We have to prove:

XIsSorted [X] = (‘g (M[Insert[a, X]] =

under the assumptions:

IsSorted[e],

({{ayyWM[X])) AIsSorted[Insert[a, X]])

;Z‘;’ISSor‘ted[(L, a, R)] « (Issorted[L] AIsSorted[R] A (Lsa) A (a<R)),
vYYy (L 3, R) sb) = ((L<b) A (asb) A (RsbD)),
vYyy (bs (L, a, R)) = ((bst) A (bsa) A (b<R)),
vyy (wsert[a, X] sb) = ((asb) A (X5b)),
vyy (bstnsert[a, X]) @ ((b<a) A (b£X)),
vyy M(L &, R)] = (M[L] W (£a1) W M[R]),
vvy M(L, 3, R)] = (M[R] W (@)} W M[L]),
VYMIKe, @, e)] = {{a}},

MIe] =@,

X(AL+J¢)==A,

Yy ((AYB) WC) = (AWYBYC),

Vv (AYB) = (BUYA)

Proof by algorithm constructor.

For proving the universal goal (insert-sorted), take X0 a.b.f. and prove:

IsSorted[X0] = (\; (M[Insert[a, X0]] =

({{a}} YM[X0])) A IsSorted[Insert[a, XO] ]) .

(insert—sorted)

(sorted—empty—tree)

(smaller—than—empty—tree)

(empty—tree—smaller—than)

(sorted—tree)

(tree—less—elem)

(elem—less—tree)

(insert—less—than)

(elem—less—insert)

(full-tree—multiset—direct)

(full-tree—multiset—reverse)

(unit—tree—multiset)

(empty—tree—multiset)

(empty—multiset—in—union)

(union—associativiy)

(union—commutativity)

(G#163)

For proving (G#163), use alternatively the cover set {€, (L, a, R)} or no cover set for the Skolem constant

XO.

Alternative 1: cover set {€, {L, a, R)}.
Cover set cases:

Case 1: X0 = €. The goal becomes:

IsSorted[e] = (V (M[Insert[a, €]] =
a

Implicative goal (G#163.1) is split. Assume:

IsSorted[e],

and prove:

V (M[Insert[a, €]] =
a

({{a}}rWYM[e])) AIsSorted[Insert[a, e]]) .

({{a}}Y WY M[e])) AIsSorted[Insert[a, €]],

(G#163.1)

(A#182)

(G#183)



2| Proof-Insert-Sorted.nb

For proving the universal goal (G#183), take a0 a.b.f. and prove:
(M[Insert[a0, e]] = ({{a0}} WMI[el)) AIsSorted[Insert[a0, ]]. (G#201)

Using "empty-tree-multiset", the goal (G#201) is simplified to:
(M[Insert[a0, e]] = ({{a0}} W®)) A IsSorted[Insert[a0, €]]. (G#202)
Using "empty-multiset-in-union", the goal (G#202) is simplified to:

(M[Insert[a0, e]] = {{a0}}) A IsSorted[Insert|[a0, €]]. (G#203)

Using goal (G#203), the solution is: Insert[a0, €] == (g, a0, €), and the goal is reduced to:

IsSorted[(e, a0, €)]. (G#204)

Using "sorted-tree", the goal (G#204) is simplified to:

IsSorted[e] A (e <a0) A (a0se€). (G#205)

Using "A#182", the goal (G#205) is simplified to:

(e sa0) A (a0se). (G#206)

Using "empty-tree-smaller-than", the goal (G#206) is simplified to:

als<e. (G#207)
Using "smaller-than-empty-tree", the goal (G#207) is true: success:

A Case 2: X0=(LO0, a0, ROy with a.b.f. L0, a0, and RO. The goal becomes:

IsSorted[(LO, a0, RO)| = (‘g (M[Insert[a, (LO, a0, RO)]] = ({{a}} W M[(LO, a0, RO)])) A

