
Deductive Synthesis of Bubble–Sort Using Multisets
Isabela Drămnesc

Department of Computer Science
West University

Timişoara, Romania
Email: isabela.dramnesc@e-uvt.ro

Tudor Jebelean
Research Institute for Symbolic Computation,

Johannes Kepler University,
Linz, Austria

Email: Tudor.Jebelean@jku.at

Abstract—We demonstrate the possibility of automated syn-
thesis of the Bubble–Sort algorithm as a rewrite program, a
functional program, and an iterative program, starting from
the specification. First a rewrite set of clauses for the algorithm
Max–Sort is generated from the automatic proof of the synthesis
conjecture, representing the main algorithm as well as the
necessary auxiliary functions. This is then transformed into a tail
recursive Bubble–Sort and by logical analysis the possibility of
adding a flag for avoiding unnecessary recursions is identified.
This new, more efficient algorithm is then transformed into a
functional program, and finally into an imperative program. The
practical experiments are performed using the Theorema system.

Index Terms—automated reasoning, algorithm synthesis, lists,
multisets, Theorema

I. INTRODUCTION

Deductive synthesis1 consists in producing a running al-
gorithm or program on the basis of the specification of the
intended functionality of it. The specification consists in an
input condition I[X] which characterizes the admissible inputs
and an output condition O[X,Y ] which shows the relation
between the inputs and the outputs. From this a synthesis con-
jecture is produced as the statement ∀

X
(I[X] =⇒ ∃

Y
O[X,Y ]).

From the proof of this conjecture (if certain constructive
requirements are met) one extracts the algorithm. (Various
approaches to the proof construction will generate various
algorithms.) Typically an algorithm requires some auxiliary
functions: by certain methods the synthesis conjectures for
these can be generated during the main proof, and the auxiliary
functions will be synthesized additionally (sometimes they
require other auxiliary functions – thus one has a “cascading”
of such synthesis proofs – see [2]).

In this paper we demonstrate the synthesis of Bubble–
Sort, in the Theorema system [19] by the use of multisets
and of certain proof techniques introduced in [9]. Moreover
we describe the systematic transformation of the synthesized
algorithm into a tail recursive one, then a systematic logical
analysis in order to detect how to use a flag in order to
avoid unnecessary recursions (the algorithm will stop when
the sublist currently addressed is already sorted). This more
efficient algorithm is transformed into a functional program
and then into an imperative program. For the efficiency of

1An early description of this approach, including references to previous
works, is [17].

the latter, we assume that the running environment provides
an efficient implementation (constant time) of appending an
element to a list and of concatenating two lists2.

A. Related work and originality

The problem of algorithms synthesis, especially sorting
algorithms is well-studied in the literature. [6] derives ver-
sions of six sorting algorithms (including Bubble-Sort called
Exchange-Sort) by applying transformation rules. [1] extends
[6] by adding another symmetry, see also [12]. [11] uses spe-
cific transformation techniques, which complement the tech-
niques in [6], and derives several sorting algorithms (including
Bubble-Sort). [15] uses a top–down approach to synthesize
a large family of sorting algorithms (including Bubble-Sort).
[15] designs also a tree which represents a classification of
the sorting algorithms. [17] introduces deductive tableau tech-
niques for algorithm synthesis. These techniques are applied
in [18] to manually synthesize several sorting algorithms. [14]
applies deductive tableau techniques [17], uses some heuristics
and rippling [3] for automatically synthesize several functions
in Lisp. Significant work also has been done in the proof–
based algorithm synthesis on lists [8] and on binary trees [10].

In [13] the authors give a brief description of 8 iterative
sorting algorithms (including Bubble-Sort, Selection-Sort, and
Heap-Sort) and they propose a hardware optimization to be
applied in order to speed–up the process of sorting. They
also compare the performance of the 8 sorting algorithms
with respect to resource usage and time execution. Most of
researchers find the performance (space and time) of recursive
algorithms as being lower compared to tail recursive and
iterative algorithms.

The first study [5] on transforming recursive functions,
including recursion removal [4], into more efficient ones
uses some transformation rules and strategies. Their imple-
mentation in [7] is based on a set of schemas, whereas in
[16] the authors use a different method which is based on
incrementalization and is not schema–based.

