
Submitted to:
FROM 2019

© I. Dramnesc, T. Jebelean
This work is licensed under the
Creative Commons Attribution License.

Proof–Based Synthesis of Sorting Algorithms
Using Multisets in Theorema

Isabela Drămnesc
Department of Computer Science

West University
Timişoara, Romania

Email: isabela.dramnesc@e-uvt.ro

Tudor Jebelean
Research Institute for Symbolic Computation,

Johannes Kepler University,
Linz, Austria

Email: Tudor.Jebelean@jku.at

We experiment with the mechanical synthesis of list–sorting algorithms by extracting them from
automatically generated proofs in the Theorema system. The basic principle consists in using the
specification (input and output conditions) of the function to be synthesized for constructing a specific
logical conjecture, and then proving this in a constructive way. The witnesses found during the proof,
possible prefixed by certain conditions, define a set of rewrite rules which express the algorithm, and
which can be directly executed in the Theorema system. The knowledge base includes properties
of multisets and their relation to lists, in this way we can express naturally the fact that two lists
have the same elements, and also introduce powerful inference rules and proof strategies based on
multiset properties. The proofs are in natural style, using inference rules and strategies specific
for the domains involved, but also general ones. In particular we present specific strategies for the
construction of arbitrarily structured recursive algorithms by general Noetherian induction, as well
as a systematic strategy for the “cascading” principle: the specification of needed auxiliary functions
are automatically produced during the proof, and their synthesis is performed using the same method.
These case studies are a part of our work on exploring the theory of these domains and demonstrating
the automatic synthesis of complex algorithms like sorting and searching.

1 Introduction

We present a comprehensive case study in automated synthesis of list sorting algorithms: two main
proofs produce the most popular sorting algorithms (min–sort, quick sort, insert–sort, merge–sort) and
trigger all the proofs necessary for producing the needed auxiliary functions for inserting, splitting, and
merging. This is a continuation of our work on exploring in parallel the theories of multisets, lists,
and binary trees, for the purpose of developing proof methods for the synthesis of algorithms on these
domains. In two related papers [12, 13] we already investigated algorithms for deletion from lists and
binary trees, as well as for insertion and merging.

We use of multisets because they allow to express naturally the idea that two lists have the same
elements, and also that the collection of classical notions on sets (membership, union, intersection, etc.)
can be used as a roadmap for the theory exploration.

We approach automated synthesis like described in our previous work – see e. g. [11, 16]. First
one proves automatically a synthesis conjecture which is based on the specification (input and output
conditions) of the desired function, then the algorithm is extracted automatically from the proof. We
use the Theorema system [5], in which the inference rules and the logical formulae are presented in
natural style – a style similar to the one used by humans. Since Theorema also allows the execution of
algorithms, we can test them immediately in the system. The theoretical basis and the correctness of the
proof based synthesis scheme is well–known, see [6] and it was previously used by us [11, 16].

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Synthesis of Sorting Algorithms

Related work. The theory of multisets is well studied in the literature, including computational
formalizations (see e. g. [18], where finite multisets are called bags). A presentation of the theory
of multisets and a good survey of the literature related to multisets and their usage is [1] and some
interesting practical developments are in [19]. Concerning sorting we are not aware of a systematic
formalization of the theory of lists and trees using multisets. An interesting formalization in a previous
version of Theorema [4], which includes the theory exploration and the synthesis of a sorting algorithm
is presented in [3], which also constituted the starting point of our previous research on proof–based
synthesis. However, in that pioneering work, the starting point of the synthesis (besides the specification
of the desired function) is a specific algorithm scheme, while in our approach we use general Noetherian
induction. In our previous work we study proof–based algorithm synthesis in the theories of lists [9],
sets [10] and binary trees [14] separately ([7], [8], [15], [11], [16].

Originality. In contrast to other investigations, the current study uses multisets in the theory develop-
ment and in the entire process of algorithm synthesis. The automatically generated proofs are performed
in the new version of the Theorema system [5, 20].

In contrast to our previous work on synthesis, we do not use here algorithm schemata or concrete
induction principles, but only general Noetherian induction starting from a specific cover set (usually
based on the inductive definition of lists). Namely, during the proof of a statement P[t], for any t ′ (also
ground term) which represents an object which is strictly smaller than the object represented by t in the
Noetherian ordering, P[t ′] can be added to the current assumptions. (The soundness of this technique is
presented in detail in [16], and it allows to discover concrete induction principles based on the general
Noetherian induction.) In our approach we use the Noetherian ordering induced by the strict inclusion
of the corresponding multisets, which conveniently extends to a meta–ordering between terms, induced
by the strict inclusion of the constants occurring in the respective terms.

Four novel inference rules and six novel strategies are introduced.
Moreover we use very systematically the cascading method pioneered in [2]: when the proof needs

an auxiliary function which is not present in the knowledge, the prover constructs a conjecture synthesis
statement which can be used to obtain the auxiliary function which is necessary for the current synthesis.
We have been using this for the case of lists in [11], and in this paper we describe it in a more system-
atic manner as proof and we illustrate it on several example: all auxiliary algorithms are generated by
cascading starting from sorting synthesis proofs.

2 Proof–Based Synthesis

2.1 Context

Notation. Square brackets are used for function and for predicate application, for instance: f [x] instead
of f (x) and P[a] instead of P(a). Quantified variables are placed under the quantifier, as in ∀

X
and ∃

X
.

Meta–variables are starred (e.g., T ∗, T ∗1 , Z∗) and Skolem constants have integer indices (e.g., X0, X1, a0).

Knowledge base. We consider three types: elements, finite lists, and finite multisets.
Elements of lists are any objects whose domain is totally ordered (notation ≤ and <). The ordering

on elements is extended to orderings between an element and a list/multiset (denoted ≤,<) and between
lists/multisets (denoted ≤), by requiring that all elements of the composite object observe the ordering
relation1. Elements are denoted by lower case letters (a,b,x,y).

1 Note that this introduces exceptions to antisymmetry and transitivity when the empty composite object is involved

I. Dramnesc, T. Jebelean 3

Finite multisets may contain the same elements several times (the multiplicity can be more than
one). /0 denotes the empty multiset, {{a}} denotes the multiset having only the element a once. The union
(additive) is denoted by] : multiplicity is the sum of multiplicities – like in [17]. Union is commutative
and associative with unit /0, these properties are used implicitly by the prover. M [X] denotes the multiset
of elements of the list X .

A finite list is empty 〈〉 or of the form a `U, where ` is the operation of prepending an element to
a list (analogous to cons of Lisp). The multiset of a list observes:

Property 1. ∀
a,V

(
M [〈〉] = /0

M [a `V] = {{a}}]M [V]

)
Sorted list are defined by:

Definition 1. ∀
a,U

(
IsSorted[〈〉]

IsSorted[a `U]⇐⇒ (a≤U ∧ IsSorted[U])

)
The type of objects is used by the prover, however for brevity we do not include the type inferencing

details in the proofs. In this presentation we just use an implicit typing based on the notation convention.

