal subresultant coefficient” in [8]).

By Ic(S,) denote the leading coefficient of S,, 0 <k <min(m,n). If m=n+1,

we may extend the definition of subresultantto S ,, = f, S, = g, and set

Rn ZpSC”(f,g) :lC(g), Rn+1 :pscnﬂ(fag) =1
In case deg S, =r<j,thatis, R, =0 and R, #/c(S,) or S, =0, we call S,

defective of degree r and otherwise regular. The subresultant chain is regular if all
its elements are regular and otherwise defective.
The next theorem describes the relation of any polynomial remainder sequence to the

subresultant chain starting with the same polynomials.

Fundamental Theorem of p.rs. Let £, f,,---,f be a polynomial remainder

sequence over [ satisfying fore,, 5, € I, both non-zero



f =4 fin+Pfn (ISisr-=2),

Let n,,n,,---,n, be the degree sequence and let c,,c,,---,c, be the leading

r r

coefficient lc(f;) sequence of (f,,f,).Forany j,2<;<r-1,

0, 0<k<n,, n;,,<k<n;-1,

S, =
n+l _ (n=n+1)(ny—n 1) =+ g, —njtn g+l
{ } ni=1 = { ( 1) ﬂl cz+1 . X Cj fj+1’

Rip1 ™41 (mi=n o Y =nj40) i+17 741 ni=nj =1
{ ai } {H ( 1) ﬁ Cz+1 X c]+l fj+1 :
1

i=1
Now we focus on a specific class of polynomial remainder sequences. Assume [ is

ordered. A p.rs f, f5,-*-, f.1, [, € I[x] is called a negative or generalized Sturm

sequence if there exists «;,, #, € I such that

. f.=qfin+ P fn af, <0, 1<i<r-1
An instance is Tarski'’s remainder sequence (see [10]) with

—_ 2w n,++1)
p=-1, a =c !

i+l
We search further simplification on the relation of Tarski’s remainder sequence to the
subresultants. Substituting these specific coefficients into the third formula of
Foundamental Theorem of p.r.s., we have
j-1 j-1
i=l i=1
where

-1
= Z( Ny + 1)(nz+l Ny )

i=1

Change the subscript j +1 in the above formulato j, then we obtain

Jj=2 Jj=2
2(n=n;  +1)(n—n ;) _ Z; =Ny nj—n;=1 ;
{HciH }Sn/ _(_1) Hci+1 ch fj’ 2<]<l",
i=1

i=1

where



j-2
=) (n—n,+D)n, —n)).
1

i=

We observe that

J-1

[, =n o+ Dy =1, )= (= + Dy =)

jz [I’l (l’l /'+1) T, (l’l./. Ny )] (mOd 2)

i=1

-1

[~

Il
—

(n, = ni+l)} (n; —n;,) (mod2)

Il
—_

i

=(n —n;)n; =n,,);
J- Jj=2
H =Ny H =N, X C , 177141
i=1 i=1
1 -1 1
— ni=Nio nj-171; =N~ 2
= Ci+1 X C X Cj X Cj .

For the purpose to calculate the number of real roots using Sturm’s theorem, we may

multiply any polynomial f, in the generalized Sturm sequence by a positive factor

a’ (a el,a+0) without effect on result. Parallel to the concept of polynomial

similarity in the definition of p.r.s., we call A4, B € I[x] “positive similar” if there

exists a,bel,ab#0 suchthat a’4=>5>B, and write A~ B. Thus

~ Z+(m=n;)(n;=n;,) sy n;_—n;-1 n;—n; -1
=D~ H cin X, x(€,¢5) T

and multiplying them we obtain the following recursive relation:

