
We have to prove:

∀
X
IsSortedX ⇒ ∀

a
ℳInserta, X ⩵ {{a}} ⊎ℳX ∧ IsSortedInserta, X (insert-sorted)

under the assumptions:
IsSorted[ϵ], (sorted-empty-tree)

∀
x
x ≤ ϵ, (smaller-than-empty-tree)

∀
x
ϵ ≤ x, (empty-tree-smaller-than)

∀
L
∀
a
∀
R
IsSortedL, a, R ⇔ IsSortedL ∧ IsSortedR ∧ L ≤ a ∧ a ≤ R, (sorted-tree)

∀
L
∀
a
∀
R
∀
b
L, a, R ≤ b ⇔ L ≤ b ∧ a ≤ b ∧ R ≤ b, (tree-less-elem)

∀
L
∀
a
∀
R
∀
b
b ≤ L, a, R ⇔ b ≤ L ∧ b ≤ a ∧ b ≤ R, (elem-less-tree)

∀
a
∀
X
∀
b
Inserta, X ≤ b ⇔ a ≤ b ∧ X ≤ b, (insert-less-than)

∀
a
∀
X
∀
b
b ≤ Inserta, X ⇔ b ≤ a ∧ b ≤ X, (elem-less-insert)

∀
L
∀
a
∀
R
ℳL, a, R ⩵ ℳL ⊎ {{a}} ⊎ℳR, (full-tree-multiset-direct)

∀
L
∀
a
∀
R
ℳL, a, R ⩵ ℳR ⊎ {{a}} ⊎ℳL, (full-tree-multiset-reverse)

∀
a
ℳ[〈ϵ, a, ϵ〉]⩵ {{a}}, (unit-tree-multiset)

ℳ[ϵ]⩵ ∅, (empty-tree-multiset)

∀
A
A ⊎ ∅ ⩵ A, (empty-multiset-in-union)

∀
A
∀
B
∀
C
A ⊎ B ⊎ C ⩵ A ⊎ B ⊎ C, (union-associativiy)

∀
A
∀
B
A ⊎ B ⩵ B ⊎ A. (union-commutativity)

Proof by algorithm constructor.

For proving the universal goal (insert-sorted), take X0 a.b.f. and prove:

IsSortedX0 ⇒ ∀
a
ℳInserta, X0 ⩵ {{a}} ⊎ℳX0 ∧ IsSortedInserta, X0. (G163)

For proving (G163) , use alternatively the cover set {ϵ, 〈L, a, R〉} or no cover set for the Skolem constant
X0.

 Alternative 1: cover set {ϵ, 〈L, a, R〉}.

Cover set cases:

 Case 1: X0 = ϵ. The goal becomes:

IsSorted[ϵ] ⇒ ∀
a
(ℳ[Insert[a, ϵ]]⩵ ({{a}} ⊎ℳ[ϵ])) ∧ IsSorted[Insert[a, ϵ]]. (G163.1)

Implicative goal (G163.1) is split. Assume:
IsSorted[ϵ], (A182)

and prove:
∀
a
(ℳ[Insert[a, ϵ]]⩵ ({{a}} ⊎ℳ[ϵ])) ∧ IsSorted[Insert[a, ϵ]], (G183)

For proving the universal goal (G183) , take a0 a.b.f. and prove:
ℳInserta0, ϵ ⩵ a0 ⊎ℳ[ϵ] ∧ IsSortedInserta0, ϵ. (G201)

Using "empty-tree-multiset", the goal (G201) is simplified to:
ℳInserta0, ϵ ⩵ a0 ⊎ ∅ ∧ IsSortedInserta0, ϵ. (G202)

Using "empty-multiset-in-union", the goal (G202) is simplified to:
ℳInserta0, ϵ ⩵ a0 ∧ IsSortedInserta0, ϵ. (G203)

Using goal (G203) , the solution is: Insert[a0, ϵ] ⩵〈ϵ, a0, ϵ〉, and the goal is reduced to:

IsSortedϵ, a0, ϵ. (G204)

Using "sorted-tree", the goal (G204) is simplified to:
IsSorted[ϵ] ∧ ϵ ≤ a0 ∧ a0 ≤ ϵ. (G205)