(G#163.2)
IsSorted[Insert[a, (LO, a0, RO)]]) .
Implicative goal (G#163.2) is split. Assume:
IsSorted[(LO, a0, RO)], (A#209)
and prove:
v (M[Insert[a, (LO, a0, RO)]] = ({{a}}WYM[(LO, a0, RO)])) A
a (G#210)
IsSorted[Insert[a, (L0, a0, R0)]],
The assumption (A#209) is simplified using "sorted-tree" to:
IsSor-ted[LO] A IsSorted [RO] A (LOS aO) N (aO < RO) A (LO < RO) . (A#227)
For proving the universal goal (G#210), take a7 a.b.f. and prove:
(m[znsert[at, (Lo, a0, RO)]] = ({(aTr} WMm[(L0, a0, RO)])) A
J— (G#245)
IsSor‘ted[Inser‘t[a1, (L0, a0, RO)” .
Using "full-tree-multiset-direct", the goal (G#245) is expanded to:
(m[znsert[aT, (Lo, a0, RO)]] = ({taT1} ¥ ({{a0}} W M[LO] WM[RO]))) A
(G#341)

IsSor‘ted[Inser‘t[E, (L0, a0, RO)” .

Using "union-associativity-left", the goal (G#341) is simplified to:



Proof-Insert-Sorted.nb |3

(m[znsert[aT, (L0, a0, RO)]] = ({ta71} & {{a0}} W m[LO] W M[RO])) A

J— (G#342)
IsSor‘ted[Insert[a1, (Lo, a0, RO)” .
The conjunction (A#227) is split into:
IsSorted[LO], (A#227.1)
IsSorted[RO0], (A#227.2)
LO< a0, (A#227.3)
a0 < RO, (A#227.4)
LO < RO. (A#227.5)
For proving (G#342), use alternatively the pairs of multisets (1, 3), (2, 3),(1, 4), and {2, 4).
A Alternative 1, pair (1, 3): {{a7}} w MI[LO].
By "union-associativity" and "union-commutativity", the goal becomes:
(m[znsert[at, (Lo, a0, RO)]] = (({taTh} WM[L0]) W {{a0}} ¥ M[RO])) A
_ (G#442)
IsSor‘ted[Inser‘t[a1, (Lo, a0, RO)” .
By Noetherian induction, using L0 < X0, assume:
IsSorted[LO] = (V (M[Insert[a, LO]] = ({{a}} W M[LO])) A IsSorted[Insert|a, LO]] ) , (A#446)
from which by (A#227.1) follows:
v (M[Insert[a, LO]] = ({{a}} YM][LO])) AIsSorted[Insert[a, LO]], (A#447)
which is instantiated to:
(M [Inser‘t [E, LO] ] = ({{H}} W M[LO] ) ) A IsSorted [Inser‘t [E, LO] ] , (A#448)
and the goal becomes:
(m[znsert[at, (Lo, a0, RO)]] = (m[Insert[aT, L0]] & {{a0}} WM[RO])) A
. (G#449)
IsSor‘ted[Inser‘t[a1, (L0, a0, RO)” .
The goal (G#449) is simplified using several alternatives.
A Using full-tree-multiset-direct, the goal (G#449) is simplified to:
M| Insert|a?, (LO, a0, RO = M| (Insert|a?, LO|, a0, RO A
(#[znsert[a, ( |1 = m((znsert[a7, Lo] M) i

IsSor‘ted[Inser‘t[Z, (Lo, a0, RO)]] .

Using goal (G#450), the solution is: Insert[a?, (LO, a0, RO)] == (Insert[a_1, L0], a0, RO), and the goal is

reduced to:

IsSor‘ted[(Inser‘t[H, LO], a0, RO)] . (G#590)

Using "sorted-tree", the goal (G#590) is simplified to:

IsSor‘ted[Inser‘t [E, LOH A IsSorted [RO] A (Inser‘t[ﬁ, LO] < aO) A (a0 < RO). (G#591)

Using "A#227.4", the goal (G#591) is simplified to:



4| Proof-Insert-Sorted.nb

IsSorted[Inser‘t [5, LO” A IsSorted [RO] A (Inser‘t[g, LO] < aO) . (G#592)

Using "A#227.2", the goal (G#592) is simplified to:

IsSorted[Insert [5, LO” A (Insert[ﬁ, LO] < aO). (G#593)
Using "insert-less-elem", the goal (G#593) is simplified to:

IsSorted[Insert [5, LO” A ((ﬁs aO) A (LOs aO)) . (G#594)

Using "A#227.3", the goal (G#594) is simplified to:

IsSorted[Inser‘t [5, LO” A (Hs ao) . (G#595)
The conjunction (A#448) is split into:

m[tnsert[at, L0]] = ({tan }Wm[L0]), (A#448.1)

Issorted[Insert [a_1, LO] ] (A#448.2)

Using "A#448.2", the goal (G#595) is simplified to:

at < a0. (G#645)

The goal is used as a condition in the following clause of the algorithm:

(a7 < a0) = (1nsert[a7, (L0, a0, R0)] = (1nsert[a7, L0|, a0, Ro)). (A#646)

Success.
A Using full-tree-multiset-reverse, the goal (G#449) is simplified to:
(M[Inser‘t [E, (Lo, a0, RO)” ==M[(RO, ao0, Inser‘t[a, LO] )]) A

_ (G#451)
IsSor‘ted[Inser‘t[a1, (Lo, a0, RO)” .

The solution Insert[a7, {LO, a0, RO)] == (RO, ao, Insert[a, LO]) is not admissible because RO and LO are
in the wrong order according to (A#227.5)

A Alternative 2, pair {2, 3): {{a0}} w MI[LO].
By "union-associativity" and "union-commutativity", the goal becomes:

(m[znsert[at, (Lo, a0, RO)]] = (({{a0}} Wm[L0]) W{(aT}} Y M[RO])) A

— (G#443)
IsSor‘ted[Inser‘t[a1, (Lo, a0, RO)]] .
By Noetherian induction, using L0 < X0, assume:
IsSorted[LO] = (‘g (M[Insert[a, LO]] = ({{a}} W M[LO])) A IsSorted[Insert|a, LO]] ) 5 (A#647)
from which by (A#227.1) follows:
v (M[Insert[a, LO]] = ({{a}} WM[LO])) A IsSorted[Insert[a, LO]], (A%648)

which is instantiated to:
(M[Insert[a0, LO]] = ({{a0}} W M[LO])) A IsSorted[Insert[a0, LO]], (A#649)



Proof-Insert-Sorted.nb |5

and the goal becomes:

(M[Inser‘t [H, (Lo, a0, RO)” . (M[Inser‘t[aO, Lo]] W {{E}} W M[RO] )) A

J— (G#650)
IsSor‘ted[Inser‘t[a1, (Lo, a0, RO)” .
The goal (G#650) is simplified using several alternatives.
Using full-tree-multiset-direct, the goal (G#650) is simplified to:
(M[Insert [a_1, (Lo, a0, RO)]] ::M[(Insert[aO, Loj, at, RO)]) A
(G#651)

IsSor‘ted[Inser‘t[ﬁ, (Lo, a0, RO)]] .
Using goal (G#651), the solution is: Insert[a7, (L0, a0, R0)] == (Insert[aO, LO], a1, RO), and the goal is
reduced to:

IsSor‘ted[(Inser‘t[aO, Loj, at, RO)] . (G#791)
Using "sorted-tree", the goal (G#791) is simplified to:
IsSorted[Insert[a0, LO]] A IsSorted[RO] A (Inser‘t[aO, L0] = H) A (as RO) . (G#792)

Using "A#227.2", the goal (G#792) is simplified to:

IsSorted[Insert[a0, LO]] A (Insert[ao, L0] < ﬁ) A (Es RO) . (G#793)

Using "insert-less-elem", the goal (G#793) is simplified to:
IsSorted[Insert[a0, LO]] A ((aOs E) A (LOsﬁ)) A (Hs RO) . (G#794)
The conjunction (A#649) is split into:
M[Insert[a0, LO]] = ({{a0}} W M[LO]), (A#649.1)
IsSorted[Insert[a0, LO]]. (A#649.2)

Using "A#649.2", the goal (G#794) is simplified to:

((aOsﬁ) A (LOsﬁ)) A (Hs RO). (G#844)

Proof fails.
Using full-tree-multiset-reverse, the goal (G#650) is simplified to:
(M[Inser‘t [a_1, (Lo, a0, RO)” ==M[(RO, at, Insert[a0, LO] )]) A

_ (G#652)
IsSor'1:ed[Inser‘t[a1J (Lo, a0, RO)” .

