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Abstract—We demonstrate the deductive synthesis of the Min-
Max-Sort algorithm using multisets in the frame of the Theorema
system. Starting from the logical specification of the sorting
function (input and output conditions), we show how to construct
a synthesis conjecture, from whose proof the algorithm can be
constructed. We choose those inference methods and induction
principles such that the algorithm consists of selecting at each
step the minimum and the maximum of the list, and moving them
at the ends of the list. During the main proof new conjectures
are produced for the synthesis of auxiliary algorithms, and
this process repeats in a cascading fashion until all necessary
algorithms are produced. Our proof techniques, which are in
natural style, include a novel approach using multisets and
the use of cover sets for realizing Noetherian induction. The
later has the advantage that the concrete induction hypotheses
are created dynamically during the proof of the corresponding
induction conclusion, thus no concrete induction principle or
algorithm scheme is needed in advance. The synthesis mechanism
is implemented in the frame of the Theorema system [2], [24]
which allows the construction of mathematical theories, proving
in natural style, and computing with the synthesized algorithms.

Index Terms—automated reasoning, algorithm synthesis, lists,
multisets, Theorema

I. INTRODUCTION

The problem of automated algorithm synthesis as an al-
ternative to algorithm verification is a very interesting and
challenging problem. [21] gives an overview of the most
common approaches used to tackle the synthesis problem.
For a survey of the synthesis methods see [8]. We use the
proof–based synthesis approach which consists in generating
a running algorithm satisfying a given specification. The
specification consists in an input and an output condition.
From this the corresponding logical conjecture is obtained and
from the proof of this conjecture the algorithm is extracted.

In this paper we synthesize Min-Max-Sort in the Theorema
system [24]. We extend the techniques in [9], [10] by adding
some specific inference rules and strategies. We also transform
the synthesized algorithm into a tail recursive one, then we
describe the version which uses a flag in order to avoid
unnecessary recursions.

A. Related work and originality

In [6] six sorting algorithms are derived by applying trans-
formation rules. This work was extended in [1] by adding

another symmetry, see also [13]. In [12] some transforma-
tion techniques which complement the techniques in [6] are
added and several sorting algorithms are derived. A top–
down approach is used in [16] to synthesize a large family
of sorting algorithms. A classification of sorting algorithms is
designed in [16]. Deductive tableau techniques for recursive
algorithm synthesis are introduced in [18] which are applied
in [22] to manually synthesize several sorting algorithms. [15]
synthesizes automatically several functions in Lisp by applying
deductive techniques [18] and some heuristics and rippling
[3]. Significant work also has been done in sorting algorithm
synthesis by using the proof–based approach on lists [8] and
on binary trees [11]. The difference from our current work is
that we use multisets [19] in the entire process of algorithm
synthesis and we apply different proof techniques.

A brief description of eight iterative sorting algorithms is
given in [14]. The authors propose a hardware optimization
to be applied in order to speed–up the process of sorting.
They also compare the performance of the 8 sorting algorithms
with respect to resource usage and time execution. Most of
researchers find the performance (space and time) of recursive
algorithms as being lower compared to tail recursive and
iterative algorithms. In this paper we discover one sorting
algorithm from proof by applying proof–based techniques and
then we transform the obtained recursive version into its tail
recursive, then obtain one improved version which uses a flag.

The first study on transforming recursive functions into
more efficient ones [5], including recursion removal [4] uses
some transformation rules and strategies. Their implementa-
tion based on schemas is in [7]. A method for transforming
general recursion to iteration based on incrementalization is
given in [17]. We transform recursive algorithms into tail
recursive ones, and then we describe their version which use
a flag. From this version one can easily obtain their functional
and iterative versions.