Using "A182", the goal (G205) is simplified to:
ϵ ≤ a0 ∧ a0 ≤ ϵ. (G206)

Using "empty-tree-smaller-than", the goal (G206) is simplified to:
a0 ≤ ϵ. (G207)

Using "smaller-than-empty-tree", the goal (G207) is true: success:

 Case 2: X0 = 〈L0, a0, R0〉 with a.b.f. L0, a0, and R0. The goal becomes:

IsSortedL0, a0, R0 ⇒ ∀
a
ℳInserta, L0, a0, R0 ⩵ {{a}} ⊎ℳL0, a0, R0 ∧

IsSortedInserta, L0, a0, R0.
(G163.2)

Implicative goal (G163.2) is split. Assume:
IsSortedL0, a0, R0, (A209)

and prove:
∀
a
ℳInserta, L0, a0, R0 ⩵ {{a}} ⊎ℳL0, a0, R0 ∧

IsSortedInserta, L0, a0, R0,
(G210)

The assumption (A209) is simplified using "sorted-tree" to:
IsSortedL0 ∧ IsSortedR0 ∧ L0 ≤ a0 ∧ a0 ≤ R0 ∧ L0 ≤ R0. (A227)

For proving the universal goal (G210) , take a1
_

 a.b.f. and prove:

ℳInserta1, L0, a0, R0 ⩵ {a1} ⊎ℳL0, a0, R0 ∧

IsSortedInserta1, L0, a0, R0.
(G245)

Using "full-tree-multiset-direct", the goal (G245) is expanded to:

ℳInserta1, L0, a0, R0 ⩵ {a1} ⊎ a0 ⊎ℳL0 ⊎ℳR0 ∧

IsSortedInserta1, L0, a0, R0.
(G341)

Using "union-associativity-left", the goal (G341) is simplified to:

2 Proof-Insert-Sorted.nb

ℳInserta1, L0, a0, R0 ⩵ {a1} ⊎ a0 ⊎ℳL0 ⊎ℳR0 ∧

IsSortedInserta1, L0, a0, R0.
(G342)

The conjunction (A227) is split into:
IsSortedL0, (A227.1)

IsSortedR0, (A227.2)

L0 ≤ a0, (A227.3)

a0 ≤ R0, (A227.4)

L0 ≤ R0. (A227.5)

For proving (G342) , use alternatively the pairs of multisets 〈1, 3〉, 〈2, 3〉, 〈1, 4〉, and 〈2, 4〉.

 Alternative 1, pair 〈1, 3〉: {{a1
_

}} ⊎ℳ[L0].

By "union-associativity" and "union-commutativity", the goal becomes:

ℳInserta1, L0, a0, R0 ⩵ {a1} ⊎ℳL0 ⊎ a0 ⊎ℳR0 ∧

IsSortedInserta1, L0, a0, R0.
(G442)

By Noetherian induction, using L0 ≺X0, assume:

IsSortedL0 ⇒ ∀
a
ℳInserta, L0 ⩵ {{a}} ⊎ℳL0 ∧ IsSortedInserta, L0, (A446)

from which by (A227.1) follows:
∀
a
ℳInserta, L0 ⩵ {{a}} ⊎ℳL0 ∧ IsSortedInserta, L0, (A447)

which is instantiated to:

ℳInserta1, L0 ⩵ {a1} ⊎ℳL0 ∧ IsSortedInserta1, L0, (A448)

 and the goal becomes:

ℳInserta1, L0, a0, R0 ⩵ ℳInserta1, L0 ⊎ a0 ⊎ℳR0 ∧

IsSortedInserta1, L0, a0, R0.
(G449)

The goal (G449) is simplified using several alternatives.