Problem and Approach. The main problem consists in finding the sorted version of a given list, how-
ever by our approach several sub–problems may appear and require auxiliary algorithms (merge, insert,
split, etc.). The synthesized algorithm is extracted from the proof of a specific synthesis conjecture based
on the function specification. For univariate functions the specification consists in an input condition
I[X] and an output condition O[X ,Y], and the conjecture is:

Conjecture 1. ∀
X
(I[X] =⇒ ∃

Y
O[X ,Y]).

Likewise, for a bivariate function one has I[X ,Y], O[X ,Y,Z], and the conjecture:

Conjecture 2. ∀
X ,Y

(I[X ,Y] =⇒ ∃
Z

O[X ,Y,Z]).

2.2 Special Inference Rules and Strategies

Following natural style proving, we use Skolem constants (denoted with numerical underscore like V1)
introduced for existential assumptions and universal goals, as well as metavariables (denoted with star
power like T ∗)introduced for existential goals. Few inference rules and strategies are similar to the ones
described in [11–13, 16], but most are novel ones, namely the inference rules: IR-3, IR-4, IR-5, and
IR-12, as well as the strategies: ST-2, ST-3, ST-4, ST-5, ST-6, and ST-8.

2.2.1 Inference Rules

IR-1: Split conjunctive assumptions. A conjunctive assumption is split into its conjuncts.
IR-2: Assumed subgoal. In a conjuctive goal, delete the part which is already an assumption.
IR-3: Forward inference. If a ground atomic assumption matches a part of another (typically universal)
assumption, instantiate the later and replace in it the resulting copy of the ground assumption by the
constant True, then simplify truth constants to produce a new assumption. This rule is akin to unit
resolution and realizes for instance Modus Ponens and Modus Tollens.
IR-4: Backward inference. Transform the goal using some assumption or a specific logical principle. If
a ground atomic assumption matches a part of an existential goal, instantiate the later and replace in it the

4 Synthesis of Sorting Algorithms

resulting copy of the ground assumption by the constant True, then simplify truth constants to produce a
new goal. (The rule IR-2 is a special case of this when there is no variable involved.)

A specific logical principle is used for backward inference on goals containing metavariables, namely
the fact that a formula having the structure ∃

x
P[x] is a logical consequence of the formula ∃

x
P[f [x]], where

P is an arbitrary predicate (in fact a formula) and f an arbitrary function (in fact a term).
IR-5: Rewrite by equality. Uses an equality assumption to transforms part of the goal or of an assump-
tion. For instance, in the goal, replace a ground subterm by another which contains more information,
(like M [U0] by M [Sort[U0]]), or simplify a term containing a metavariable (like replace Sort[W ∗] by
W ∗) in order ease the constraint.
IR-6: Reduce composite argument. This rule uses the current assumptions to transform parts of the goal
or of the assumptions into atoms whose arguments contain no function symbols.
Example: a0 ≤ Conc[U0,Y0] becomes a0 ≤U0∧a0 ≤ Y0.

IR-7: Solve metavariable. When the goal is M [X∗] = M [T] for a ground term T , infer X∗ = T .

IR-8: Expand multiset. In the goal, a multiset term with a composite argument is expanded by equality
into several multiset terms. Typically this is used when the argument contains cover–set constants, be-
cause about these we do not have much information in the assumptions, but by treating them separately
we can obtain more information, for instance by applying induction.
Example: The goal M [T ∗] = M [a0 `U0]]M [V0], becomes M [T ∗] = {{a0}}]M [U0]]M [V0].

IR-9: Compress multiset. This is the dual of the previous rule, and it is most often applied using ` .

Example: the goal is M [W ∗] = {{a0}}]M [W1] becomes M [W ∗] = M [a0 `W1].

IR-10: Use equivalence. Equality of the corresponding multisets induces an equivalence relation on
lists, which is compatible with the ordering relations induced by the domain ordering, as well as with
the function Sort. Therefore the prover can rewrite parts of the goal or of the assumptions by replacing
equivalent lists or by inferring new relations on lists which are equivalent to lists already related.
Example 1: if a part of the goal is b ≤W1 and an assumption is: M [W1] = {{a0}}]M [W0], then the
respective part of the goal is transformed into b≤ a0∧b≤W0.

Example 2: the subgoal a∗ ≤ Sort[W ∗] is replaced by a∗ ≤W ∗.
IR-11: Simple goal conditional assumption. When the proof fails and the current goal is ground and
contains only simple elements (not lists), then the proof stops and the unproved goal will become a
condition in the synthesized algorithm, as explained below at strategy ST-7.
IR-12: Two constants. If the current proof situation contains two Skolem constants representing domain
elements, say a0,b0, then the prover generates two cases: a0 ≤ b0 and b0 < a0.

2.2.2 Strategies

ST-1: Quantified variables. Main universal variables in goal (but not the main existential variables in
assumptions) become Skolem constants. Main existential variables in goal (but not the main universal
variables in assumptions) become metavariables.
ST-2: Cover set. This strategy organizes the structure of each synthesis conjecture proof and the extrac-
tion of the synthesized algorithm. Each conjecture for the synthesis of a target function is a quantified
statement over some main universal variable. A cover set is a set of universal terms2 which represent
the domain of the main universal variable [16]. We project this concept on Skolem constants: first the

2 Terms containing universally quantified variables, such that for every element of the domain there exists exactly one term
which in the set which equals that element.

I. Dramnesc, T. Jebelean 5

main universal variable is Skolemized (“arbitrary but fixed”) — we call this the target constant, and we
call the corresponding Skolemized goal the target goal — and then the corresponding cover–set terms
are also grounded by Skolemization, we call these the cover-set terms and the corresponding constants
the cover-set constants. (During the proof some Skolem constants3 may be further refined by such a
cover–set decomposition.) At the beginning of the proof, the prover chooses a covers set (typically the
one suggested by the recursive definition of the domain), and starts a proof branch for each ground term
(“proof by cases”). On each proof branch the input conditions of the functions are assumed, and then the
existential variable corresponding to the output value of the function is transformed into a metavariable
whose value (the “witness”) will be found on the respective branch of the proof. Some branches will
split further by introducing conditions or by refining the cover sets of some Skolem constants present in
the proof as described above. Finally the algorithm will be generated as a set of [conditional] equalities:
the terms of the cover set will be the arguments (“patterns”) on the LHS of the equalities, and the corres-
ponding witnesses will be the RHS of these, after replacing back the Skolem constants by variables.

The strategy is applied similarly to a metavariable from the goal, here the variables of the cover–
set terms are replaced by metavariables. If on some branch the cover–set term is constant (it contains
no metavariables), then the solution is constant and it may impose certain conditions on the Skolem
constants involved in the goal, which will be used as conditions on the inputs (which correspond to the
respective Skolem constants) in the final expression of the algorithm. In order to ensure mutual exclusion,
the negation of these conditions are transmitted as additional assumptions to the next branches.

ST-3: Induction. We use Noetherian induction based on the well–founded ordering between lists deter-
mined by the strict inclusion of the corresponding multisets. This ordering checked either syntactically
by the meta-relation between terms induced by the strict inclusion of the multisets of constants occur-
ring in the terms, either semantically by using the current assumptions: for instance if M [a0 ` U0] is a
cover–set term for the target constant M [X0] then U0 is smaller than X0.

