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Abstract: In this paper we rebuild the discriminant sequence of a polynomial with 
indeterminates in the framework of the subresultant and polynomial remainder 
sequences. In section 3 we prove an invariance property of discriminants. In section 
4 we show an example to construct new inequalities using discriminants.  
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1. Introduction 

Many problems about automated proving for inequalities concerning certain real 

geometric configurations lead to finding the real zeros of a system of polynomials. 

Sometimes we need only to examine the existence of real zeros. As there are various 

elimination methods to transform a system of polynomial in general form to a 

triangular form: 
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it is of the first importance to clarify the structure of a univariate polynomial. For a 

polynomial with constant coefficients, using the well-known Sturm’s Theorem and 

Euclidean successive polynomial division can easily do this. Contrarily if the 

coefficients are indeterminates or polynomials, say,  
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and then the Euclidean successive polynomial 

division cannot be performed in the coefficient domain. In this case, there are 
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classical works on computing polynomial remainder sequences of two polynomials 

through subresultant chain (see [1-4], [6] and [7]). This makes it possible to 

construct a Sturm sequence via the subresultants of a polynomial and its derivative 

in a recursive way, and then compute the number of real roots for the polynomial by 

counting the variation in signs of the leading coefficients of the obtained Sturm 

sequence(see [5] for an example). This process becomes much complicated if the 

subresultant chain is defective. It would be more convenient if one could simply take 

the principal subresultants coefficients for counting the variation in signs. This idea 

is actually feasible. Yang Lu and his cooperators have proved (see [11-12]) that 

Sturm’s theorem can be translated to the principal minor determinants (called 

“discriminant sequence”) of a slightly modified Sylvester resultant matrix by way of 

the variation in sign of a so-called “revised sign list”. This quite surprising result has 

been found useful in many applications. But the original proof seems a bit isolated. 

The goal of this paper is to provide a constructive description to this work in the 

accepted context of subresultants and polynomial remainder sequences. In Section 3 

we will prove an invariance property of discriminant sequences. In section we will 

show an example about the application of discriminant sequences. 

 

2. Link between Subresultant Chain and Discriminant Sequence 

In this section, we rebuild the discriminant sequence for a polynomial start from the 

Fundamental Theorem of p.r.s.’s(polynomial remainder sequences). In the beginning 

we shall make a brief recall to subresultants with the notation used in [8].  

Definition. Let  be a sequence of polynomials over an 

integral domain . Then the matrix associated with  is 
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and  can be regarded as a polynomial of formal degree  with the principal 

minor determinant  
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as formal leading coefficient (called “the principal subresultant coefficient” in [8]). 

By  denote the leading coefficient of , . If , 

we may extend the definition of subresultant to and set  
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In case that is,  and  or ,  we call  

defective of degree  and otherwise regular. The subresultant chain is regular if all 

its elements are regular and otherwise defective.  
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The next theorem describes the relation of any polynomial remainder sequence to the 

subresultant chain starting with the same polynomials.  

Fundamental Theorem of p.r.s. Let be a polynomial remainder 

sequence over  satisfying for , both non-zero 
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Let  be the degree sequence and let c  be the leading 

coefficient  sequence of ( . For any  
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Now we focus on a specific class of polynomial remainder sequences. Assume  is 

ordered. A p.r.s  is called a negative or generalized Sturm 

sequence if there exists  such that 

I
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An instance is Tarski’s remainder sequence (see [10]) with  
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We search further simplification on the relation of Tarski’s remainder sequence to the 

subresultants. Substituting these specific coefficients into the third formula of 

Foundamental Theorem of p.r.s., we have  
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Change the subscript  in the above formula to , then we obtain 1+j j
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For the purpose to calculate the number of real roots using Sturm’s theorem, we may 

multiply any polynomial  in the generalized Sturm sequence by a positive factor 

 without effect on result. Parallel to the concept of polynomial 

similarity in the definition of p.r.s., we call  “positive similar” if there 

exists  such that , and write  Thus  

jf

)0,(2 ≠∈ aIaa

,, ∈ abIba

][, xIBA ∈

0≠ BbAa 22 = .BA ≈

,)1(

,)()1(

1
2

1
1

1
1

1
1

2

1
1

))((

11

11111

1

j
nn

j

j

i

nn
in

j
nn

jj
nn

j

j

i

nn
i

nnnn
n

fccS

fccccS

jjiij

j

jjjjiijjjj

j

××−≈

××−≈

−−
−

=

−
+

Σ

+
−−

+
−−

−

=

−
+

−−+Σ

−+

+−++

+

∏

∏
 

and multiplying them we obtain the following recursive relation: 
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This relation holds also for  if . It is obvious when . For 