 Using full-tree-multiset-direct, the goal (G449) is simplified to:

ℳInserta1, L0, a0, R0 ⩵ℳInserta1, L0, a0, R0 ∧

IsSortedInserta1, L0, a0, R0.
(G450)

Using goal (G450) , the solution is: Insert[a1
_

, 〈L0, a0, R0〉] ⩵Insert[a1
_

, L0], a0, R0, and the goal is

reduced to:

IsSortedInserta1, L0, a0, R0. (G590)

Using "sorted-tree", the goal (G590) is simplified to:

IsSortedInserta1, L0 ∧ IsSortedR0 ∧ Inserta1, L0 ≤ a0 ∧ a0 ≤ R0. (G591)

Using "A227.4", the goal (G591) is simplified to:

Proof-Insert-Sorted.nb 3

IsSortedInserta1, L0 ∧ IsSortedR0 ∧ Inserta1, L0 ≤ a0. (G592)

Using "A227.2", the goal (G592) is simplified to:

IsSortedInserta1, L0 ∧ Inserta1, L0 ≤ a0. (G593)

Using "insert-less-elem", the goal (G593) is simplified to:

IsSortedInserta1, L0 ∧ a1 ≤ a0 ∧ L0 ≤ a0. (G594)

Using "A227.3", the goal (G594) is simplified to:

IsSortedInserta1, L0 ∧ a1 ≤ a0. (G595)

The conjunction (A448) is split into:

ℳInserta1, L0 ⩵ {a1} ⊎ℳL0, (A448.1)

IsSortedInserta1, L0. (A448.2)

Using "A448.2", the goal (G595) is simplified to:

a1 ≤ a0. (G645)

The goal is used as a condition in the following clause of the algorithm:

a1 ≤ a0 ⇒ Inserta1, L0, a0, R0 ⩵ Inserta1, L0, a0, R0. (A646)

Success.

 Using full-tree-multiset-reverse, the goal (G449) is simplified to:

ℳInserta1, L0, a0, R0 ⩵ℳR0, a0, Inserta1, L0 ∧

IsSortedInserta1, L0, a0, R0.
(G451)

The solution Insert[a1
_

, 〈L0, a0, R0〉] ⩵R0, a0, Insert[a1
_

, L0] is not admissible because R0 and L0 are

in the wrong order according to (A227.5)

 Alternative 2, pair 〈2, 3〉: {{a0}} ⊎ℳ[L0].

By "union-associativity" and "union-commutativity", the goal becomes:

ℳInserta1, L0, a0, R0 ⩵ a0 ⊎ℳL0 ⊎ {a1} ⊎ℳR0 ∧

IsSortedInserta1, L0, a0, R0.
(G443)

By Noetherian induction, using L0 ≺X0, assume:

IsSortedL0 ⇒ ∀
a
ℳInserta, L0 ⩵ {{a}} ⊎ℳL0 ∧ IsSortedInserta, L0, (A647)

from which by (A227.1) follows:
∀
a
ℳInserta, L0 ⩵ {{a}} ⊎ℳL0 ∧ IsSortedInserta, L0, (A648)

which is instantiated to:
ℳInserta0, L0 ⩵ a0 ⊎ℳL0 ∧ IsSortedInserta0, L0, (A649)

4 Proof-Insert-Sorted.nb

 and the goal becomes:

ℳInserta1, L0, a0, R0 ⩵ ℳInserta0, L0 ⊎ {a1} ⊎ℳR0 ∧

IsSortedInserta1, L0, a0, R0.
(G650)

The goal (G650) is simplified using several alternatives.

 Using full-tree-multiset-direct, the goal (G650) is simplified to:

ℳInserta1, L0, a0, R0 ⩵ℳInserta0, L0, a1, R0 ∧

IsSortedInserta1, L0, a0, R0.
(G651)

Using goal (G651) , the solution is: Insert[a1
_

, 〈L0, a0, R0〉] ⩵Insert[a0, L0], a1
_

, R0, and the goal is

reduced to:

IsSortedInserta0, L0, a1, R0. (G791)

Using "sorted-tree", the goal (G791) is simplified to:

IsSortedInserta0, L0 ∧ IsSortedR0 ∧ Inserta0, L0 ≤ a1 ∧ a1 ≤ R0. (G792)

Using "A227.2", the goal (G792) is simplified to:

IsSortedInserta0, L0 ∧ Inserta0, L0 ≤ a1 ∧ a1 ≤ R0. (G793)

Using "insert-less-elem", the goal (G793) is simplified to:

IsSortedInserta0, L0 ∧ a0 ≤ a1 ∧ L0 ≤ a1 ∧ a1 ≤ R0. (G794)

The conjunction (A649) is split into:
ℳInserta0, L0 ⩵ a0 ⊎ℳL0, (A649.1)

IsSortedInserta0, L0. (A649.2)

Using "A649.2", the goal (G794) is simplified to:

a0 ≤ a1 ∧ L0 ≤ a1 ∧ a1 ≤ R0. (G844)

Proof fails.