When a ground term t represents an object which is smaller than the target constant X0 of the target
goal P[X0], then P[t] may be used as an assumption. The prover applies this by inserting the target
function directly instead of the existential quantifed variable.

Example: The target function is F [X ,Y], the target goal P[X0] is ∀
Y
(I[X0] =⇒ ∃

Z
O[X0,Y,Z]), (X0 is

the target constant), the current cover–set term is t ′ (note that t ′ is an alternative representation of X0), and
t is smaller than X0 in the well–founded ordering. The instance P[t] of the target goal is ∀

Y
(I[t,Y] =⇒

∃
Z

O[t,Y,Z]), The prover adds the assumption ∀
Y
(I[t,Y] =⇒ O[t,Y,F [t,Y]]) Typically in the subsequent

proof this will be instantiated with a ground term s, then I[t,s] will be proven and O[t,s,F [T,s]] will be
obtained as assumption, leading to the replacement of some subterm[s] of the goal with F [t,s]. In this
way the recursive calls of F are explicitly generated in the synthesized algorithm.

This strategy is applied in a similar manner to metavariables, when they occur in the goal. When
a metavariable Y ∗ represents an object which is smaller than the target constant X0, then P[Y ∗] may be
used as an assumption for reducing the current goal (see reduction of goal (10) in Proof 1).

ST-4: Cascading. This strategy consists in proving separately a conjecture for synthesizing the algo-
rithm for some auxiliary functions needed in the current proof. The Skolem constants from the current
goal become universal variables x,x′, . . . , the metavariables from the current goal become existential

3 In fact also ground terms can be subject to cover–set decomposition, and this needs in the synthesized algorithm, because
the conditional or the pattern matching branching, also an assignment programming instruction.

6 Synthesis of Sorting Algorithms

variables y,y′, . . . , and the conjecture has the structure4:

∀
x
∀
x′
. . .(P[x,x′, . . .] =⇒∃

y
∃
y′
. . .Q[x,x′, . . . ,y,y′, . . .]) (1)

P[x,x′, . . .] is composed from the assumptions which contain only the Skolem constants present in the
goal, and Q[x,x′, . . . ,y,y′, . . .] is composed from the goal. A successfull proof of the conjecture generates
the functions f [x,x′, . . .], f ′[x,x′, . . .], . . . , which have the property:

∀
x
∀
x′
. . .(P[x,x′, . . .] =⇒ Q[x,x′, . . . , f [x,x′, . . .], f ′[x,x′, . . .], . . .]) (2)

The current proof continues after adding this property to the assumptions, thus if some of the generated
functions are necessary later in the proof, they can be used without a new cascading step. The goal and
the assumptions will change by using this property by using the inference rules of the prover, however in
certain special (and typical) situations the changes can be applied directly as described in the sequel:

When a subgoal is M [X∗] = M [t]]M [t ′]] . . . , (where t, t ′, . . . are ground — may contain Skolem
constants), then let M [t1],M [t2] be a pair such that the type of t2 is a list. The conjecture is5 ∀

x
∀
X
(P[x,X] =⇒

∃
Y

Q[x,X ,Y]). If t1 is {{a}} (a domain element), then x represents this element, while if t1 is of list type,

then so is also x. Note that for lists the whole terms (t1, t2) correspond to the universal variables in the
conjecture, and not the individual Skolem constants.The function f [x,X] generated by cascading has the
property ∀

x
∀
X
(P[x,X] =⇒ Q[x,X ,F [x,X]]) and in the corresponding subgoal the pair M [t1],M [t2] is

replaced by M [F [a, t2]] (if t1 is {{a}}) or by M [F [t1, t2]] (if t1 is a list).
ST-5: Pair multisets. This strategy applies when the goal contains an equality of the shape: M [Y ∗] =
M [t1]]M [t2]] . . . , where Y ∗ is the metavariable we need to solve, and t1, t2, . . . are ground terms. A
typical flow of the proof consists in transforming the union on the RHS of the equality into a single M [t],
because this gives the solution Y ∗→ t. To this effect the prover groups pairs of operands of] together
(no matter whether they are contingent or not, because commutativity), creating alternatives for different
groupings. For this pair a conjecture is created as described at strategy ST-4, and its result is considered
to be this goal (as opposite to “true” when the proof succeeds, or “false” when it fails). from which a
multiset term which equals the union of the pairs can be constructed in one of the following ways:

(i) the corresponding function is already known, then the proof works by predicate logic.

(ii) induction can be applied (if the target function is binary);

(iii) a separate synthesis proof of the conjecture is necessary – see ST-4 (cascading).

ST-6: Split. When a union of multisets in the RHS of the goal must be sorted and it contains {{a}} and
M [X] where a and X are incomparable, split X into X1,X2 such that X1 ≤ a and a < X2. For this a certain
conjecture is produced, which is proven either because the properties of the appropriate functions are
among the assumptions, or by cascading. After cascading the defining property of the two functions is
added to the assumptions in order to be reused if necessary. Furthermore this property is instantiated
with the terms which triggered the split, namely {{a}} and X and in the goal M [X] is replaced by
M [X1]]M [X2] reordering the union such that the sorting is easier.
ST-7: Conditional branches. When the proof finishes by inference rule IR-11 (simple goal conditional
assumption), the prover creates a parallel branch in which the negation of the respective conditional

4By convention, here x,x′,y,y′ represent any kind of objects: domain elements or lists.
5By convention, here x represents any kind of objects: domain elements or lists, while X ,Y represent lists.

I. Dramnesc, T. Jebelean 7

assumption is assumed. In this way the prover discovers an useful disjunction to be used in proof by
cases, and which corresponds to a conditional in the synthesized algorithm.
ST-8: Split goal equation. When the goal contains several metavariables in an equation, then split the
equation into several ones, such that only one metavariable occurs in every new equation. Uses heuristics
to match the appropriate values.

3 Synthesis of Sorting

The experiments start with the synthesis of sorting — the target function is Sort. (By cascading this will
trigger the synthesis of other auxiliary algorithms for insertion, merging, and splitting.) According to
Conjecture 1 the synthesis conjecture is:

Conjecture 3. ∀
X
∃
V
(M [V] = M [X]∧ IsSorted[V]).