In [23] five enhanced iterative algorithms are presented (in-
cluding Min-Max-Sort) and their complexity is analyzed. The
experiments show that the enhanced versions of algorithms
have a better performance and a reduced complexity. In this
paper we discover from proof the recursive version of Min-
Max-Sort together with the auxiliary functions and then we
derive more efficient versions, namely the tail recursive and



the one with a flag.
In [10] we synthesize Max-Sort and Bubble-Sort algorithm

and then we transform them into more efficient versions: tail
recursive, an improved one which uses a flag, functional and
imperative. The current paper is similar with [10], but here we
add some more inference rules and strategies, we synthesize
Min-Max-Sort (an improved Bubble-Sort). Then we apply the
transformation rules from [10] to obtain more efficient versions
of Min-Max-Sort.

The main novelty in this paper consists in: (a) the use
of multisets which allows to express very naturally the fact
that two lists have the same elements (no need to use the
permutation predicate), (b) the extension of our recent work in
[9], [10] by adding some specific proof–techniques (inference
rules and strategies) which lead to more efficient proofs, (c)
the synthesis of the recursive version of Min-Max-Sort (which
selects both the minimum and the maximum) and which is an
improved version of Bubble-Sortand the synthesis of the auxi-
liary functions, (d) the derivation of improved (tail recursive
and the one with a flag) versions of the synthesized Min-Max-
Sort algorithm by applying the transformation methods from
[10] together with their auxiliary functions.

The synthesis prover is implemented in the frame of the
Theorema system [2], [24] which allows the construction of
mathematical theories, proving in natural style, and computing
with the synthesized algorithms.

II. CONTEXT

A. Notations

As in the Theorema system, in this presentation for function
and for predicate application we use square brackets (like e.
g. f [x] instead of f(x) and P [a] instead of P (a)). Quantified
variables are placed under the quantifier, as in ∀

X
and ∃

X
.

We use two main types of objects from a totally ordered
domain: simple objects (elements) and composite objects (lists
and multisets). Simple objects are members of composite
objects. The type of the objects is not used explicitly in
the proofs, but it is used implicitly based on the notation
convention. Lower case letters (e.g. a, b, c) denote constants
and variables, and upper case letters denote multisets (e.g.
A,B,C), respectively lists (e.g. U, V,W,X, Y, Z). A similar
convention applies to function names: starting with lower case
is a function whose result is an element, upper case is a
function. Most of the basic functions are denoted by special
symbols: {{a}} is the multiset containing the element a with
multiplicity 1, ] denotes the additive union of multisets1, a
(append) adds an element at the end of a list, and ` (cons)
adds an element at the beginning of a list.

Some of the basic properties of ordering, of multiset union,
list functions, etc. are explicitely used in the proofs, while
some are used implicitely by the prover.

Additionally the theory contains the functions head and Tail
(as reverses of `), as well as Front and last (as reverses of
a). The relevant properties are:

1The multiplicity in the union is the sum of multiplicities

Property 1. ∀
a,U

 head[a ` U ] = a

Tail[a ` U ] = U

U = head[U ] ` Tail[U ]



Property 2. ∀
U

 Front[U a a] = U

last[U a a] = a

U = Front[U ] a last[U ]


The multiset of a list observes:

Property 3. ∀
a,U

(
M[〈〉] = ∅

M[a ` U ] = {{a}} ]M[U ]

)
Sorted lists have the definition:

Definition 1.

∀
a,U

(
IsSorted[〈〉]

IsSorted[U a a]⇐⇒ (U ≤ a ∧ IsSorted[U ])

)
B. The Approach

We follow the classical approach [20]: starting from the
specification consistsing in the input condition and the output
condition, one constructs a synthesis conjecture, from whose
constructive proof the algorithm is extracted.
For univariate functions the specification has the structure
I[X], O[X,Y ] and the conjecture is:

Conjecture 1. ∀
X
(I[X] =⇒ ∃

Y
O[X,Y ]).

For a bivariate function the specification is I[X,Y ],
O[X,Y, Z], and the conjecture is:

Conjecture 2. ∀
X,Y

(I[X,Y ] =⇒ ∃
Z
O[X,Y, Z]).