The main novelty of our approach consists in using (a)
multisets for expressing the fact that two lists have the same
elements, in contrast to other approaches which use the
predicate perm (a list is a permutation of another), as well

2This can be easily realized, even if the representation of lists is done in
Lisp style using pointers, by keeping additionally a pointer to the last element
of the list



as (b) patterns for the arguments of functions, in contrast
with the other approaches which use only variables (functional
style). Both allow more natural expression of the notions and
of the algorithms, as well as more efficient proofs. The use
of multisets and of patterns leads to a specific collection
of techniques which are original and specific to our proof
methods [9]. Our work focuses on the practical integration
of the various proof techniques and transformation methods
in one system, Theorema, which allows the construction of
the domain theory, the automation of the proofs and of the
program transformation steps, as well as the actual testing
of the algorithms. In this paper we present for the first time
our experiments of algorithm transformation: introducing tail
recursion, adding a useful flag, pattern–based to functional,
functional to imperative.

II. CONTEXT

A. Notations

For function and for predicate application we use square
brackets, for instance: f [x] instead of f(x) and P [a] instead
of P (a). Quantified variables are placed under the quantifier,
as in ∀

X
and ∃

X
.

The objects occurring in the formulae are: elements —
objects from a totally ordered domain (denoted a, b, c) which
are members of composite objects; multisets denoted A,B,C;
and lists denoted U, V,W,X, Y, Z. Multisets and lists are
addressed as composite objects. The ordering on the basic
domain is extended to composite objects, by requiring that all
the elements observe the relation. The type information is not
addressed explicitly in the proof, but it is used implicitly based
on the notation conventions: lower case variables and constants
represent domain elements, while upper case refers to lists.
The same convention applies to function and predicate names,
when they are not denoted by special symbols. Additionally
the prover uses implicitly certain basic properties of ordering,
of multiset union, etc.

The multiset of a list observes:

Property 1. ∀
a,U

(
M[〈〉] = ∅

M[a ` U ] = {{a}} ]M[U ]

)
Sorted lists have the definition:

Definition 1.

∀
a,U

(
IsSorted[〈〉]

IsSorted[U a a]⇐⇒ (U ≤ a ∧ IsSorted[U ])

)

B. The problem

The problem specification consists in: given a list find its
sorted version.

Starting from the specification we build the logical con-
jecture as an input condition I[X] and an output condition
O[X,Y ].

For univariate functions the conjecture is:

Conjecture 1. ∀
X
(I[X] =⇒ ∃

Y
O[X,Y ]).

For a bivariate function one has I[X,Y ], O[X,Y, Z], and the
conjecture:

Conjecture 2. ∀
X,Y

(I[X,Y ] =⇒ ∃
Z
O[X,Y, Z]).

C. Proof Techniques

We use the inference rules and strategies introduced in [9],
which benefit from the use of multisets.

IR-1: Forward inference. Nonclausal unit resolution be-
tween assumptions. Example: used to prove (11) on the basis
of (12).

IR-2: Backward inference. Nonclausal resolution between
an unit assumption and the goal. Example: (3) to (4).

IR-3: Reduce composite argument. Split an atom containing
composite arguments into atoms containing simple arguments
(variables and constants). Example: (6) to (7).

IR-4: Solve metavariable. Obtain the value of a metavaria-
ble from an equality of multiset terms. Example: (25).

IR-5: Expand multiset. Transform a multiset term into
several terms. Example: (20) to (21).

IR-6: Compress multiset. Group two multiset terms into
one. Example: (23) to (24).

IR-7: Use equivalence. Use the equivalence (induced by the
equality of multisets) for transforming an atom. Example: (10)
to (11).

IR-8: Two constants. Generate cases w.r.t. the ordering of
two constants when a second constant element is introduced
in the proof. Example: after (21).

ST-1: Cover set. Generate proof alternatives using a cover
set for a constant or for a metavariable. Example: applies on
(2) using a cover set for a metavariable and generates two
branches Case 1.1 and Case 1.2.

ST-2: Induction. Generate an induction hypothesis and
a recursive term in the goal for a term which is smaller
(with respect to the Noetherian metaordering induced by the
strict inclusion of multisets) than the current target constant.
Example: (9).

ST-3: Cascading. Generate a conjecture for the synthesis of
a necessary auxiliary function, the appropriate property and the
appropriate term in the current goal. Example: from goal (11)
using (5) generate Conjecture 4.