Proof 1: Sort list by definition–based cover set.
By IR-1 (quantified variables): Skolemize universal X to target constant X0, producing the target goal:

∃
V

M [V] = M [X0]∧ IsSorted[V] (3)

and use metavariable V ∗ for the existential V :

M [V ∗] = M [X0]∧ IsSorted[V ∗] (4)

Two alternatives are pursued, by applying strategy ST-2 (cover set) to the metavariable V ∗ or to the
Skolem constant X0 :

Alternative 1: Apply ST-2 (cover set) to V ∗ with the cover set determined by the domain definition:
{〈〉, a∗ `U∗}

Case 1: 〈〉: The goal (4) becomes:

M [〈〉] = M [X0]∧ IsSorted[〈〉] (5)

By IR-2 (assumed subgoal) using Definition 1 the goal (5) becomes:

M [〈〉] = M [X0] (6)

By ST-2 (cover set) the proof succeeds on this branch, the witness is 〈〉, the condition on the
input is X = 〈〉, and the cumulated condition on the input for the next branch is X0 6= 〈〉.
Case 2: {a∗ `U∗}: The condition on X0 from the previous branch is added as assumption:

X0 6= 〈〉 (7)

The goal (4) becomes:

M [a∗ `U∗] = M [X0]∧ IsSorted[a∗ `U∗] (8)

and the current solution for V ∗ is a∗ ` U∗. By inference rule IR-6 (reduce composite argu-
ment) using Definition 1 the goal (8) becomes:

M [a∗ `U∗] = M [X0]∧a∗ ≤U∗∧ IsSorted[U∗] (9)

8 Synthesis of Sorting Algorithms

By IR-4 (backward inference) U∗ is replaced by Sort[W ∗] and the goal becomes:

M [a∗ ` Sort[W ∗]] = M [X0]∧a∗ ≤ Sort[W ∗]∧ IsSorted[Sort[W ∗]] (10)

and the intermediate solution for V ∗ is a∗ ` Sort[W ∗]. Since a∗ ` Sort[W ∗] stands for V ∗

which has the same elements as the target constant X0, the prover infers that W ∗ is less
than X0 in the well–founded ordering, thus by ST-3 (induction) the target goal is used with
X →W ∗ and V → Sort[W ∗] to generate the assumption:

M [Sort[W ∗]] = M [W ∗]∧ IsSorted[Sort[W ∗]] (11)

The second conjunct of this assumption is used to reduce the goal (10) by rule IR-2 to:

M [a∗ ` Sort[W ∗]] = M [X0]∧a∗ ≤ Sort[W ∗] (12)

The first conjunct is used by IR-10 (use equivalence) to reduce the last goal to:

M [a∗ `W ∗] = M [X0]∧a∗ ≤W ∗ (13)

Apply ST-4 (cascading) to this goal and generate the conjecture:
Conjecture 4. ∀

X
(X 6= 〈〉=⇒∃

a
∃
U
(M [a `U] = M [X]∧a≤U)).

The proof Proof 3 synthesizes the functions min[X] and Trim[X] which split a list into its
minimum and the rest. By ST-4 (cascading) the new assumption is:

∀
X
(X 6= 〈〉=⇒ (M [min[X]` Trim[X]] = M [X]∧min[X]≤ Trim[X])) (14)

Using (7) this solves the goal (13) with the witnesses: a∗ → min[X0] and W ∗ → Trim[X0],
which gives for V ∗ the final solution min[X0]` Sort[Trim[X0]]. The algorithm is:
Algorithm 1. Min-Sort.

∀
U

(
Sort[〈〉] = 〈〉

U 6= 〈〉=⇒ Sort[U] = min[U]` Sort[Trim[U]]

)
Alternative 2: Apply ST-2: choose for X0 the cover set suggested by the definition of lists:
{〈〉, a0 `U0}, and start the corresponding two branches:

Case 1: 〈〉 is trivial. The solution is {V ∗→ 〈〉}.
Case 2: a0 `U0 :
Goal:

M [V ∗] = M [a0 `U0]∧ IsSorted[V ∗]. (15)

By IR-8 (expand multiset) using Property 1 the goal becomes:

M [V ∗] = {{a0}}]M [U0]∧ IsSorted[V ∗]. (16)

Two alternatives are pursued, depending on how this goal is treated.
Alternative 1: Strategy ST-3 (induction) uses U0 (smaller than X0) to produce the as-
sumption:

M [Sort[U0]] = M [U0]∧ IsSorted[Sort[U0]] (17)

I. Dramnesc, T. Jebelean 9

By IR-1 (split conjunction), assumption (17) becomes:

M [Sort[U0]] = M [U0] (18)

IsSorted[Sort[U0]] (19)

By IR-5 (rewrite by equality) using (18) transform (16) into:

M [V ∗] = {{a0}}]M [Sort[U0]]∧ IsSorted[V ∗]. (20)

Apply ST-5 (pair multisets) to {{a}} and M [Sort[U0]] using (19) and (20) to produce the
conjecture:
Conjecture 5. ∀

a
∀
X
(IsSorted[X] =⇒ ∃

V
(M [V] = {{a}}]M [X]∧ IsSorted[V])).

The proof of this conjecture is Proof 6 and it produces the function Insert[a,X] which
inserts an element in a sorted list, keeping it sorted. Using the principles from ST-4
(cascading) the new assumption is:

∀
a
∀
X
(IsSorted[X] =⇒ (M [Insert[a,X]] = {{a}}]M [X]∧IsSorted[Insert[a,X]])). (21)

and the goal (20) becomes:

M [V ∗] = M [Insert[a0,Sort[U0]]]∧ IsSorted[V ∗]. (22)

By IR-7 (solve metavariable) the solution for V ∗ is Insert[a0,Sort[U0]] and the goal
reduces to the assumption 19, thus the proof succeeds and the algorithm is:
Algorithm 2. Insert-Sort.

∀
a,U

(
Sort[〈〉] = 〈〉

Sort[a `U] = Insert[a,Sort[U]]

)
Alternative 2: The RHS of the equality in the goal (16) represents a list which must
be sorted and it contains {{a0}} and M [U0], where a0 and U0 are incomparable by the
current assumptions. Therefore apply strategy ST-6 (split) to generate the conjecture:
Conjecture 6. ∀

a
∀
X
∃
V1
∃
V2
(M [X] = M [V1]]M [V2]∧V1 ≤ a∧a <V2).

Proof 5 of this conjecture generates the algorithms for the functions SmallEq[a,X] and
Bigger[a,X] which split the list X into two lists having elements which are smaller,
respectively bigger than a.
By strategy ST-4 (cascading) the new assumption is:

∀
a
∀
X
(M [X] =M [SmallEq[a,X]]]M [Bigger[a,X]]∧SmallEq[a,X]≤ a∧a<Bigger[a,X]).

(23)
By strategy ST-6 (split) this is instantiated with a0 and U0 to produce:

M [U0] = M [SmallEq[a0,U0]]]M [Bigger[a0,U0]]∧
SmallEq[a0,U0]≤ a0∧a0 < Bigger[a0,U0]).

(24)

and the goal (16) is transformed into:

M [V ∗] = M [SmallEq[a0,U0]]]{{a0}}]M [Bigger[a0,U0]]∧ IsSorted[V ∗]. (25)

10 Synthesis of Sorting Algorithms

The conjunction (24) is decomposed into three assumptions by IR-1:

M [U0] = M [SmallEq[a0,U0]]]M [Bigger[a0,U0]] (26)

SmallEq[a0,U0]≤ a0 (27)

a0 < Bigger[a0,U0]). (28)

Because (26) neither of SmallEq[a0,U0] and Bigger[a0,U0] can have more elements than
U0 and this is smaller in the well–founded ordering than the target constant X0 because
it is a part of a cover–set term. Thus strategy ST-3 (induction) can be applied to both of
them, producing the assumptions:

M [SmallEq[a0,U0]] = M [Sort[SmallEq[a0,U0]]] (29)

IsSorted[Sort[SmallEq[a0,U0]]] (30)

M [Bigger[a0,U0]] = M [Sort[Bigger[a0,U0]]] (31)

IsSorted[Sort[Bigger[a0,U0]]] (32)

By IR-5 using (29) and (31) replace in goal (16) the corresponding subterms to obtain:

M [V ∗] = M [Sort[SmallEq[a0,U0]]]]{{a0}}]M [Sort[Bigger[a0,U0]]]∧ IsSorted[V ∗].
(33)

Apply strategy ST-5 (pair multisets) to {{a0}} and M [Sort[Bigger[a0,U0]]] and produce:
Conjecture 7. ∀

a
∀
X
((a≤X∧IsSorted[X])=⇒∃

V
(M [V] = {{a}}]M [X]∧IsSorted[V])).