(m=n;)(n;=n;.) n;—n;, -1 .
SannM ~(-1) ‘ (C‘/Cj+1) ' f/’f/’-H’ 2<j<r,
This relation holds also for j=12 if f, = f/. It is obvious when j=1. For

j=2,substitute o, =c;""™, B =-1 and n, =n, —1 into the third formula of

the Fundamental Theorem of p.r.d., then we get



c;(n,—nz+1)(nz—n3)‘svn3 — (_1)(n17n3)(n2—n3)(_1)(n27n3)c;l—n30;2—)13—1ﬁ’
Sn3 ~ (=" (0203),’27"371 S
5,5, S0 e L

Similarly, we have the following recursive relation for S, .S, with Tarski’s
remainder sequence,
S, S0 a D" S frns 1< <,
which holds also for j=1 in case f, = f;'. From this relation, we can construct a
Sturm sequence
Jofo =1,

for a given polynomial f,(x) e I[x] ofdegree n+1 using the subresultant chain

Sn+1 = fi’Sn = fi',Sn,l,"',SO .
If the subresultant chain is regular, that is, n ;=n+2—j, then the induced Sturm

sequence is

j-2
i L=20-1)

f,=(=DT S, =(-1y Spass 2<j<n+2.

This motivates the following modified definition to subresultants. Let

_ n+l n
fi=a, ,x"" +a,x"+--+a,,

fo=fl=(n+Da, x" +nax"" +-+a,.
Forany k,0<k<n, let

M; :mat(x"_kfl,x"_kfz,x"_k_lfl,xn_k_lfza'"aflafz)a
S, =a,, det pol(M}),

n+l

andlet S =f,,S = f,. Thenmatrix M, can be transformed to

Ay "
0 M,
by 1+2+--+(n—k)= %(n —k)(n—k+1) times of interchanging of rows, which

implies that



l(n—k)(n—k+l) 5

St =(-1)? a’,S,, 0<k<n,

n+l

and thatif § ,,S,,---,S,1s regular, then

fi=S8 fa=1=S,, fi= an+1S:+2—j (j=3,--,n+2)
is a generalized Sturm sequence. As generalized Sturm sequence is also called
negative p.r.s, we may call S, the kth negative subresultant of f,,f,. S, can be

regarded as a polynomial of formal degree k. Let

R, = psc,(S,),0<k <n,
denote the formal leading coefficients of S, and let R, =1 by convention. Call
S, defective if the R, =0 and regular otherwise.

If £.,/,.-,f..f €I[x] isa Tarski’s remainder sequence of f,, f,, then
% (m-n,) %(n—nj)(n—nIJrl) %(n—anrl)(n—anrZ)
S, S, 4~ (D" (=1) (1) fifa
=[S 1<j<r,

1 1
(m=n;)(n;—n;, )+E(n—nj )(n—n/+1)+5(n—nj+l Yn—n;,+1)

% % (n,-n;,-1)
S"./ Sm ~(=D cic) " S S

1
—(nj=nj )(nj=n;,—1)

=(-1)2" (c,e; )" ™V f frs 2<j<r

The two relations hold for 1< j<r if f, = f. According to the first relation we

can construct a generalized Sturm sequence via negative subresultant chain. (See
Appendix for a Maple program).
In what follows we work for extending the Sturm Theorem to the negative

subresultant chain.

It is obvious that the number of real roots for f, € I[x] can be calculated by the

*

variation in signs of the (formal) leading coefficients R, ,R,---,R, if negative

n+l2

*

subresultants S’ ,,S ,---,S, are regular. Let N(f,) be the number of real roots of

n+l?
f,. Let V(+w) be the variation in sign of S (x),S (x),---,S,(x) when

x =+, V(-w) be the variation in sign of S  (x),S (x),---,S,(x) when



*

x = —o0. Then V(+0) equals the variation in signs of sequence R ,R.,---,R,,
and
V(=) =V (+0) = N(f)),
V(=0)+V(+0) =n+1,
therefore,
n, =2V (+0) = N(f)).
If S.,,8",---,S, areregularand S, ,,---,S, are defective, then polynomials

fi :S;Jrlsfz :f1':SZ=f_/ :an+lS:+2—j (J=3,n+2-k)

constitute a generalized Sturm sequence, n;, =deg(f,)=n+2—j. Let N(f,) be

the number of distinct real roots of f,. Then we have

V(=) =V (+0) = N(f)),
V(-0)+V(+0)=n+1-k,

according to Sturm Theorem. Letr =n+2—4k, then n, =k and

n, —n, =2V (4+0) = N(f,),

* * * *

R:,--- R,R R, ,

LA

where V(+o) equals to the variation in sign for R

n+l»
among them R =---=R; =0.