ST-4: Pair multisets. For a pair of multiset terms in the
goal, generate an equal term, by using a known property.

ST-5: Split. For a multiset term in the goal, generate an
equal pair of terms, by using a known property.

ST-6: Split goal equation. Use heuristics to split a goal
equations which contains two metavariables into equations
containing only one metavariable each. Example: (23) to (25).

III. SYNTHESIS OF Max-Sort

The synthesis conjecture is:

Conjecture 3. ∀
X
∃
V
(M[V ] =M[X] ∧ IsSorted[V ]).

The proof is similar to Proof 1 from [9] which synthesizes
Min-Sort except the second case, where the cover set to V ∗

determined by the definition is U∗ a a∗.



Proof 1: Universal X is Skolemized to the target constant
X0, producing the target goal:

∃
V
M[V ] =M[X0] ∧ IsSorted[V ] (1)

and the existential V becomes the metavariable V ∗:

M[V ∗] =M[X0] ∧ IsSorted[V ∗]. (2)

Strategy ST-1 is applied to the metavariable V ∗ using the cover
set: {〈〉, U∗ a a∗} :
Case 1.1. V ∗ = 〈〉. The goal (2) becomes:

M[〈〉] =M[X0] ∧ IsSorted[〈〉]. (3)

By inference rule IR-2 (backward inference) using Definition
1 the goal (3) becomes:

M[〈〉] =M[X0]. (4)

By ST-1 the proof succeeds on this branch, the witness is
〈〉, the condition on the input is X = 〈〉, and the cumulated
condition on the input for the next branch is X0 6= 〈〉.
Case 1.2 V ∗ = U∗ a a∗. The condition on X0 from the
previous branch is added as assumption:

X0 6= 〈〉. (5)

The goal (2) becomes:

M[U∗ a a∗] =M[X0] ∧ IsSorted[U∗ a a∗] (6)

and the current solution for V ∗ is U∗ a a∗. By inference rule
IR-3 (reduce composite argument) using Definition 1 the goal
(6) becomes:

M[U∗ a a∗] =M[X0] ∧ U∗ ≤ a∗ ∧ IsSorted[U∗]. (7)

By IR-2 (backward inference) U∗ is replaced by Sort[W ∗],
the goal becomes:

M[Sort[W ∗] a a∗] =M[X0] ∧
Sort[W ∗] ≤ a∗ ∧ IsSorted[Sort[W ∗]]

(8)

and the intermediate solution for V ∗ is Sort[W ∗] a a∗. Since
Sort[W ∗] a a∗ stands for V ∗ which has the same elements
as the target constant X0, the prover infers that W ∗ is less
than X0 in the well–founded ordering, thus by strategy ST-2
(induction) the target goal (1) is used with {X → W ∗} and
{V → Sort[W ∗]} to generate the assumption:

M[Sort[W ∗]] =M[W ∗] ∧ IsSorted[Sort[W ∗]]. (9)

The second conjunct of this assumption is used to reduce the
goal (8) by rule IR-2 to:

M[Sort[W ∗] a a∗] =M[X0] ∧ Sort[W ∗] ≤ a∗. (10)

The first conjunct is used by IR-7 (use equivalence) to reduce
the last goal to:

M[W ∗ a a∗] =M[X0] ∧ W ∗ ≤ a∗. (11)

The strategy ST-3 (cascading) is applied to this goal and
generates the conjecture:

Conjecture 4.
∀
X
(X 6= 〈〉 =⇒ ∃

a
∃
U
(M[U a a] =M[X] ∧ U ≤ a)).

Proof 2 synthesizes the functions max[X] and Trimm[X]
which split a list into its maximum and the rest.

By ST-3 (cascading) the new assumption is:

∀
X
(X 6= 〈〉 =⇒ (M[Trimm[X] a max[X]] =M[X] ∧

Trimm[X] ≤ max[X])).
(12)

Using (5) this solves the goal (11) with the witnesses: {a∗ →
max[X0]} and {W ∗ → Trimm[X0]}, which gives for V ∗ the
final solution Sort[Trim[X0]] a max[X0].

QED
The extracted algorithm is:

Algorithm 1. Max-Sort.(
MSort[〈〉] = 〈〉

U 6= 〈〉 =⇒ MSort[U ] = MSort[Trimm[U ]] a max[U ]

)
A. Synthesis of max and Trimm

The target functions are max[X] which selects from X
the maximum element according to the domain ordering and
Trimm[X] which gives the list without it. We need to prove
Conjecture 4.