This is solved by the existing function cons and the new goal is:

M [V ∗] = M [Sort[SmallEq[a0,U0]]]]M [a0 ` Sort[Bigger[a0,U0]]]∧ IsSorted[V ∗].
(34)

By forward inference using the current assumptions and the properties of inequality we
obtain: Sort[SmallEq[a0,U0]]≤ a0 < Sort[Bigger[a0,U0]]], IsSorted[a0 ` Sort[Bigger[a0,U0]]]
and Sort[SmallEq[a0,U0]]≤ a0 ` Sort[Bigger[a0,U0]].
Pair multisets M [Sort[SmallEq[a0,U0]]] and M [a0 ` Sort[Bigger[a0,U0]]] to obtain:
Conjecture 8. ∀

X
∀
Y
((X ≤Y ∧IsSorted[X]∧IsSorted[Y])=⇒∃

V
(M [V] =M [X]]M [Y]∧

IsSorted[V])).
The proof Proof 7 generates the algorithm Conc for concatenation which puts two lists
together, and if the conditions are like above, the result is sorted. The new goal is:

M [V ∗] = M [Conc[Sort[SmallEq[a0,U0]]],a0 ` Sort[Bigger[a0,U0]]]∧ IsSorted[V ∗].
(35)

which gives the obvious solution to V ∗ and the algorithm Quick-Sort:

I. Dramnesc, T. Jebelean 11

Algorithm 3. Quick-Sort.

∀
a,U

(
Sort[〈〉] = 〈〉

Sort[a `U] = Conc[Sort[SmallEq[a,U]],a ` Sort[Bigger[a,U]]]

)
QED

Another approach is to consider a covers set corresponding to the divide–and–conquer principle:
{〈〉, a` 〈〉, Conc[U,V]} (where U,V are nonempty). Here Conc is used as a pattern matching construct,
which can be used on the LHS of a rewrite rule, and it comes together with a simple splitting function,
which gives two nonempty lists from a list with at least two elements. (For lack of space we omit here a
possible splitting algorithm and its automatic generation by the principles presented in this paper.) The
proof proceeds in a similar manner, with several alternatives and successful branches, from which we
summarize below only the most interesting ones.
Proof 2: Sort list by divide–and–conquer cover set.
By quantified inferences the target goal is the same as in the previous proof:

M [V ∗] = M [X0]∧ IsSorted[V ∗]. (36)

In all alternatives the cases 〈〉 and a ` 〈〉 are straightforward.

Alternative 1: Application of the cover–set strategy to metavariable V ∗ produces Quick–Sort.

Alternative 2: Application of the cover–set strategy to X0.

Case 1: 〈〉 straightforward.

Case 2: a0 ` 〈〉 straightforward.

Case 3: Conc[U1,U2] : After splitting the multiset the goal becomes:

M [V ∗] = M [U1]]M [U2]∧ IsSorted[V ∗]. (37)

After induction6 (we do not list the obvious assumptions):

M [V ∗] = M [Sort[U1]]]M [Sort[U2]]∧ IsSorted[V ∗]. (38)

By pairing the two multisets we have the conjecture:
Conjecture 9.
∀

U1,U2
(IsSorted[U1]∧ IsSorted[U2] =⇒ ∃

W
(M [W] = M [U1]]M [U2]∧ IsSorted[W])).

The proofs in subsection 5.3 synthesize in several versions of the algorithm Merge which
combines two sorted lists into a sorted one. The corresponding sorting algorithm is:
Algorithm 4. Merge Sort.

∀
a,U,V

 Sort[〈〉] = 〈〉
Sort[a ` 〈〉] = a ` 〈〉

Sort[Conc[U,V]] = Merge[Sort[U],Sort[V]]

QED

6Note that induction can be applied only when U1,U2 are assumed nonempty.

12 Synthesis of Sorting Algorithms

4 Splitting

4.1 Split into minimum/rest of elements.

The target functions are min[X] which selects from X the minimum element according to the domain
ordering and Trim[X] which gives the list without it. We need to prove Conjecture 4.
Proof 3: Min and Trim.
By natural style proving, take X0 arbitrary but fixed, assume:

X0 6= 〈〉 (39)

and prove:
∃
y
∃
Y
(M [X0] = M [Y]]{{y}}∧ y≤ X0). (40)

By ST-1 the goal is:
M [X0] = M [Y ∗]]{{y∗}}∧ y∗ ≤ X0. (41)

Apply ST-2 (cover set) on X0, using only a0 `U0 because (39).
Case 1: X0 : a0 `U0:
The goal is:

M [a0 `U0] = M [Y ∗]]{{y∗}}∧ y∗ ≤ a0 `U0. (42)

Apply IR-6 and the goal becomes:

M [a0 `U0] = M [Y ∗]]{{y∗}}∧ y∗ ≤ a0∧ y∗ ≤U0. (43)

Apply ST-4 (cascading) to generate the conjecture:
Conjecture 10. ∀

X
∀
a
∃
y
∃
Y
(M [a ` X] = M [Y]]{{y}}∧ y≤ a∧ y≤ X).

Proof 4 synthesizes minAux and TrimAux which have the property:

∀
X
∀
a
(M [a ` X] = M [TrimAux[a,X]]]{{minAux[a,X]}}∧minAux[a,X]≤ a∧minAux[a,X]≤ X)

(44)
and which solvethe goal (43) using the witnesses {Y ∗→ TrimAux[a0,U0], y∗→ minAux[a0,U0]}.

QED
We prove now Conjecture 10.
Proof 4: Min and Trim auxiliary.
By ST-1 the goal is:

M [a0 ` X0] = M [Y ∗]]{{y∗}}∧ y∗ ≤ a0∧ y∗ ≤ X0 (45)

Apply ST-2 (cover set) on X0.