In our case the main problem consists in: given a list find its
sorted version, thus the input specification is missing. However
for the auxiliary functions the specification may have also
some specific input condition.

C. Proof Techniques

Some of the classical natural style inference rules which are
already implemented in Theorema are also used: the deduction
rule for implicational goal, the splitting of conjunctional
assumption, Skolemization of the universal goal, metavariable
for existential goal, etc.

Additionally the special prover uses techniques from which
some are appropriate for synthesis, and some are domain
specific. The novelty of the approach resides mainly in the
techniques which are triggered by the use of multisets.

IR-1: Forward inference. Nonclausal unit resolution be-
tween assumptions.

IR-2: Backward inference. Nonclausal resolution between
an unit assumption and the goal.

IR-3: Reduce composite argument. Split an atom containing
composite arguments into atoms containing simple arguments
(variables and constants).

IR-4: Solve metavariable. Obtain the value of a metavaria-
ble from an equality of multiset terms.

IR-5: Expand multiset. Transform a multiset term into
several terms.



IR-6: Compress multiset. Group two or more multiset terms
into one.

IR-7: Use equivalence. Use the equivalence (induced by the
equality of multisets) for transforming an atom.

IR-8: Several constants. Generate cases w.r.t. the ordering
of two constants when a second constant element is introduced
in the proof. In general when a new constant is introduced
in the proof, generate cases w. r. t. the ordering possibilites
between this constant and the old ones.

ST-1: Cover set. Generate proof alternatives using a cover
set for a constant or for a metavariable.

ST-2: Induction. Generate an induction hypothesis and a
recursive term in the goal for a term which is smaller (with
respect to the Noetherian metaordering induced by the strict
inclusion of multisets) than the current target constant.

ST-3: Cascading. Generate a conjecture for the synthesis of
a necessary auxiliary function, the appropriate property and the
appropriate term in the current goal.

ST-4: Pair multisets. For a pair of multiset terms in the
goal, generate an equal term, by using a known property.

ST-5: Split. For a multiset term in the goal, generate an
equal pair of terms, by using a known property.

ST-6: Split goal equation. Use heuristics to split a goal
equations which contains several metavariables and/or several
multiset terms into equations which can be solved indepene-
dently.

III. SYNTHESIS OF Min-Max-Sort

A. Synthesis of the Main Function

The function MMSort is generated from the proof of the
synthesis conjecture:

Conjecture 3. ∀
X
∃
V
(M[V ] =M[X] ∧ IsSorted[V ]).

Proof 1:
By classical quantified inference rules, universal X is

Skolemized to the target constant X0, producing the target
goal:

∃
V
M[V ] =M[X0] ∧ IsSorted[V ] (1)

and the existential V becomes the metavariable V ∗:

M[V ∗] =M[X0] ∧ IsSorted[V ∗]. (2)

Strategy ST-1 (cover set) is applied to the metavariable V ∗

using the cover set: {〈〉, a∗ ` 〈〉, a∗ ` (U∗ a b∗)} :
Case 1.1. V ∗ = 〈〉. The goal (2) becomes:

M[〈〉] =M[X0] ∧ IsSorted[〈〉]. (3)

By inference rule IR-2 (backward inference) using Definition
1 the goal (3) becomes:

M[〈〉] =M[X0]. (4)

By ST-1 the proof succeeds on this branch, the witness is
〈〉, the condition on the input is X = 〈〉, and the cumulated
condition on the input for the next branch is X0 6= 〈〉.