Proof 2: By natural style proving, take X0 arbitrary but
fixed, assume:

X0 6= 〈〉 (13)

and after introducing the existential metavariables, the goal is:

M[X0] =M[Y ∗] ] {{y∗}} ∧ Y ∗ ≤ y∗. (14)

By IR-7 (use equivalence) the goal is transformed into:

M[X0] =M[Y ∗] ] {{y∗}} ∧ X0 ≤ y∗. (15)

Strategy ST-1 (cover set) applies to X0, using only U0 a a0
because (13). The goal is:

M[U0 a a0] =M[Y ∗] ] {{y∗}} ∧ a0 ` U0 ≤ y∗. (16)

By IR-3 (composite argument) on the last conjunct the goal
becomes:

M[U0 a a0] =M[Y ∗]]{{y∗}} ∧ a0 ≤ y∗ ∧ U0 ≤ y∗. (17)

Strategy ST-3 (cascading) generates the conjecture:

Conjecture 5.
∀
X
∀
a
∃
y
∃
Y
(M[X a a] =M[Y ] ] {{y}} ∧ a ≤ y ∧ X ≤ y).

Proof 3 synthesizes the auxiliary functions maxA and
TrimmA which have the property:

∀
X
∀
a
(M[X a a] =M[TrimmA[X, a]] ] {{maxA[X, a]}} ∧

a ≤ maxA[X, a] ∧ X ≤ maxA[X, a])
(18)

and which solves the goal (17) using the witnesses {Y ∗ →
TrimmA[U0, a0], y∗ → maxA[U0, a0]}.

QED



We prove now Conjecture 5 for the synthesis of maxA and
TrimmA.

Proof 3: By quantified inferences the goal becomes:

M[X0 a a0] =M[Y ∗]]{{y∗}} ∧ a0 ≤ y∗ ∧ X0 ≤ y∗. (19)

Strategy ST-1 applies to X0 with the cover set {〈〉, b0 ` U0}.
Case 1. X0 = 〈〉 is straightforward, the solutions are: {y∗ →
a0, Y ∗ → 〈〉}.
Case 2. X0 = b0 ` U0 generates the goal:

M[a0 ` (b0 ` U0)] =M[Y ∗] ] {{y∗}} ∧
a0 ≤ y∗ ∧ b0 ` U0 ≤ y∗.

(20)

By IR-5 (expand multiset) and IR-3 (reduce composite argu-
ment) the goal becomes:

{{a0}} ] {{b0}} ]M[U0] =M[Y ∗] ] {{y∗}} ∧
a0 ≤ y∗ ∧ b0 ≤ y∗ ∧ U0 ≤ y∗.

(21)

Two cases for domain element constants are generated by
rule IR-8 (two constants):
Case 2.1. a0 ≤ b0. Strategy ST-2 (induction) applies to U0, b0
in (19) and adds the assumption:

M[U0] ] {{b0}} =M[TrimmA[U0, b0]] ] {{maxA[U0, b0]}} ∧
b0 ≤ maxA[U0, b0] ∧ U0 ≤ maxA[U0, b0].

(22)

(21) is rewritten by equality (22):

M[TrimmA[U0, b0]] ] {{maxA[U0, b0]}} ] {{a0}} =
M[Y ∗] ] {{y∗}} ∧

b0 ≤ y∗ ∧ a0 ≤ y∗ ∧ U0 ≤ y∗.

(23)

Inference rule IR-6 composes a multiset from {{a0}} and
M[TrimmA[U0, b0]] transforming the goal into:

M[a0 ` TrimmA[U0, b0]] ] {{maxA[U0, b0]}} =
M[Y ∗] ] {{y∗}} ∧

b0 ≤ y∗ ∧ a0 ≤ y∗ ∧ U0 ≤ y∗.

(24)

The goal equation is split by strategy ST-6:

M[TrimmA[U0, b0]] ] {{a0}} =M[Y ∗] ∧
{{maxA[U0, b0]}} = {{y∗}} ∧ b0 ≤ y∗ ∧ a0 ≤ y∗ ∧ U0 ≤ y∗.