Case 1: X0 : 〈〉 The solutions are: {y∗→ a0, Y ∗→ 〈〉}.
Case 2: X0 : b0 `U0 Prove:

M [a0 ` (b0 `U0)] = M [Y ∗]]{{y∗}}∧ y∗ ≤ a0∧ y∗ ≤ b0 `U0 (46)

Apply IR-8 (expand multisets) and IR-6 (reduce composite argument) and the goal becomes:

{{a0}}]{{b0}}]M [U0] = M [Y ∗]]{{y∗}}∧ y∗ ≤ a0∧ y∗ ≤ b0∧ y∗ ≤U0 (47)

Two cases for domain element constants are generated by rule IR-12 (two constants):

I. Dramnesc, T. Jebelean 13

Case 1:
a0 ≤ b0 (48)

Apply ST-3 (induction) on U0,a0 in (45) and add the assumption:

M [U0]]{{a0}}= M [TrimAux[a0,U0]]]{{minAux[a0,U0]}}∧
minAux[a0,U0]≤ a0∧minAux[a0,U0]≤U0

(49)

Apply IR-5 (rewrite by equality) in (47) using (49) and the goal becomes:

M [TrimAux[a0,U0]]]{{minAux[a0,U0]}}]{{b0}}= M [Y ∗]]{{y∗}}∧
y∗ ≤ a0∧ y∗ ≤ b0∧ y∗ ≤U0

(50)

Split goal equation by strategy ST-8 to transform the goal into:

M [TrimAux[a0,U0]]]{{b0}}= M [Y ∗]∧
{{minAux[a0,U0]}}= {{y∗}}∧ y∗ ≤ a0∧ y∗ ≤ b0∧ y∗ ≤U0

(51)

Apply IR-7 to obtain solutions:
{y∗→ minAux[a0,U0],Y ∗→ b0 ` TrimAux[a0,U0]} and the remaining goal is:

minAux[a0,U0]≤ a0∧minAux[a0,U0]≤ b0∧minAux[a0,U0]≤U0 (52)

Apply IR-2 using (49) and the remaining goal is:

minAux[a0,U0]≤ b0 (53)

From (49) and (48) by transitivity goal (53) is proven.
Case 2:

b0 < a0 (54)

The proof proceeds similarly (apply (induction) on U0,b0 in (45)) and the obtained solutions
are: {y∗→ minAux[b0,U0],Y ∗→ a0 ` TrimAux[b0,U0]}.

QED
The extracted algorithms from the proofs are:

Algorithm 5. Min.

∀
a,b,U

min[a `U] = minAux[a,U]

minAux[a,〈〉] = a

minAux[a,b `U] =

{
minAux[a,U], if a≤ b

minAux[b,U], if b < a

Algorithm 6. Trim.

∀
a,b,U

Trim[a `U] = TrimAux[a,U]

TrimAux[a,〈〉] = 〈〉

TrimAux[a,b `U] =

{
b ` TrimAux[a,U], if a≤ b

a ` TrimAux[b,U], if b < a

14 Synthesis of Sorting Algorithms

4.2 Split into smaller/bigger elements.

We need functions SmallEq[a,X] and Bigger[a,X] which select from X the elements which are smaller
or equal, respectively strictly bigger than a according to the domain ordering. We prove Conjecture 6.
Proof 5: Split.
Apply ST-1 skolemize a to a0 and X to X0 (target constant), metavariables V ∗,W ∗

M [X0] = M [V ∗]]M [W ∗]∧V ∗ ≤ a0∧a0 <W ∗. (55)

Apply strategy ST-2 (cover set) {〈〉,a1 `U0}
Case 1: 〈〉 is trivial. The solutions are: {V ∗→ 〈〉,W ∗→ 〈〉}
Case 2: a1 `U0

M [a1 `U0] = M [V ∗]]M [W ∗]∧V ∗ ≤ a0∧a0 <W ∗. (56)

Apply IR-8 (expand multiset)

{{a1}}]M [U0] = M [V ∗]]M [W ∗]∧V ∗ ≤ a0∧a0 <W ∗. (57)

Apply ST-3 (induction) on U0 (smaller than X0) and add the new assumption:

M [U0] = M [SmallEq[a0,U0]]]M [Bigger[a0,U0]]∧SmallEq[a0,U0]≤ a0∧a0 < Bigger[a0,U0].
(58)

Apply IR-1 (split conjunction)

M [U0] = M [SmallEq[a0,U0]]]M [Bigger[a0,U0]] (59)

SmallEq[a0,U0]≤ a0∧a0 < Bigger[a0,U0] (60)

Apply IR-5 (replace by equality in goal)

{{a1}}]M [SmallEq[a0,U0]]]M [Bigger[a0,U0]] =M [V ∗]]M [W ∗]∧V ∗ ≤ a0∧a0 <W ∗. (61)

By inference rule IR-12 (two constants) issue cases:

Case 1:
a1 ≤ a0 (62)

Apply strategy ST-8 (split goal equation) to change the goal:

{{a1}}]M [SmallEq[a0,U0]] = M [V ∗]∧V ∗ ≤ a0 (63)

M [Bigger[a0,U0]] = M [W ∗]∧a0 <W ∗. (64)

Apply IR-9 in (63), IR-7 in both (63) and (64), the obtained solutions are:
{V ∗→ a1 ` SmallEq[a0,U0],W ∗→ Bigger[a0,U0]} and the remaining goal is true by apply-
ing IR-2 using (60).
Case 2:

a0 < a1 (65)

Similarly, the obtained solutions are: {V ∗→ SmallEq[a0,U0],W ∗→ a1 ` Bigger[a0,U0]}.

I. Dramnesc, T. Jebelean 15

QED
The extracted algorithms from the proof are:

Algorithm 7. SmallEq

∀
a,b,U

 SmallEq[a,〈〉] = 〈〉

SmallEq[a,b `U] =

{
b ` SmallEq[a,U], if a≤ b

SmallEq[a,U], if b < a

Algorithm 8. Bigger

∀
a,b,U

 Bigger[a,〈〉] = 〈〉

Bigger[a,b `U] =

{
Bigger[a,U], if a≤ b

b ` Bigger[a,U], if b < a

5 Merging

5.1 Adding an element to a sorted list

We prove Conjecture 5.
Proof 6: Insert.

By IR-1 (quantified variables) the goal becomes:

IsSorted[X0] =⇒ (M [V ∗] = {{a0}}]M [X0]∧ IsSorted[V ∗]) (66)

Apply ST-2 (cover set) on X0 :

Case 1: 〈〉 is trivial. The solution is {V ∗→ a ` 〈〉}.

Case 2: b0 `U0:
Assume:

IsSorted[b0 `U0] (67)

which is expanded by applying IR-6 using Definition 1 in:

b0 ≤U0∧ IsSorted[U0] (68)

Prove:
M [V ∗] = {{a0}}]M [b0 `U0]∧ IsSorted[V ∗] (69)

Apply IR-8 and the goal becomes:

M [V ∗] = {{a0}}]{{b0}}]M [U0]∧ IsSorted[V ∗] (70)

Apply twice IR-9 and the new goal is:

M [V ∗] = M [a0 ` (b0 `U0)]∧ IsSorted[V ∗] (71)

Apply IR-7, obtain substitution {V ∗→ a0 ` (b0 `U0)} and prove:

IsSorted[a0 ` (b0 `U0)] (72)

16 Synthesis of Sorting Algorithms

Apply IR-6 and the goal becomes:

a0 ≤ b0∧b0 ≤U0∧ IsSorted[U0] (73)

Apply IR-2 using (68) and the remaining goal is:

a0 ≤ b0 (74)

Which, according to IR-11 becomes the conditional assumption on this branch.