Case 1.2. The goal (2) becomes:

M[a∗ ` 〈〉] =M[X0] ∧ IsSorted[a∗ ` 〈〉]. (5)

By inference rule IR-2 (backward inference) using Definition
1 the goal (3) becomes:

M[a∗ ` 〈〉] =M[X0]. (6)

By inference rule IR-2 (backward inference) using Property
1 the goal (6) becomes:

M[a∗ ` 〈〉] =M[head[X0] ` Tail[X0]]. (7)

By inference rule IR-5 the goal becomes:

{{a∗}} ]M[〈〉] =M[head[X0] ` Tail[X0]]. (8)

By strategy ST-6 and inference rule IR-4 the proof succeeds
on this branch, the witness is a∗ → head[X0], the condition
on the input is Tail[X0] = 〈〉, and the cumulated condition on
the input for the next branch is X0 6= 〈〉 ∧ Tail[X0] 6= 〈〉.
Case 1.3 V ∗ = a∗ ` (U∗ a b∗). The conditions on X0 from
the previous branch are added as assumptions:

X0 6= 〈〉. (9)

Tail[X0] 6= 〈〉. (10)

The goal (2) becomes:

M[a∗ ` (U∗ a b∗)] =M[X0] ∧ IsSorted[a∗ ` (U∗ a b∗)]
(11)

and the current solution for V ∗ is a∗ ` (U∗ a b∗).
By inference rule IR-3 (reduce composite argument) using
Definition 1 the goal (11) becomes:

M[a∗ ` (U∗ a b∗)] =M[X0] ∧ U∗ ≤ a∗ ∧
IsSorted[U∗] ∧ b∗ ≤ U∗.

(12)

By the equality in (12), U∗ is smaller in the Noetherian
ordering than X0, thus by ST-2 (induction) U∗ replaced by
MMSort[W ∗], the goal becomes:

M[a∗ ` (MMSort[W ∗] a b∗)] =M[X0] ∧ Sort[W ∗] ≤ a∗

∧ IsSorted[MMSort[W ∗]] ∧ b∗ ≤ MMSort[W ∗]
(13)

the intermediate solution for V ∗ is a∗ ` (Sort[W ∗] a b∗),
and the corresponding induction hypothesis (with X0 → W ∗

and V → MMSort[W ∗]) is added to the assumptions:

M[MMSort[W ∗]] =M[W ∗] ∧ IsSorted[MMSort[W ∗]].
(14)

The second conjunct of this assumption is used to reduce the
goal (13) by rule IR-2 to:

M[a∗ ` (MMSort[W ∗] a b∗)] =M[X0]

∧ a∗ ≤ Sort[W ∗] ∧ MMSort[W ∗] ≤ b∗.
(15)

The first conjunct of (14) is used by IR-7 (use equivalence)
to reduce the previous goal to:

M[a∗ ` (W ∗ a b∗)] =M[X0] ∧ a∗ ≤W ∗ ∧ W ∗ ≤ b∗.
(16)



By inference rule IR-5 this becomes:

{{a∗}}]M[W ∗]]{{b∗}} =M[X0] ∧ a∗ ≤W ∗ ∧ W ∗ ≤ b∗.
(17)

The strategy ST-3 (cascading) is applied to this goal and
generates the conjecture:

Conjecture 4. ∀
X

(
(X 6= 〈〉 ∧ Tail[X] 6= 〈〉) =⇒

∃
a
∃
b
∃
U
({{a}} ]M[W ] ] {{b}} =M[X] ∧ a ≤ U ∧ U ≤ b)

)
.

Proof 2 synthesizes the auxiliary functions min[X],max[X]
and Trim[X] which split a list into its minimum, maximum and
the rest, thus they have the property

Property 4. ∀
X

(
(X 6= 〈〉 ∧ Tail[X] 6= 〈〉) =⇒

({{min[X]}} ] M[Trim[X]] ] {{max[X]}} = M[X] ∧
min[X] ≤ Trim[X] ∧ Trim[X] ≤ max[X])

)
.