The solution Insert[a?, {LO, a0, RO)] == (RO, al, Insert[a0, LO]) is not admissible because RO and LO are
in the wrong order according to (A#227.5)

Alternative 3, pair (1, 4): {{a1}} w M[RO].

By "union-associativity" and "union-commutativity", the goal becomes:

(m[znsert[a7, (L0, a0, RO)]] = (({taTr} Wm[RO]) W {{a0}} W m[LO])) A

_ (G#444)
IsSor‘ted[Inser‘t[a1, (Lo, a0, RO)” .

By Noetherian induction, using RO < X0, assume:



6| Proof-Insert-Sorted.nb

IsSorted [R0] = (V (M[Insert[a, RO]] = ({{a}} UM[RO])) A IsSorted[Insert[a, RO]] ) 5

from which by (a#227.2) follows:
v (M[Insert[a, RO]] = ({{a}} YM[RO])) A IsSorted[Insert[a, RO]],

which is instantiated to:
(M [Inser‘t [E, RO] ] = ({{H}} W M[RO] ) ) A IsSorted [Inser‘t [E, RO] ] R
and the goal becomes:
(M[Inser‘t [E, (Lo, a0, RO)]] = (M[Inser‘t [Z, RO]] W {{a0}} Wm[LO] )) A
IsSor‘ted[Inser‘t[Z, (Lo, a0, RO)” .
The goal (G#848) is simplified using several alternatives.
A Using full-tree-multiset-direct, the goal (G#848) is simplified to:

(m[znsert[at, (Lo, a0, RO)]] = m[(Insert[aT, RO], a0, LO)]) A
IsSor‘ted[Insert[a_1, (Lo, a0, RO)” .

(A#845)

(A#846)

(A#847)

(G#848)

(G#849)

The solution Insert[a?, {LO, a0, RO)] == (Insert[a_1, RO0), a0, LO) is not admissible because RO and LO are

in the wrong order according to (A#227.5)
A Using full-tree-multiset-reverse, the goal (G#848) is simplified to:
(m[znsert[at, (Lo, a0, RO)]] = m[(L0, a0, Insert[aT, RO])]) A
Issorted|Insert[af, (L0, a0, RO)]].

(G#850)

Using goal (G#850), the solution is: Insert[a?, (L0, a0, RO)] == (L0, a0, Insert[a?, R0]), and the goal is

reduced to:

IsSor‘ted[(LO, ao, Inser‘t[ﬁ, RO] )] .

Using "sorted-tree", the goal (G#989) is simplified to:

IsSorted[LO] A IsSorted [Inser‘t [H, RO] ] A (LO<a0) A (aO < Insert [E, RO]) .

Using "A#227.3", the goal (G#990) is simplified to:

IsSorted[LO] A IsSorted [Inser‘t [H, RO] ] A (aO < Insert [E, RO]) .

Using "A#227.1", the goal (G#991) is simplified to:

IsSor‘ted[Inser‘t [E, RO” A (aO < Insert [E, RO]) .

Using "elem-less-insert", the goal (G#992) is simplified to:

IsSorted[Insert [E, RO” A ((aOsa) A (a0 < RO)) .

Using "A#227.4", the goal (G#993) is simplified to:

IsSor‘ted[Inser‘t [E, RO” A (aO < ﬁ) .

The conjunction (A#847) is split into:

(G#989)

(G#990)

(G#991)

(G#992)

(G#993)

(G#994)



Proof-Insert-Sorted.nb |7

M|1nsert[aT, Ro|| = ({ta?}} W m[RO]),
IsSorted [Inser‘t [a_1, RO] ] .

Using "A#847.2", the goal (G#994) is simplified to:

a0<af.

The goal is used as a condition in the following clause of the algorithm:
(a0<a7) = (tnsert[a7, (L0, a0, RO)] = (L0, a0, Insert[aT, RO]}).