, substitute  and  n  into the third formula of 

the Fundamental Theorem of p.r.d., then we get 
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Similarly, we have the following recursive relation for  with Tarski’s 

remainder sequence,  
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Sturm sequence  
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This motivates the following modified definition to subresultants. Let 
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implies that 
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is a generalized Sturm sequence. As generalized Sturm sequence is also called 

negative p.r.s, we may call the th negative subresultant of .  can be 

regarded as a polynomial of formal degree . Let 
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The two relations hold for  if . According to the first relation we 

can construct a generalized Sturm sequence via negative subresultant chain. (See 

Appendix for a Maple program). 

rj <≤1 12 ff ′=

In what follows we work for extending the Sturm Theorem to the negative 

subresultant chain.  

It is obvious that the number of real roots for  can be calculated by the 

variation in signs of the (formal) leading coefficients  if negative 

subresultants  are regular. Let  be the number of real roots of 
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constitute a generalized Sturm sequence,  Let  be 
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What is for the other cases? We are going to prove that there is an appropriate way to 

revise the variation in signs for a sequence of real number so that the above formula 

still holds for all defective negative subresultant chain.  
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and call it the modified number of variations in sign of . Let 

 be the number of distinct real roots of  as before. We expect  
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In view of the recursive relation 
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So it is natural we expect that the enumeration function  satisfies );,( lbaν
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when  is even. This property can be written in a unified form:  1+− jj nn
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This leads to the following definition. 

Definition. Let  be a sequence of real numbers. Then the modified 

number of variations in sign of this sequence is the final result of the following 

procedure.   
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It is clear that if then is no zero in sequence , or all zero elements in 

the sequence are adjacent in the end of the sequence, then the modified number of 

variation in sign equals to that calculated in usual way. 
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We can summarize our discussion above in the following theorem 

Theorem (Yang-Hou-Zeng [11]): Let  be a polynomial of degree n  with 

determined or indetermined real coefficients. Let  be the 

negative subresultant chain generated by ,  the 

formal leading coefficients of negative subresultants,  the modified number of 

variation in signs of the sequence. Let  be the number of the distinctive real 

roots of , 
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In the remaining part of this section we show the connection between the sequence  

 and the classical discriminant, and an intuitive algorithm for 

counting the modified number of variation in sign of real number sequences.  
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where )( 1fD  is the discriminant of 1f  and 11 ,,, +nn xxx L  are roots of 1f . Call 

)1,,2,1( += nkDk L  the k th discriminant of 1f , and 121 ,,, +nDDD L  the 

discriminant sequence of 1f .  

To conclude this section we give an easy-to-use method to calculate the modified 

number of variation in sign. Given a sequence maaaa ,,,, 321 L  of real numbers, we 

can construct mbbbb ,,,, 321 L  according to the following process: 

(1): If ,0≠ia  then ;ii ab =  

(2): If ,0,1,,1,0,0 ≠−==≠ ++ jikii ajkaa L  then 

.1,,1,)1(
)1(

2
1

−=−=
+

+ jkab i

kk

ki L  

(3): If ,0,0 1 ===≠ + mrr aaa L  then .01 ===+ mr bb L  

Then the number of variation in sign for mbbbb ,,,, 321 L  equals to the modified 

number of variation in sign for maaaa ,,,, 321 L . 

 



3. Invariance properties of Discriminant Sequence 

In this section we prove the following result. 

Theorem. Let ][)( xIxf ∈  be a polynomial of degree 1+n  over integral domain 

I . Then for any Iu∈ , the k th discriminant )(uDk  of polynomial 

)()( uxfxg −=  equals to the k th discriminant kD  of )(xf , 1,,,1 += nnk L . 