By strategy ST-3 and inference rule IR-4 the solutions of
(17) are a∗ → min[X0], b

∗ → max[X0], and W ∗ → Trim[X0],
which are substituted in the solution for V ∗ to give min[X0] `
(Trim[X0] a max[X0]). QED

With this Proof 1 is finished and the synthesized algorithm
is2:

Algorithm 1. Min-Max-Sort.
MMSort[〈〉] = 〈〉
M[a ` 〈〉] = a ` 〈〉

(U 6= 〈〉 ∧ Tail[U ] 6= 〈〉) =⇒
MMSort[U ] = min[U ] ` (MMSort[Trim[U ]] a max[U ])


B. Synthesis of the Auxiliary Functions

The following proof of Conjecture 4 synthesizes the auxi-
liary functions min, max, and Trim which are necessary in
the main sorting function. This proof triggers the synthesis of
further auxiliary functions minA, maxA, and TrimA.

Proof 2:
By natural style inference rules, take X0 arbitrary but fixed,

assume:
X0 6= 〈〉 (18)

Tail[X0] 6= 〈〉 (19)

and prove:

∃
x
∃
y
∃
W
({{x}} ]M[W ] ] {{y}} =M[X0] ∧

x ≤W ∧ W ≤ y.
(20)

By introduction of metavariables the goal becomes:

{{x∗}} ]M[W ∗] ] {{y∗}} ∧
x∗ ≤W ∗ ∧ W ∗ ≤ y∗.

(21)

Apply ST-1 (cover set) to X0, using only a0 ` (V0 a b0)
because (18) and (19). The goal becomes:

{{x∗}} ]M[W ∗] ] {{y∗}} =M[a0 ` (V0 a b0)] ∧
x∗ ≤W ∗ ∧ W ∗ ≤ y∗.

(22)

2In the presentation of the algorithms it is assumed that all variables are
universally quantified over their respective domains, according to our notation
convention.

By rule IR-8 we consider two cases depending on the
ordering between a0 and b0:
Case 1.1. a0 ≤ b0:

Apply ST-3 (cascading) to generate the conjecture:

Conjecture 5.

∀
X
∀
a
∀
b
(a ≤ b =⇒

(∃
x
∃
y
∃
W
({{x}} ]M[W ] ] {{y}} =M[a ` (X a b)] ∧

x ≤W ∧ W ≤ y))

Proof 3 synthesizes minA, maxA and TrimA which have the
property:

Property 5.

∀
a
∀
b
∀
X
(a ≤ b =⇒

({{minA[a,X, b]}} ]M[TrimA[a,X, b]] ] {{maxA[a,X, b]}} =
M[a ` (X a b)] ∧

minA[a,X, b] ≤ TrimA[a,X, b] ∧
TrimA[a,X, b] ≤ maxA[a,X, b]))

By strategy ST-3 (cascading) the goal (22) becomes:

{{x∗}} ]M[W ∗] ] {{y∗}} =
{{minA[a,X, b]}} ]M[TrimA[a,X, b]] ] {{maxA[a,X, b]}} ∧

x∗ ≤W ∗ ∧ W ∗ ≤ y∗.
(23)

and the following assumption is generated:

minA[a0, X0, b0] ≤ TrimA[a0, X0, b0] ∧
TrimA[a0, X0, b0] ≤ maxA[a0, X0, b0]

(24)

By strategy ST-6 and inference rule IR-4 the proof succeeds on
this branch, and the solutions are a∗ → minA[a0, V0, b0], b

∗ →
maxA[a0, V0, b0], and W ∗ → TrimA[a0, V0, b0].
Case 1.2. b0 < a0:

Property 5 is reused to modify the goal and similarly the
solutions are a∗ → minA[b0, V0, a0], b∗ → maxA[b0, V0, a0],
and W ∗ → TrimA[b0, V0, a0].

QED
The extracted algorithm is:

Algorithm 2. Maximum, minimum, trim maximum and mim-
imum.

min[a ` (U a b)] =

{
minA[a, U, b], if a ≤ b

minA[b, U, a], if b < a

max[a ` (U a b)] =

{
maxA[a, U, b], if a ≤ b

maxA[b, U, a], if b < a

Trim[a ` (U a b)] =

{
TrimA[a, U, b], if a ≤ b

TrimA[b, U, a], if b < a


The following proof of Conjecture 5 synthesizes the auxi-

liary functions used above.