(25)

By IR-4 (solve metavariable) the solutions are: {y∗ →
maxA[U0, ], Y ∗ → a0 ` TrimmA[U0, b0]} and the remaining
goal is proven by standard logic and properties of ordering.
Case 2.2. b0 < a0. The proof proceeds similarly by applying
induction on U0, a0 in (19) and the obtained solutions are:
{y∗ → maxA[U0, a0], Y ∗ → b0 ` TrimmA[U0, a0]}.

QED
The extracted algorithms from the proofs are3:

3In the presentation of the algorithms it is assumed that all variables are
universally quantified over their respective domains, according to our notation
convention.

Algorithm 2. Maximum.
max[a ` U ] = maxA[U, a]

maxA[〈〉, a] = a

maxA[b ` U, a] =

{
maxA[U, b], if a ≤ b

maxA[U, a], if b < a


Algorithm 3. Trimm.

Trimm[a ` U ] = TrimmA[U, a]

TrimmA[〈〉, a] = 〈〉

TrimmA[b ` U, a]=

{
a ` TrimmA[U, b], if a ≤ b

b ` TrimmA[U, a], if b < a


IV. SYNTHESIS OF BUBBLE SORT

The use of the two functions max and Trimm together
is quite inefficient: the scan of the list is performed twice,
using the same test at each step. In order to solve this we
propose a systematic method for transforming the functions
into a tail recursive version, and then to combine them into
a single function. The function max is already tail recursive.
The function TrimmA can be made tail recursive by adding
a third argument as “accumulator” for the result. However,
for constructing this accumulator, one needs to reverse the
operation of the original algorithm: if in TrimmA the result is
constructed by ` (cons), in the tail recursive version it must
be constructed by the dual operation a (append) which places
an element at the end of a list. For efficiency, this program
needs a running environment in which append is implemented
as constant time operation. Moreover, now the two functions
can be merged into one, which returns the pair of maximum
and the list without it:

Algorithm 4. Tail recursive max and Trimm.
maxTrimm[a ` U ] = maxTrA[U, a, 〈〉]

maxTrA[〈〉, a, V ] = 〈V, a〉

maxTrA[b ` U, a, V ]=

{
maxTrA[U, b, V a a], if a ≤ b

maxTrA[U, a, V a b], if b < a


The nontrivial branch of the sorting algorithm can now

be expressed in the following way, also as a tail recursive
function, which is in fact the algorithm Bubble-Sort:

Algorithm 5. Bubble-Sort. BSort[a ` U ]=BSortA[maxTrA[U, a, 〈〉], 〈〉]
BSortA[〈〈〉, a〉, V ]=a ` V

BSortA[〈b ` U, a〉, V ]=BSortA[maxTrA[U, b, 〈〉], a ` V ]


This algorithm is known as its more efficient version which

finishes as soon as the list is already sorted.
For this improvement one needs to detect the situations in

which the list does not change by application of MSort, that
is: MSort[W ] = W, which can be rewritten using Front and
last which decompose a list, as:

MSort[Trimm[W ]] a max[W ] = Front[W ] a last[W ] (26)



From this follow max[W ] = last[W ] and Trimm[W ] =
Front[W ]. The later can be inductively expressed as

Trimm[b ` V ] = Front[b ` V ], (27)

which is true when V is empty, and otherwise one has

TrimmA[b ` U, a] = Front[b ` (a ` U)] = b ` Front[a ` U ].
(28)

In the definition of TrimmA we can see that the clause in
which the result begins with b is prefixed by the condition
a ≤ b, namely the value b ` TrimmA[a ` U ]. Thus this
condition must hold in order that the list remains unchanged
by a new call to BSort, and in this case the equality reduces
to TrimmA[a ` U ] = Front[a ` U ], which the inductively
reduced version of (27). Therefore the relation a ≤ b must
hold at every recursive call of maxA, TrimmA, and maxTrA.
Therefore we introduce an additional output value to maxTrA,
namely a flag f which is initialized with T and switches to F
when the condition a ≤ b does not hold. The new algorithm
is:

Algorithm 6. Tail recursive max and Trimm with flag.
maxTrimm[a ` U ] = maxTrA[U, a, 〈〉, T ]

maxTrA[〈〉, a, V, f ] = 〈V, a, f〉

maxTrA[b`U, a, V, f ]=

{
maxTrA[U, b, V a a, f ], if a ≤ b

maxTrA[U, a, V a b, F ], if b < a


The sorting algorithm will stop recursion as soon as the

flag remains true, but for forming the result it must use the
function Conc which concatenates two lists – for efficiency
we assume that the running environment implements this as a
constant time operation.