What is for the other cases? We are going to prove that there is an appropriate way to
revise the variation in signs for a sequence of real number so that the above formula

still holds for all defective negative subresultant chain.

*

n+l>

*

n—-1°

*

Observe that the formal leading coefficients R ,,R R, ,,---,R;,R, can be written

as

% * *

R, ,R R

n n, 5 n; s

* R*
njg 2 27 n?

*

0,---0,R 0,---0,R

> hp, o

0,---,0,
* * * * * *
where R, ,R, ,---,R ,R ,R ,R are all not zeros, and the number of zeros
1 2 j i+ -1 e
* *
between R”,/’ and Rn,m equalsto n, —n,, —1.

Let v(a,b;l) be an enumeration function defined for real numbers a,b and non-



negative integer /, satisfying that if /=0, then v(a,b;0) is the variation in signs

of a,b.Let
=D V(R R, sn,—n, —1),
Jj=1

and call it the modified number of variations in sign of R ,,R ,R _,,---,R/,R,. Let

n+l2

N(f,) be the number of distinct real roots of f, as before. We expect

n,—n, =2V, =N(f))
holds under certain appropriate definition of v(a,b;l).
Let f,(x), f,(x),---, f,(x) be any generalized Sturm sequence for f,f, = f, .
Then m=r. Let n,,n,,---,n, be the sequence of degree, and c,,c,,---,c, be the
leading coefficients of f|, f,, -, f, . Then, according to Sturm Theorem, the number
of distinct real roots of f, can be calculate by the variation in sign of real number

sequence c¢,;,C,, *+,C,:

r

N(f,) =V (=) =V (+0)

: 1
= Z% [1 —sgn((-D)""" e, j€in )]_Z% [1 - Sgn(cjcﬂl)]
- I=

(1+(=1)"""")sgn(c,c;,).

In view of the recursive relation

(’1 -n 1)(”,'_"j+1_1)

O G

” j+1

(nj=n;,-1) .
(cjcj+l) R f}fj-f—p 1S]<V,

if n,—n,, isodd, then

(” )1“1)(7!‘/-—)1/41—1)

~( 1)? ' fjfj+l’

1
* * —(n;=n; Nn;—n;,—1)
sgn(anRnM):(—l)2 L sgn(c;c;,);

andif n,—n,, areeven,



1

sgn(R, R; )= (1)’

(nj=nj, )n;=n;,—1)

[Sgn(c_/cjﬂ )]2

1
—(n i M1 )(n,'_"jH_I)

=(-n*"
From this follows immediately that
SN T T I -
N(= YeEnT sgn(R; R, ).
nj-fnjﬂj::ll(modZ)

On the other hand, we have

r=1
* £
n—n, =2V =n—n, — 22 v(an,an; n,—n,, —1)

J=1

r=1
=Y (n,—n,, -2v(R, .R, in,—n. —1).

j=1
So it is natural we expect that the enumeration function v(a,b; /) satisfies

1
—(n i M1 )(n/_"/ﬂ_l)

ny=n,, =2v(R, ,R, sn,—n, ~1)=(-1)*"

s
nj

sgn(R, R, )
when n,—n,, isodd, and

—n,, ~1)=0

* *
n;—n;,=2v(R, ,R, ;n,

1
S(nj=np)(nj=n;,=1)

= (-1)? sen(R; R, )-1

when n,—n,,, is even. This property can be written in a unified form:

Yas !
I+1-2v(a,b,0) = (=1)"" " sgn(ab) + 3" (-1)".
=

This leads to the following definition.