Proof 3: By natural style rules and strategy ST-2 (induction)
the universal X is Skolemized to the target constant X0,
producing the target goal:

∀
a
∀
b
a ≤ b =⇒

∃
x
∃
y
∃
W
({{x}} ]M[W ] ] {{y}} =M[a ` (X0 a b)] ∧

x ≤W ∧ W ≤ y).

(25)

Furthermore the rest of the universal variables become Skolem
constants and the LHS of the implication is assumed:

a0 ≤ b0 (26)

The existential variables become metavariables and the
current goal is:

{{x∗}} ]M[W ∗] ] {{y∗}} =M[a0 ` (X0 a b0)] ∧
x∗ ≤W ∗ ∧ W ∗ ≤ y∗

(27)

which is extended using transitivity of ≤ and multiset decom-
position to:

{{x∗}} ]M[W ∗] ] {{y∗}} = {{a0}} ]M[X0] ] {{b0}} ∧
x∗ ≤W ∗ ∧ W ∗ ≤ y∗ ∧ x∗ ≤ y∗.

(28)

Strategy ST-1 (cover set) is applied to X0 with the cover set
{〈〉, c0 ` U0}.
Case 1. X0 = 〈〉:

{{x∗}} ]M[W ∗] ] {{y∗}} = {{a0}} ]M[〈〉] ] {{b0}}
∧ x∗ ≤W ∗ ∧ W ∗ ≤ y∗ ∧ x∗ ≤ y∗.

(29)

Using equation split the metavariables are solved to:
x∗ → a0, y

∗ → b0,W
∗ → 〈〉.

Case 2. X0 = c0 ` U0:

{{x∗}} ]M[W ∗] ] {{y∗}} = {{a0}} ]M[c0 ` U0] ] {{b0}}
∧ x∗ ≤W ∗ ∧ W ∗ ≤ y∗ ∧ x∗ ≤ y∗.

(30)

By multiset expansion the goal is transformed into:

{{x∗}} ]M[W ∗] ] {{y∗}} = {{a0}} ] {{c0}} ]M[U0] ] {{b0}}
∧ x∗ ≤W ∗ ∧ W ∗ ≤ y∗ ∧ x∗ ≤ y∗.

(31)

Since U0 is smaller than X0 w.r.t. the Noetherian ordering,
by ST-2 (induction) we assume the new induction hypothesis
obtained from (25) by substituting X0 → U0 and using the
names of the desired functions:

∀
a
∀
b
a ≤ b =⇒

({{minA[a, U0, b]}} ]M[TrimA[a, U0, b]] ] {{maxA[a, U0, b]}} =
{{a}} ]M[U0] ] {{b}} ∧

minA[a, U0, b] ≤ TrimA[a, U0, b] ∧
TrimA[a, U0, b] ≤ maxA[a, U0, b] ∧

minA[a, U0, b] ≤ maxA[a, U0, b]).
(32)

This is further instantiated on a, b as shown below.
By IR-8 because (26) we consider three cases for c0:

Case 2.1. c0 < a0: We instantiate (32) with a →
c0, b → b0 and the proof proceeds similarly to the next
case, finding the solutions: x∗ → minA[c0, U0, b0], y∗ →
maxA[c0, U0, b0], W ∗ → a0 ` TrimA[c0, U0, b0].

Case 2.2. a0 ≤ c0 ≤ b0: (32) is instantiated with a→ a0, b→
b0, the resulting conjunction is split and forward inference is
applied using (26). The resulting multiset equality is used in
the goal (31) to obtain the new goal:

{{minA[a0, U0, b0]}} ]M[TrimA[a0, U0, b0]]

]{{maxA[a0, U0, b0]}} =
{{minA[a0, U0, b0]}} ] {{c0}} ]M[TrimA[a0, U0, b0]]

]{{maxA[a0, U0, b0]}} ∧
x∗ ≤W ∗ ∧ W ∗ ≤ y∗ ∧ x∗ ≤ y∗.