Algorithm 7. Bubble-Sort with flag. BSort[a ` U ]=BSortA[maxTrA[U, a, 〈〉, T ], 〈〉]
BSortA[〈U, a〉, V, T ]=Conc[U, a ` V]

BSortA[〈b`U, a〉, V, F ]=BSortA[maxTrA[U, b, 〈〉, T ], a`V]


The use of the flag is crucial for the efficiency of the

bubble-sort algorithm, because this algorithm, although is not
of optimal efficiency, still is preferable for the re-sorting of
lists which have changed slightly since being already sorted.
This is used for instance in graphic processing, in order to sort
the surfaces by the distance from the viewing point, when its
position changes.

V. TRANSFORMATION INTO AN IMPERATIVE PROGRAM

The advantage of a tail recursive algorithm is the possibility
of transforming it into an imperative program using loops
instead of recursion, which is usually much more efficient,
especially in the case of loops with a relatively low number
of operations, like in the sorting algorithm.

We proceed in two steps, first we generate the functional
program, and then the imperative one.

For the functional program one uses the functions which are
reverse to the pattern a ` U used in the algorithms, namely

head and Tail. We also use the construct Let4, which consists in
creating some variables and assigning them certain values, and
then returning the value of the last expression in the construct.
In Let we allow the use of assignments in tuple form: a tuple
of variables is assigned a tuple of values, with the meaning
that each variable is assigned the corresponding value in the
other tuple. This assignment takes place in the same time for
all the variables (similar to the situation of substitutions, or of
Let from Lisp).

Algorithm 8. Functional max and Trimm with flag.

maxTrimmF[U ] = maxTrAF[Tail[U ], head[U ], 〈〉, T ]
maxTrAF[〈〉, a, V, f ] = 〈V, a, f〉

maxTrAF[U, a, V, f ] = Let[b = head[U ],W = Tail[U ],{
maxTrAF[W, b, V a a, f ], if a ≤ b

maxTrAF[W,a, V a b, F ], if b < a
]


Algorithm 9. Functional Bubble-Sort with flag.

BSortF[U ]=BSortAF[maxTrAF[Tail[U ], head[U ], 〈〉, T ], 〈〉]
BSortAF[〈U, a〉, V, T ] ={
Conc[U, a ` V], if f

BSortAF[maxTrAF[Tail[U ], head[U ], 〈〉, T ], a ` V ], ow.


The functional programs are transformed into imperative

in a straightforward way: each argument of the recursive is
represented by a certain variable, which is at the beginning
initialized with the value from the call, and then it is updated at
each loop according to the functional algorithm. The loop is a
While on the negated condition for the return of the final value,
which thus repeats the updates of the variables, for which we
use again a simultaneous assignment of a vector5 of values to
a vector of variables. After the loop ends, Return gives the
final result of the call. The algorithms are presented in Fig. 1.

VI. CONCLUSION AND FURTHER WORK

Our experiments demonstrate the possibility of generat-
ing Bubble-Sort with intuitive and short proofs, in which
induction and synthesis of auxiliary functions are relatively
straightforward. Moreover, we expose systematic principles for
transformation of the algorithms into tail–recursive form, to
improve the efficiency using a special flag, and even more by
transformation into functional and iterative programs.

Generation of a similar algorithm starting from Min-Sort
[9] is very similar, and leads essentially to the same al-
gorithm. This encourages to attempt the synthesis of the
improved Bubble-Sort6 which selects at every list scan both
the minimum and the maximum elements and to compare the
efficiency.

Generation of Bubble-Sort on the path followed by [18] is
also possible by the same principles, however this approach
is based on moving the maximum to the last position (MaxL),

4Like in Lisp.
5Vectors, as well as the empty list, are denoted using square brackets.
6https://www.academia.edu/25304876/Comparison of Bubble Sort and

Selection Sort with their Enhanced Versions



Algorithm 10. Imperative max and Trimm with flag.

maxTrAI(Win, ain, Vin, fin){
local W, a, V, f, b, U;
[W, a, V, f] := [Win, ain, Vin, finb];
While(W != []){

b := head(W); U := Tail(W);
[W, a, V, f] := If(a <= b)

then[U, b, append(V, a), f]
else[U, a, append(V, b), False];

};
Return [V, a, f];

};

Algorithm 11. Imperative Bubble-Sort with flag.