Apply ST-7 using (74) to generate another branch in the proof with the assumption:

b0 < a0 (75)

Prove:

M [V ∗] = {{b0}}]{{a0}}]M [U0]∧ IsSorted[V ∗] (76)

Apply ST-3 (induction) on U0 (smaller than X0) and add the assumptions:

M [Insert[a0,U0]] = {{a0}}]M [U0] (77)

IsSorted[Insert[a0,U0]] (78)

Apply IR-5 using (77) and the goal (76) becomes:

M [V ∗] = {{b0}}]M [Insert[a0,U0]]∧ IsSorted[V ∗] (79)

Apply IR-9 and the goal is:

M [V ∗] = M [b0 ` Insert[a0,U0]]∧ IsSorted[V ∗] (80)

Apply IR-7, the substitution is {V ∗→ b0 ` Insert[a0,U0]} with the remaining goal:

IsSorted[b0 ` Insert[a0,U0]] (81)

which is proven by applying IR-6 and IR-2 using (78),(68) and (75)

QED
From this proof the following algorithm is extracted:

Algorithm 9. Insert an element in a sorted list.

∀
a,b,U

 Insert[a,〈〉] = a ` 〈〉

Insert[a,b `U] =

{
a ` (b `U), if a≤ b

b ` Insert[a,U], if b < a

I. Dramnesc, T. Jebelean 17

5.2 Merging two sorted lists knowing X ≤ Y

We need to prove Conjecture 8.
Proof 7: Concatenation.

By IR-1 (quantified variables) the goal becomes:

(X0 ≤ Y0∧ IsSorted[X0]∧ IsSorted[Y0]) =⇒ (M [V ∗] = M [X0]]M [Y0]∧ IsSorted[V ∗]) (82)

Apply ST-2 (cover set) on X0 :

Case 1: 〈〉 is trivial. The solution is {V ∗→ Y0}.
Case 2: {a0 `U0}:
Assume:

a0 `U0 ≤ Y0∧ IsSorted[a0 `U0]∧ IsSorted[Y0] (83)

a0 ≤ Y0∧U0 ≤ Y0∧a0 ≤U0∧ IsSorted[U0] (84)

Prove:
M [V ∗] = M [a0 `U0]]M [Y0]∧ IsSorted[V ∗] (85)

Apply IR-8 (expand multiset) and the new goal is:

M [V ∗] = {{a0}}]M [U0]]M [Y0]∧ IsSorted[V ∗] (86)

Apply ST-3 (induction on U0 smaller than X0) and add the assumptions:

M [Conc[U0,Y0]] = M [U0]]M [Y0] (87)

IsSorted[Conc[U0,Y0]] (88)

Apply IR-5 (rewrite by equality) using (87) and the goal (86) becomes:

M [V ∗] = {{a0}}]M [Conc[U0,Y0]]∧ IsSorted[V ∗] (89)

Apply IR-9 and prove:

M [V ∗] = M [a0 ` Conc[U0,Y0]]∧ IsSorted[V ∗] (90)

Apply IR-7, the obtained substitution is {V ∗→ a0 ` Conc[U0,Y0]} and the remaining goal is:

IsSorted[a0 ` Conc[U0,Y0]] (91)

Which is proven by applying IR-6 and IR-2 using (88), (84).

QED
The extracted algorithm from the proof is:

Algorithm 10. Concatenation

∀
a,U,Y

(
Conc[〈〉,Y] = Y

Conc[a `U,Y] = a ` Conc[U,Y]

)

18 Synthesis of Sorting Algorithms

5.3 Merging two sorted lists in a sorted list

We prove Conjecture 9.
Proof 8: Merge.

By IR-1 (quantified variables) the goal becomes:

IsSorted[X0]∧ IsSorted[Y0]) =⇒ (M [W ∗] = M [X0]]M [Y0]∧ IsSorted[W ∗]) (92)

Apply ST-2 (cover set) on X0 :

Case 1: 〈〉: Similar as in the previous proof the solution is {W ∗→ Y0}.
Case 2: a0 `U0:
The goal is similar with (85) and is expanded in

M [W ∗] = {{a0}}]M [U0]]M [Y0]∧ IsSorted[W ∗] (93)

Alternative 1: Apply strategy ST-3 which uses U0 (smaller than X0) to add the assumptions:

M [Merge[U0,Y0]] = M [U0]]M [Y0] (94)

IsSorted[Merge[U0,Y0]] (95)

Apply IR-5 using (94) and goal (93) becomes:

M [W ∗] = {{a0}}]M [Merge[U0,Y0]]∧ IsSorted[W ∗] (96)

Apply ST-4 (cascading) to {{a0}} and M [Merge[U0,Y0]] using (95) and (96) to produce Con-
jecture 5. The proof of this conjecture is Proof 6. Using the principles from ST-4 the new
assumption is:

∀
a
∀
X

(
IsSorted[X] =⇒ (M [Insert[a,X]] = {{a}}]M [X]∧ IsSorted[Insert[a,X]])

)
(97)

and goal (96) becomes:

M [W ∗] = M [Insert[a,Merge[U0,Y0]]]∧ IsSorted[W ∗] (98)

By IR-7 obtain {W ∗→ Insert[a0,Merge[U0,Y0]]} and the remaining goal is:

IsSorted[Insert[a,Merge[U0,Y0]]] (99)

which by implicit properties reduces to assumption (95).
The extracted algorithm from the proof is:
Algorithm 11. Merge sorted lists using insert, version 1.

∀
a,U,V

(
Merge[〈〉,V] =V

Merge[a `U,V] = Insert[a,Merge[U,V]]

)
This is of course not the most efficient algorithm because the induction is not used on both
arguments (as it is done in the sequel, see below). A hint about inefficiency is that the property
of U to be sorted is not used in the proof, but this has also a positive side: Merge[U,〈〉] is a
sorting algorithm, essentially equivalent to insert sort.

I. Dramnesc, T. Jebelean 19

Alternative 2: the proof may continue from the goal (93) by applying strategies ST-5 (pair
multisets) and ST-4 (cascading) to the multiset terms {{a}} and M [V0]. First the same cas-
cading conjecture will be produced for the same insertion function, and the goal becomes:

M [W ∗] = M [U0]]M [Ins[a,V0]]∧ IsSorted[W ∗] (100)

with the additional assumption: IsSorted[Ins[a,V0]]. We can apply now strategy ST-3 (induc-
tion) to the pair of multiset terms and construct the list U1 which is sorted and whose multiset
is equal to the union. Therefore the solution is W ∗→U1 and the merging algorithm is:
Algorithm 12. Merge sorted lists using insert, version 2.

∀
a,U,V

(
Merge[〈〉,V] =V

Merge[a `U,V] = Merge[U, Insert[a,V]]

)
This algorithm, although not optimal, is interesting because it is tail–recursive, and, since
only the second argument needs to be sorted, it can also be used for sorting as Merge[U,〈〉],
which is again insert sort.
Remark. One may say that the proof may continue from the goal (93) by applying strategies
ST-5 (pair multisets) and ST-4 (cascading) to the multiset terms {{a}} and M [U0], but would
result in an algorithm which generates an infinite loop
Algorithm 13. Merge sorted lists using insert (infinite loop).