(33)

By splitting the equation, compressing the multiset term
{{c0}} ] M[TrimA[a0, U0, b0]] and solving multiset equa-
tions the solutions are: x∗ → minA[a0, U0, b0], y∗ →
maxA[a0, U0, b0], W ∗ → c0 ` TrimA[a0, U0, b0] and the
inequalities in the goal are removed by backward inference
using the current assumptions.
Case 2.3. b0 < c0: (32) is instantiated with a → a0, b →
b0 and the proof is similar, finding the solutions: x∗ →
minA[a0, U0, c0], y∗ → maxA[a0, U0, c0], W ∗ → b0 `
TrimA[a0, U0, c0]. QED

The extracted algorithms from the proofs are:

Algorithm 3. Auxiliary minimum.

minA[a, 〈〉, b] = a

minA[a, c ` U, b] = .

.


minA[c, U, b], if c < a

minA[a, U, b], if a ≤ c ≤ b

minA[a, U, c], if b < c


Algorithm 4. Auxiliary maximum.

maxA[a, 〈〉, b] = b

minA[a, c ` U, b] = .

.


maxA[c, U, b], if c < a

maxA[a, U, b], if a ≤ c ≤ b

maxA[a, U, c], if b < c


Note that both algorithms above can be simplified by

retaining only two arguments and only two branches in the
recursive step, however we keep this similar structure because
we will combine them with the next algorithm.

Algorithm 5. Auxiliary trim.
TrimA[a, 〈〉, b] = 〈〉

TrimA[a, c ` U, b] = .

.


a ` TrimA[c, U, b], if c < a

c ` TrimA[a, U, b], if a ≤ c ∧ c ≤ b

b ` TrimA[a, U, c], if b < c





The function above has the same property as the bubble sort
algorithm: while scanning the list it moves the small elements
towards the beginning of the list and the big elements towards
the end of the list, thus it contributes to making the list “more
sorted”. This suggests to transform this sorting algorithm into
an imperative one, which would be basically the same as
bubble sort algorithm, but working in both directions.

IV. SYNTHESIS OF BIDIRECTIONAL BUBBLE SORT

A. The Tail Recursive Algorithm

First we transform auxiliary trimming algorithm TrimA into
a tail–recursive one (the other two are already), namely into
TrimATR. by using an additional argument as accumulator of
the result. Since the input is scanned using `, if we want to
keep the same order of the elements than the result must be
accumulated using a. (Since the only restriction on the result
is related to its ordering w. r. t. some elements, the order of the
elements in the result is not important, thus the more efficient
` can also be used for accumulation, however we may want
to keep the order of the element in order to preserve a nice
practical property of the bubble sort algorithm: when the input
is almost sorted, than the main loop has fewer executions.)

Algorithm 6. Tail–recursive trim.
TrimATR[a, 〈〉, b, V ] = V

TrimATR[a, c ` U, b, V ] = .

.


TrimATR[c, U, b, V a a], if c < a

TrimATR[a, U, b, V a c], if a ≤ c ∧ c ≤ b

TrimATR[a, U, c, V a b], if b < c


Because their structure is the same, the three tail–recursive

algorithms obtained above can be combined into one, which
returns a triple of elements (minimum, trimed list, and max-
imum), let us call this mTm, which uses an auxiliary tail–
recursive mTmA.

Algorithm 7. Min–trim–max in one function

mTm[a ` (U a b)] =

{
mTmA[a, U, b, 〈〉], if a ≤ b

mTmA[b, U, a, 〈〉], if b < a

mTmA[a, 〈〉, b, V ] = 〈a, V, b〉
mTmA[a, c ` U, b, V ]=

.


mTmA[c, U, b, V a a], if c < a

mTmA[a, U, b, V a c], if a ≤ c ∧ c ≤ b

mTmA[a, U, c, V a b], if b < c


Using this we can express the sorting algorithm in the

following way:

Algorithm 8. Min-Max-Sort using tail recursive auxiliary
function.