Definition. Let q,,a,,a,,--, a, be a sequence of real numbers. Then the modified

number of variations in sign of this sequence is the final result of the following
procedure.
Let N=0.

For i from1to m—-1 do

if a,-a,,<0,then N« N +1;

if a,,=0, and a,,is the first non-zero number in @, --,a,, then

sUm s



N < N+v(a;,a;,j—i—1), where

1 1< P I
v(a,b,l) :E(l+1)—52(—1) —5(—1) sgn(ab), and
k=1

sgn(x) is the sign function.
return N .

It is clear that if then is no zero in sequence a,, a,,a;, ", a,,, or all zero elements in

the sequence are adjacent in the end of the sequence, then the modified number of
variation in sign equals to that calculated in usual way.

We can summarize our discussion above in the following theorem

Theorem (Yang-Hou-Zeng [11]): Let f, be a polynomial of degree n+1 with

* * *

determined or indetermined real coefficients. Let S ,,S .S ,,---,S, be the

n+l°

* *

negative subresultant chain generated by f,,f,=f/, R..,R,R ,,---,R, the

n+12

formal leading coefficients of negative subresultants, V. the modified number of

+00

variation in signs of the sequence. Let N(f,) be the number of the distinctive real

rootsof f,, n,=n+1, and n, the degree of the last regular negative subresultant.
Then

N(f))=n—n =2V _.
In the remaining part of this section we show the connection between the sequence
RZ (k=n+1,n,---,0) and the classical discriminant, and an intuitive algorithm for

counting the modified number of variation in sign of real number sequences.

Let
D, =det(mat(x"" f,,x" f,- £, ), 1<k<n+1.
Then,
R:-H = an+1 5
R =(n+a,,=D/a,,,
R; = an+an+l—k’ k =n- 1" o ’0'



* *

Hence the modified number of variation in sign of R ,,R,R ,,---,R, equal to

n+1°

that of D,,D,,---,D,., . Note that
D, =(n+ 1)a721+1 5
a,. a, a, a,
. 0 n+1a na n-—a
D2 =Rn71 /an+l — ( ) n+l n ( ) n-1
an+1 an an—l
0 0 (n+1a,, na,

2 2
=a,, (na, —2(n+1)a,  a,_)

4 2
:anHZ('xi _xj) H

i<j

*
D,,=R,/a,,

1
* —n(n+1) ,
= det pol(M ) = (=1)? a, R(f15 1)
=aZ D(f)=a2 T (- x))°.

i<j
where D(f,) is the discriminant of f, and x,,---,x, ,x,,, are roots of f,. Call

D (k=12,---,n+1) the k th discriminant of f, , and D,,D,,---,D the

n+l
discriminant sequence of f,.
To conclude this section we give an easy-to-use method to calculate the modified

number of variation in sign. Given a sequence a,, a,,4a;, -+, a, of real numbers, we

can construct b,,b,,b,,---,b according to the following process:

(1):If a, #0, then b, =a;;
(2): If ai;tO,aHk=0,k=1,---,j—1,ai+j¢0, then

L ke

b, =(=1? a, k=1,---,j—1.

3):If a, #0,a,,=--=a, =0, then b, =---=b =0.
Then the number of variation in sign for b,,b,,b,,---,b, equals to the modified

number of variation in sign for a,, a,,a;,---, a

m*



§ 3. Invariance properties of Discriminant Sequence

In this section we prove the following result.

Theorem. Let f(x)e I[x] be a polynomial of degree n+1 over integral domain
I . Then for any wuel , the k th discriminant D,(u) of polynomial

g(x) = f(x—u) equalstothe kthdiscriminant D, of f(x), k=1---,n,n+1.