Success.
Alternative 4, pair (2, 4): {{a0}} y M[RO].
By "union-associativity" and "union-commutativity", the goal becomes:
(M[znsert[aT, (L0, a0, RO)]] = (({{a0}} WM[RO]) & {aTy} W m[LO])) A
Issorted|Insert[af, (L0, a0, RO)]].
By Noetherian induction, using RO < X0, assume:
Issorted[R0] = (v (m[Insert[a, RO]| = ({{a}} Y M[RO])) AIsSorted[Insert[a, RO]]),

from which by (A#227.2) follows:
v (M[Insert[a, RO]] = ({{a}} WM[RO])) AIsSorted[Insert[a, RO]],

which is instantiated to:
(m[Insert[a0, RO]] = ({{a0}} WM[RO])) A IsSorted|Insert[a0, RO]],
and the goal becomes:
(m[znsert[at, (Lo, a0, RO)]]| = (m[Insert[a0, RO]] W {{aT}} W M[LO])) A
IsSorted[Insert[H, (Lo, a0, Ro)”.
The goal (G#1049) is simplified using several alternatives.
Using full-tree-multiset-direct, the goal (G#1049) is simplified to:

(M[Inser‘t [a_1, (Lo, a0, RO)]] ==M[(Insert[aO, Ro], at, LO)]) N
IsSorted[Inser‘t[a—1, (Lo, a0, RO)]] .

(A#847.1)

(A#847.2)

(G#1044)

(A#1045)

(G#445)

(A#1046)

(A#1047)

(A#1048)

(G#1049)

(G#1050)

The solution Insert[a?, {LO, a0, RO)] == (Insert[aO, RO), a1, LO) is not admissible because RO and LO are

in the wrong order according to (A#227.5)
Using full-tree-multiset-reverse, the goal (G#1049) is simplified to:
(m[znsert[at, (Lo, a0, RO)]]| = m[(L0, &T, Insert[a0, RO])]) A
IsSorted[Insert[H, (Lo, a0, Ro)]].

(G#1051)

Using goal (G#1051), the solution is: Insert[aT, (L0, a0, RO)] == (LO, al, Insert[aO, RO]), and the goal is

reduced to:



8| Proof-Insert-Sorted.nb

IsSorted[(LO, at, Insert[a0, RO] )] . (G#1190)
Using "sorted-tree", the goal (G#1190) is simplified to:
IsSorted[L0] A IsSorted|[Insert[a0, RO]] A (LOs H) A (ﬁs Insert[a0, RO]) . (G#1191)

Using "A#227.1", the goal (G#1191) is simplified to:

IsSorted[Insert[a0, RO]] A (LOSH) A (Hs Insert[ao0, RO]) . (G#1192)

Using "elem-less-insert", the goal (G#1192) is simplified to:
IsSorted[Insert[a0, RO]] A (LOSH) A ((Hs aO) A (Hs RO)) . (G#1193)
The conjunction (A#1048) is split into:
M[Insert[a0, RO]] = ({{a0}} WM[RO]), (A#1048.1)
IsSorted[Insert[a0, RO]]. (A#1048.2)
Using "A#1048.2", the goal (G#1193) is simplified to:
(LOs H) A ((Es aO) A (Hs RO)) . (G#1243)
Proof fails (no applicable rule).
Goal:
A Alternative 2: no cover set.

Implicative goal (G#163) is split. Assume:

IsSorted[X0], (A#1244)
and prove:
v (M[Inser‘t [a, XO] ] = ({{a}} ¥ M[XO] ) ) A IsSorted [Insert [a, XO] ] , (G#1245)

For proving the universal goal (G#12453), take a0 a.b.f. and prove:
(M[Insert[a0, X0]] = ({{a0}} W M[X0])) A IsSorted[Insert[a0, X0]]. (G#1262)

By "union-associativity" and "union-commutativity", the goal becomes:
(M[Insert[a0, X0]] = ({{a0}} W M[X0])) A IsSorted[Insert[a0, XO]]. (G#1263)

Proof fails.