MMSort[〈〉] = 〈〉
MMSort[a ` 〈〉] = a ` 〈〉
MMSort[a ` U a b] =

MMSortA[mTm[a ` U a b]]

MMSortA[〈a, 〈〉, b〉] = a ` 〈〉 a b

MMSortA[〈a, c ` 〈〉, b〉] = a ` c ` 〈〉 a b

MMSortA[〈a, U, b〉] =
a ` MMSortA[mTm[U ]] a b)]


This can also be transformed into a tail recursion using two

accumulators and the function Conc for concatenation of lists:

Algorithm 9. Min-Max-Sort tail recursive.

MMSort[〈〉] = 〈〉
MMSort[a ` 〈〉] = a ` 〈〉
MMSort[a ` U a b] =

MMSortA[〈〉,mTm[a ` U a b], 〈〉]
MMSortA[V, 〈a, 〈〉, b〉,W ] = Conc[V, a ` b ` W ]

MMSortA[V, 〈a, c ` 〈〉, b〉,W ] =

Conc[V, a ` c ` b ` W ]

MMSortA[V, 〈a, U, b〉,W ] =

MMSortA[V a a,mTm[U ], b ` W ]


B. Adding a flag for efficiency

The call from the last clause of Algorithm 9 is not necessary
in case mTm[U ] is already sorted, one can detect by logical
analysis that this happens if in Algorithm 7 the last clause
follows the condition a ≤ c ∧ c ≤ b during all recursive
calls of mTmA. This suggests to add a flag to the arguments
of mTmA in order to check this condition. The new algorithm
is:

Algorithm 10. Min–trim–max with flag

mTm[a ` (U a b)] =

{
mTmA[a, U, b, 〈〉,T], if a ≤ b

mTmA[b, U, a, 〈〉,T], if b < a

mTmA[a, 〈〉, b, V, f ] = 〈a, V, b, f〉
mTmA[a, c ` U, b, V, f ]=

.


mTmA[c, U, b, V a a,F], if c < a

mTmA[a, U, b, V a c, f ], if a ≤ c ∧ c ≤ b

mTmA[a, U, c, V a b,F], if b < c


The corresponding sorting algorithm with flag is:



Algorithm 11. Min-Max-Sort with flag.

MMSort[〈〉] = 〈〉
MMSort[a ` 〈〉] = a ` 〈〉
MMSort[a ` U a b] =

MMSortA[〈〉,mTm[a ` U a b], 〈〉]
MMSortA[V, 〈a, 〈〉, b, f〉,W ] = Conc[V, a ` b ` W ]

MMSortA[V, 〈a, c ` 〈〉, b, f〉,W ] =

Conc[V, a ` c ` b ` W ]

MMSortA[V, 〈a, U, b,T〉,W ] =

Conc[V, a ` U, b ` W ]

MMSortA[V, 〈a, U, b,F〉,W ] =

MMSortA[V a a,mTm[U ], b ` W ]


V. CONCLUSION

This paper demonstrates the possibility of synthesizing on a
logical basis of the Min-Max-Sort algorithm, which is essen-
tially a version of bubble sort with bidirectional accumulation
of extreme values (smaller left-hand-side and greater right-
hand-side). This kind of synthesis appears to be challenging
because bubble sort looks much like a purely imperative
algorithm – scanning the list and swapping some elements
in certain cases. However, as we can see in our approach,
by applying the cascading principle in the appropriate way
and by adding tail recursion using accumulators, one can infer
logically first a recursive algorithm, and then transform it into
a tail recursive one.

Derivation of the tail recursive algorithm is interesting
because, as also demonstrated in [10], such an algorithm can
easily be transformed into a functional algorithm and then into
an imperative algorithm, whose execution is in general much
more efficient.
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