§ 4. Applications: Generalization of Newton’s Inequalities

The Newton inequalities, which are indeed due to Newton, say that if x,,x,,---,x

n

are real numbers, then for j=12,---,n -1
2
E(xp,xy,000,%,)" 2 B (XX, x,) - By (X, X,0,X,)

and the inequality is strict unless x, = x, =---=x, , or both side vanish, where

-1
n
Ej(xl9x29“"xn) :( J Sj(xlsxzsn‘sxn)
J

and s,(x,,x,, -, x,)Iis the elementary symmetric function:

sj(xl,xz,---,xn): inlxiz-uxij.

1< <iy <+ <i;<n
(see [9]) In this section we will give a method to construct a set of stronger

inequalities using discriminant sequences.
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APPENDIX A Maple Program for Computing Generalized Sturm Sequences

via Negative Subresultants

with(linalg):

### matrix associated to a sequence of polynomials
mat := proc(plist, X)
local 1, i, p, cf, M;
1 := max(op(map(degree, plist, x)));
M :=1];
for p in plist do
cf:=[subs(x =0, p)];
for i to 1 do cf := [coeff(p, x, 1), op(cf)] od;
M := [op(M), cf]
od;
M
end



### determinant polynomial generated by a matrix
detpol := proc(M, x)
local i, j, k, 1, k1, cf, mj;

k = nops(M);
1 := nops(op(1, M));
cf =],

kl :=seq(i,i=1.k-1);

forj fromk to1do
mj := submatrix(M, 1 .. k, [k1, j]);
cf := [op(cf), det(m;j)]

od;

mj = 0;

foritol-k+ 1 domj:=mj+op(i, cH*x*1-k+1-1)
od;

mj

end

### subresultant chain of two polynomials
sres := proc(f, g, X)
local m, n, k, 1, p, sk;

m := degree(f, x);

n := degree(g, X);

sk:=[1;
for k from 0 to min(m, n) - 1 do
p=[l

p = [seq(xMi*g,i=0. m-k-1),
seq(x**f,i=0..n-k-1)];
p := map(collect, p, X);
sk := [detpol(mat(p, x), X), op(sk)]
od;
sk
end

### negative subresultant chain of polynomials f and g with degree(f,x)=degree(g,x)+1
s_res := proc(f, g, X)
local m, n, k, 1, p, sk;

m := degree(f, x);

n := degree(g, X);

sk = [];
for k from 0 to min(m, n) - 1 do
p=I[I

for i from 0 to max(m, n) -k - 1 do

p = [x"1*f, x"i*g, op(p)]
od;



p := map(collect, p, X);
sk := [coeff(f, x, m)*detpol(mat(p, Xx), x), op(sk)]
od;
map(primpart, [f, g, op(sk)])
end

### formal leading coefficients of f and diff(f,x)
psc_ = proc(f, x)
local i, nl, sr, 1;

nl = degree(f, x);

st :=s_res(f, diff(f, x), x);

print(sr);

r=[]

foritonl +1do

1 = [op(1), coeff(op(i, sr), X, nl -1+ 1)]
od;
r

end

### construct generalized sturm sequence for polynomials with indeterminates coefficients
res_sturm := proc(f, x)
local nl, sn, 1, j, j1, 1, nj, fj, stm;
nl = degree(f, x);
sn :=s_res(f, diff(f, x), x);
stm := [f, diff(f, x)];
nj = [];
foritonl +1do
if degree(op(i, sn), x) =nl - i+ 1 then
nj :=[op(nj), nl -1+ 1]
fi
od;
1 :=nops(nj);
forj from 3 to r do
jl:=nl+2-o0p(- 1, nj);
fj :=op(j1, sn)*lcoeff(op(j1 - 1, sn), x)*
lcoeff(op(j - 1, stm), x);
stm := [op(stm), fj]
od;
map(primpart, stm)
end

### an example
> res_sturm(x"5+a*x+b,x);
> [x"5+a*x+b, 5*x +a, -4*a*x-5%b, (-256*a"5-3125%b"4)*a™4]