∀
a,U,V

(
Merge[〈〉,V] =V

Merge[a `U,V] = Merge[Insert[a,U],V]

)
This algorithm is not generated by our prover because Insert[a0,U0] is not smaller than a0 `
U0 and is not accepted as assumption at the induction step.
Alternative 3: the proof may continue from the goal (93) by applying ST-2 (cover set) on Y0.

Case 3.1: 〈〉: Similarly, the solution is {W ∗→ a0 `U0}.
Case 3.2: b0 `V0: The assumptions are:

IsSorted[b0 `V0]∧b0 ≤V0∧ IsSorted[V0] (101)

Prove:
M [W ∗] = {{a0}}]M [U0]]{{b0}}]M [V0]∧ IsSorted[W ∗] (102)

Apply ST-5 (pair multisets) and generate alternatives. Several algorithms are generated.
We illustrate a few of them. One version of the algorithm is the efficient classical one:
Algorithm 14. Merge sorted lists, version 3.

∀
a,b,U,V

Merge[〈〉,V] =V

Merge[a `U,〈〉] = a `U

Merge[a `U,b `V] =

{
a ` Merge[U,b `V], if a≤ b

b ` Merge[a `U,V], if b < a

If grouping U0 with V0, then the extracted algorithm will be:
Algorithm 15. Merge sorted lists using insert, version 4.

∀
a,b,U,V

 Merge[〈〉,V] =V

Merge[a `U,〈〉] = a `U

Merge[a `U,b `V] = Insert[a, Insert[b,Merge[U,V]]]

If grouping U0,b0,V0, then the extracted algorithm will be:

20 Synthesis of Sorting Algorithms

Algorithm 16. Merge sorted lists using insert, version 5.

∀
a,b,U,V

 Merge[〈〉,V] =V

Merge[a `U,〈〉] = a `U

Merge[a `U,b `V] = Insert[a,Merge[U,b ` B]]

Other versions of Mergealgorithm differ in the last branch of the definition:
Insert[b,Merge[a `U,V]], Merge[Insert[a,U], Insert[b,V]], etc.

QED

6 Conclusions and Further Work

We demonstrate the possibility of automatic synthesis of complex algorithms on (possibly sorted) lists,
using the notion of multiset. The proofs are more efficient than by using general resolution, because spe-
cific inference rules and strategies which are also taylored for synthesis proofs, notably for discovering
concrete induction principles. The various algorithms which are produced can constitute a test field for
methods of automatic evaluation of efficiency, time and space consumption, etc. A distinctive feature
of our approach is the use of natural–style proofs, which is facilitated by the Theorema system. The
natural style of proving (as formula notation, as proof text, and as inference steps) has the advantage of
allowing human inspection in an intuitive way, and this facilitates the development of intuitive inference
rules which embed the knowledge about the underlying domains. The experiments presented here con-
tinue our previous work on synthesis of deletion algorithms, as well as merging and inserting on lists and
trees, and are a prerequisite for further work on synthesis of more complex algorithms for sorting and
searching using trees, including algorithms which combine operations on several domains.

References

[1] W. D. Blizard. Multiset Theory. Notre Dame Journal of Formal Logic, 30(1):36–66, 1989.

[2] B. Buchberger. Algorithm Invention and Verification by Lazy Thinking. Analele Universitatii din Timisoara,
Seria Matematica - Informatica, XLI:41–70, 2003.

[3] B. Buchberger and A. Craciun. Algorithm Synthesis by Lazy Thinking: Using Problem Schemes. In Pro-
ceedings of SYNASC 2004, pages 90–106, 2004.

[4] B. Buchberger, C. Dupre, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, and W. Windsteiger. The The-
orema project: A progress report. In Calculemus 2000, pages 98–113. A.K. Peters, Natick, Massachusetts,
2000.

[5] B. Buchberger, T. Jebelean, T. Kutsia, A. Maletzky, and W. Windsteiger. Theorema 2.0: Computer-Assisted
Natural-Style Mathematics. Journal of Formalized Reasoning, 9(1):149–185, 2016.

[6] A. Bundy, L. Dixon, J. Gow, and J. Fleuriot. Constructing Induction Rules for Deductive Synthesis Proofs.
Electronic Notes Theoretical Computer Science, 153:3–21, March 2006.

[7] I. Dramnesc and T. Jebelean. Proof Techniques for Synthesis of Sorting Algorithms. In SYNASC 2011, pages
101–109. IEEE Computer Society, 2011.

[8] I. Dramnesc and T. Jebelean. Automated synthesis of some algorithms on finite sets. In SYNASC 2012, pages
143 – 151. IEEE Computer Society, 2012.

[9] I. Dramnesc and T. Jebelean. Theory Exploration in Theorema: Case Study on Lists. In SACI 2012, pages
421 – 426. IEEE Xplore, 2012.

I. Dramnesc, T. Jebelean 21

[10] I. Dramnesc and T. Jebelean. Theory Exploration of Sets represented as Monotone Lists. In SISY 2014, pages
163 – 168. IEEE Xplore, 2014.

[11] I. Dramnesc and T. Jebelean. Synthesis of List Algorithms by Mechanical Proving. Journal of Symbolic
Computation, 68:61–92, 2015.

[12] I. Dramnesc and T. Jebelean. Automatic Synthesis of Merging and Inserting Algorithms on Lists and Binary
Trees using Multisets in Theorema. In SYNASC 2019, 2019. (submitted).

[13] I. Dramnesc and T. Jebelean. Case Studies on Algorithm Discovery from Proofs: The Delete Function on
Lists and Binary Trees using Multisets. In SISY 2019. IEEE Xplore, 2019. (to appear).

[14] I. Dramnesc, T. Jebelean, and S. Stratulat. Theory Exploration of Binary Trees. In SISY 2015, pages 139 –
144. IEEE, 2015.

[15] I. Dramnesc, T. Jebelean, and S. Stratulat. Proof-based Synthesis of Sorting Algorithms for Trees. In LATA
2016, pages 562–575. Springer, 2016.

[16] I. Dramnesc, T. Jebelean, and S. Stratulat. Mechanical Synthesis of Sorting Algorithms for Binary Trees by
Logic and Combinatorial Techniques. Journal of Symbolic Computation, 90:3–41, 2019.

[17] D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Addison-Wesley, 3
edition, 1998.

[18] Z. Manna and R. Waldinger. The Logical Basis for Computer Programming, volume 1: Deductive Reasoning.
Addison-Wesley, 1985.

[19] A. Radoaca. Properties of Multisets Compared to Sets. In SYNASC 2015, pages 187–188, 2015.
[20] W. Windsteiger. Theorema 2.0: A System for Mathematical Theory Exploration. In ICMS’2014, volume

8592 of LNCS, pages 49–52, 2014.

	Introduction
	Proof–Based Synthesis
	Context
	Special Inference Rules and Strategies
	Inference Rules
	Strategies

	Synthesis of Sorting
	Splitting
	Split into minimum/rest of elements.
	Split into smaller/bigger elements.

	Merging
	Adding an element to a sorted list
	Merging two sorted lists knowing X Y
	Merging two sorted lists in a sorted list

	Conclusions and Further Work