 Using full-tree-multiset-reverse, the goal (G650) is simplified to:

ℳInserta1, L0, a0, R0 ⩵ℳR0, a1, Inserta0, L0 ∧

IsSortedInserta1, L0, a0, R0.
(G652)

The solution Insert[a1
_

, 〈L0, a0, R0〉] ⩵R0, a1
_

, Insert[a0, L0] is not admissible because R0 and L0 are

in the wrong order according to (A227.5)

 Alternative 3, pair 〈1, 4〉: {{a1
_

}} ⊎ℳ[R0].

By "union-associativity" and "union-commutativity", the goal becomes:

ℳInserta1, L0, a0, R0 ⩵ {a1} ⊎ℳR0 ⊎ a0 ⊎ℳL0 ∧

IsSortedInserta1, L0, a0, R0.
(G444)

By Noetherian induction, using R0 ≺X0, assume:

Proof-Insert-Sorted.nb 5

IsSortedR0 ⇒ ∀
a
ℳInserta, R0 ⩵ {{a}} ⊎ℳR0 ∧ IsSortedInserta, R0, (A845)

from which by (A227.2) follows:
∀
a
ℳInserta, R0 ⩵ {{a}} ⊎ℳR0 ∧ IsSortedInserta, R0, (A846)

which is instantiated to:

ℳInserta1, R0 ⩵ {a1} ⊎ℳR0 ∧ IsSortedInserta1, R0, (A847)

 and the goal becomes:

ℳInserta1, L0, a0, R0 ⩵ ℳInserta1, R0 ⊎ a0 ⊎ℳL0 ∧

IsSortedInserta1, L0, a0, R0.
(G848)

The goal (G848) is simplified using several alternatives.

 Using full-tree-multiset-direct, the goal (G848) is simplified to:

ℳInserta1, L0, a0, R0 ⩵ℳInserta1, R0, a0, L0 ∧

IsSortedInserta1, L0, a0, R0.
(G849)

The solution Insert[a1
_

, 〈L0, a0, R0〉] ⩵Insert[a1
_

, R0], a0, L0 is not admissible because R0 and L0 are

in the wrong order according to (A227.5)

 Using full-tree-multiset-reverse, the goal (G848) is simplified to:

ℳInserta1, L0, a0, R0 ⩵ℳL0, a0, Inserta1, R0 ∧

IsSortedInserta1, L0, a0, R0.
(G850)

Using goal (G850) , the solution is: Insert[a1
_

, 〈L0, a0, R0〉] ⩵L0, a0, Insert[a1
_

, R0], and the goal is

reduced to:

IsSortedL0, a0, Inserta1, R0. (G989)

Using "sorted-tree", the goal (G989) is simplified to:

IsSortedL0 ∧ IsSortedInserta1, R0 ∧ L0 ≤ a0 ∧ a0 ≤ Inserta1, R0. (G990)

Using "A227.3", the goal (G990) is simplified to:

IsSortedL0 ∧ IsSortedInserta1, R0 ∧ a0 ≤ Inserta1, R0. (G991)

Using "A227.1", the goal (G991) is simplified to:

IsSortedInserta1, R0 ∧ a0 ≤ Inserta1, R0. (G992)

Using "elem-less-insert", the goal (G992) is simplified to:

IsSortedInserta1, R0 ∧ a0 ≤ a1 ∧ a0 ≤ R0. (G993)

Using "A227.4", the goal (G993) is simplified to:

IsSortedInserta1, R0 ∧ a0 ≤ a1. (G994)

The conjunction (A847) is split into:

6 Proof-Insert-Sorted.nb

ℳInserta1, R0 ⩵ {a1} ⊎ℳR0, (A847.1)

IsSortedInserta1, R0. (A847.2)

Using "A847.2", the goal (G994) is simplified to:

a0 ≤ a1. (G1044)

The goal is used as a condition in the following clause of the algorithm:

a0 ≤ a1 ⇒ Inserta1, L0, a0, R0 ⩵ L0, a0, Inserta1, R0. (A1045)

Success.