BSortI(W){
Return If(W = [])then[]

else
BSortAI(

maxTrAI(Tail(W), head(W), [], True),
[]);

};
BSortAI(triplein, Vin){
local triple, V, U, a, f;
[triple, V] := [triplein, Vin];
[U, a, f] := triple;
While(! f){

[triple, V] :=
[maxTrAI(Tail(U), head(U), [], True),
cons(a, V)];

[U, a, f] := triple;
};
Return concat(U, cons(a, V))

};

Fig. 1. Iterative algorithms.

finding the last element (last), and removing it (DelL), which
appears to be more cumbersome an less suitable for improve-
ment:

Algorithm 12. Bubble-Sort.(
F2[〈〉] = 〈〉

U 6= 〈〉 =⇒ F2[U ] = F2[DelL[MaxL[U ]]] a last[MaxL[U ]]

)

Other possibilities for further experiments are the automatic
synthesis and transformation of other sorting algorithms, and
the automatic evaluation of their efficiency.

REFERENCES

[1] D. R. Barstow. Remarks on “A Synthesis of Several Sorting Algorithms”
by John Darlington. Acta Informatica, 13:225–227, 1980.

[2] B. Buchberger. Algorithm Invention and Verification by Lazy Thinking.
Analele Universitatii din Timisoara, Seria Matematica - Informatica,
XLI:41–70, 2003.

[3] A. Bundy, D. Basin, D. Hutter, and A. Ireland. Rippling: meta-level
guidance for mathematical reasoning. Cambridge University Press,
2005.

[4] R. M. Burstall and John Darlington. A Transformation System for
Developing Recursive Programs. Journal of the ACM, 24(1):44–67,
1977.

[5] J. Darlington. A semantic approach to automatic program improvement.
PhD thesis, University of Edinburg, 1972.

[6] J. Darlington. A Synthesis of Several Sorting Algorithms. Acta
Informatica, 11:1–30, 1978.

[7] J. Darlington and R. M. Burstall. A System Which Automatically
Improves Programs. Acta Informatica, 6(1):41–60, 1976.

[8] I. Dramnesc and T. Jebelean. Synthesis of List Algorithms by Mechan-
ical Proving. Journal of Symbolic Computation, 68:61–92, 2015.

[9] I. Dramnesc and T. Jebelean. Proof–Based Synthesis of Sorting
Algorithms Using Multisets in Theorema. In FROM 2019, pages 76–91.
EPTCS 303, 2019.

[10] I. Dramnesc, T. Jebelean, and S. Stratulat. Mechanical Synthesis
of Sorting Algorithms for Binary Trees by Logic and Combinatorial
Techniques. Journal of Symbolic Computation, 90:3–41, 2019.

[11] R. Geoff Dromey. Derivation of Sorting Algorithms from a Specification.
Computer Journal, 30(6):512–518, 1987.

[12] Brian T. Howard. Another iteration on “A synthesis of several sorting
algorithms”, 1994.

[13] Yomna Ben Jmaa, Rabie Ben Atitallah, David Duvivier, and Maher Ben
Jemaa. A Comparative Study of Sorting Algorithms with FPGA
Acceleration by High Level Synthesis. Computación y Sistemas, 23:213,
2019.

[14] Yulia Korukhova. An Approach to Automatic Deductive Synthesis of
Functional Programs. Annals of Mathematics and Artificial Intelligence,
50(3-4):255–271, 2007.

[15] K. K. Lau. Top-down Synthesis of Sorting Algorithms. The Computer
Journal, 35:A001–A007, 1992.

[16] Yanhong A. Liu and Scott D. Stoller. From Recursion to Iteration: What
Are the Optimizations? SIGPLAN Not., 34(11):73–82, 1999.

[17] Z. Manna and R. Waldinger. A Deductive Approach to Program
Synthesis. ACM Transactions on Programming Languages and System,
2(1):90–121, 1980.

[18] Jonathan Traugott. Deductive Synthesis of Sorting Programs. Journal
of Symbolic Computation, 7(6):533–572, 1989.

[19] W. Windsteiger. Theorema 2.0: A System for Mathematical Theory
Exploration. In ICMS’2014, volume 8592 of LNCS, pages 49–52, 2014.