 

4. Applications: Generalization of Newton’s Inequalities 

The Newton inequalities, which are indeed due to Newton, say that if nxxx ,,, 21 L  

are real numbers, then for 1,,2,1 −= nj L  

),,,(),,,(),,,( 211211
2

21 njnjnj xxxExxxExxxE LLL +− ⋅≥  

and the inequality is strict unless nxxx === L21 , or both side vanish, where 
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and ),,,( 21 nj xxxs L is the elementary symmetric function: 
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(see [9]) In this section we will give a method to construct a set of stronger 

inequalities using discriminant sequences. 
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APPENDIX A Maple Program for Computing Generalized Sturm Sequences 

via Negative Subresultants 
 
with(linalg): 
 
### matrix associated to a sequence of polynomials 
mat := proc(plist, x) 
local l, i, p, cf, M; 
    l := max(op(map(degree, plist, x))); 
    M := []; 
    for p in plist do 
        cf := [subs(x = 0, p)]; 
        for i to l do cf := [coeff(p, x, i), op(cf)] od; 
        M := [op(M), cf] 
    od; 
    M 
end 
 



### determinant polynomial generated by a matrix 
detpol := proc(M, x) 
local i, j, k, l, k1, cf, mj; 
    k := nops(M); 
    l := nops(op(1, M)); 
    cf := []; 
    k1 := seq(i, i = 1 .. k - 1); 
    for j from k to l do 
        mj := submatrix(M, 1 .. k, [k1, j]); 
        cf := [op(cf), det(mj)] 
    od; 
    mj := 0; 
    for i to l - k + 1 do mj := mj + op(i, cf)*x^(l - k + 1 - i) 
    od; 
    mj 
end 
 
### subresultant chain of two polynomials 
sres := proc(f, g, x) 
local m, n, k, i, p, sk; 
    m := degree(f, x); 
    n := degree(g, x); 
    sk := []; 
    for k from 0 to min(m, n) - 1 do 
        p := []; 
        p := [seq(x^i*g, i = 0 .. m - k - 1), 
            seq(x^i*f, i = 0 .. n - k - 1)]; 
        p := map(collect, p, x); 
        sk := [detpol(mat(p, x), x), op(sk)] 
    od; 
    sk 
end 
 
### negative subresultant chain of polynomials f and g with degree(f,x)=degree(g,x)+1 
s_res := proc(f, g, x) 
local m, n, k, i, p, sk; 
    m := degree(f, x); 
    n := degree(g, x); 
    sk := []; 
    for k from 0 to min(m, n) - 1 do 
        p := []; 
        for i from 0 to max(m, n) - k - 1 do 
            p := [x^i*f, x^i*g, op(p)] 
        od; 



        p := map(collect, p, x); 
        sk := [coeff(f, x, m)*detpol(mat(p, x), x), op(sk)] 
    od; 
    map(primpart, [f, g, op(sk)]) 
end 
 
### formal leading coefficients of f and diff(f,x) 
psc_ := proc(f, x) 
local i, n1, sr, r; 
    n1 := degree(f, x); 
    sr := s_res(f, diff(f, x), x); 
    print(sr); 
    r := []; 
    for i to n1 + 1 do 
        r := [op(r), coeff(op(i, sr), x, n1 - i + 1)] 
    od; 
    r 
end 
 
### construct generalized sturm sequence for polynomials with indeterminates coefficients 
res_sturm := proc(f, x) 
local n1, sn, i, j, j1, r, nj, fj, stm; 
    n1 := degree(f, x); 
    sn := s_res(f, diff(f, x), x); 
    stm := [f, diff(f, x)]; 
    nj := []; 
    for i to n1 + 1 do 
        if degree(op(i, sn), x) = n1 - i + 1 then 
            nj := [op(nj), n1 - i + 1] 
        fi 
    od; 
    r := nops(nj); 
    for j from 3 to r do 
        j1 := n1 + 2 - op(j - 1, nj); 
        fj := op(j1, sn)*lcoeff(op(j1 - 1, sn), x)* 
            lcoeff(op(j - 1, stm), x); 
        stm := [op(stm), fj] 
    od; 
    map(primpart, stm) 
end 
 
### an example 
> res_sturm(x^5+a*x+b,x); 
> [x^5+a*x+b, 5*x^4+a, -4*a*x-5*b, (-256*a^5-3125*b^4)*a^4] 