 Alternative 4, pair 〈2, 4〉: {{a0}} ⊎ℳ[R0].

By "union-associativity" and "union-commutativity", the goal becomes:

ℳInserta1, L0, a0, R0 ⩵ a0 ⊎ℳR0 ⊎ {a1} ⊎ℳL0 ∧

IsSortedInserta1, L0, a0, R0.
(G445)

By Noetherian induction, using R0 ≺X0, assume:

IsSortedR0 ⇒ ∀
a
ℳInserta, R0 ⩵ {{a}} ⊎ℳR0 ∧ IsSortedInserta, R0, (A1046)

from which by (A227.2) follows:
∀
a
ℳInserta, R0 ⩵ {{a}} ⊎ℳR0 ∧ IsSortedInserta, R0, (A1047)

which is instantiated to:
ℳInserta0, R0 ⩵ a0 ⊎ℳR0 ∧ IsSortedInserta0, R0, (A1048)

 and the goal becomes:

ℳInserta1, L0, a0, R0 ⩵ ℳInserta0, R0 ⊎ {a1} ⊎ℳL0 ∧

IsSortedInserta1, L0, a0, R0.
(G1049)

The goal (G1049) is simplified using several alternatives.

 Using full-tree-multiset-direct, the goal (G1049) is simplified to:

ℳInserta1, L0, a0, R0 ⩵ℳInserta0, R0, a1, L0 ∧

IsSortedInserta1, L0, a0, R0.
(G1050)

The solution Insert[a1
_

, 〈L0, a0, R0〉] ⩵Insert[a0, R0], a1
_

, L0 is not admissible because R0 and L0 are

in the wrong order according to (A227.5)

 Using full-tree-multiset-reverse, the goal (G1049) is simplified to:

ℳInserta1, L0, a0, R0 ⩵ℳL0, a1, Inserta0, R0 ∧

IsSortedInserta1, L0, a0, R0.
(G1051)

Using goal (G1051), the solution is: Insert[a1
_

, 〈L0, a0, R0〉] ⩵L0, a1
_

, Insert[a0, R0], and the goal is

reduced to:

Proof-Insert-Sorted.nb 7

IsSortedL0, a1, Inserta0, R0. (G1190)

Using "sorted-tree", the goal (G1190) is simplified to:

IsSortedL0 ∧ IsSortedInserta0, R0 ∧ L0 ≤ a1 ∧ a1 ≤ Inserta0, R0. (G1191)

Using "A227.1", the goal (G1191) is simplified to:

IsSortedInserta0, R0 ∧ L0 ≤ a1 ∧ a1 ≤ Inserta0, R0. (G1192)

Using "elem-less-insert", the goal (G1192) is simplified to:

IsSortedInserta0, R0 ∧ L0 ≤ a1 ∧ a1 ≤ a0 ∧ a1 ≤ R0. (G1193)

The conjunction (A1048) is split into:
ℳInserta0, R0 ⩵ a0 ⊎ℳR0, (A1048.1)

IsSortedInserta0, R0. (A1048.2)

Using "A1048.2", the goal (G1193) is simplified to:

L0 ≤ a1 ∧ a1 ≤ a0 ∧ a1 ≤ R0. (G1243)

Proof fails (no applicable rule).

Goal:

 Alternative 2: no cover set.

Implicative goal (G163) is split. Assume:
IsSortedX0, (A1244)

and prove:
∀
a
ℳInserta, X0 ⩵ {{a}} ⊎ℳX0 ∧ IsSortedInserta, X0, (G1245)

For proving the universal goal (G1245), take a0 a.b.f. and prove:
ℳInserta0, X0 ⩵ a0 ⊎ℳX0 ∧ IsSortedInserta0, X0. (G1262)

By "union-associativity" and "union-commutativity", the goal becomes:
ℳInserta0, X0 ⩵ a0 ⊎ℳX0 ∧ IsSortedInserta0, X0. (G1263)

Proof fails.

8 Proof-Insert-Sorted.nb

