
Automatic Synthesis of Merging and Inserting
Algorithms on Binary Trees using Multisets in

Theorema

Isabela Drămnesc1 and Tudor Jebelean2

1 West University, Timişoara, Romania
isabela.dramnesc@e-uvt.ro

2 Johannes Kepler University, Linz, Austria
Tudor.Jebelean@jku.at

Abstract. We demonstrate the automatic proof–based synthesis of mer-
ging and inserting algorithms for [sorted] binary trees, using the notion
of multisets, in the Theorema system. Each algorithm is extracted from
the proof of the conjecture based on the specification of the desired func-
tion, in the form of a list of [conditional] equalities, which can be directly
executed. The proofs are performed in natural style, using general tech-
niques, but most importantly efficient inference rules and strategies spe-
cific for the domains involved. In particular we present specific techniques
for the construction of arbitrarily nested recursive algorithms by general
Noetherian induction, as well as a systematic method for the generation
of the conjectures and consequently of the algorithms for the auxiliary
functions needed in the main function.

Keywords: algorithm synthesis · binary trees · multisets · Theorema

1 Introduction

Automated synthesis of algorithms based on logical principles is an interesting
alternative to algorithm verification, because it focuses on the study of the pro-
perties of the involved domains, from which correct algorithms are obtained
automatically, instead of creating them by human ingenuity. The case studies
presented in this paper are part of our research on systematic theory construc-
tion (theory exploration [2]) and automated synthesis in the domain of finite
binary trees for which we also use finite multisets. In two related papers [9, 10]
we already investigated algorithms for deletion from lists and binary trees, as
well as sorting algorithms for lists. Multisets allow to express in a natural way
the fact that two trees have the same elements, but more importantly (as are
revealed by our experiments) it leads to powerful proof techniques. For space
reasons, in this presentation we focus on one argument induction3 and also on

3 For binary functions one may use simultaneous induction on both arguments.

2 I. Dramnesc and T. Jebelean

compositional construction4 and do not approach yet algorithms which use both
lists and trees. We approach automated synthesis as described in our previous
work – see e.g. [8,15]. First one proves automatically a synthesis conjecture which
is based on the specification (input and output conditions) of the desired func-
tion, then the algorithm is extracted automatically from the proof. We use the
Theorema system [6], in which the inference rules and the logical formulae are
presented in natural style – similar to the one used by humans. Since Theorema
also allows the execution of algorithms, we can test them immediately in the
system. The theoretical basis and the correctness of the proof based synthesis
scheme is well–known, see [7, 18].

Each algorithm is produced as a list of clauses, each clause being a (possibly
conditional) universally quantified equality which is to be applied as a rewrite
rule from left to right. The LHS5 of each equality consists of the function symbol
(of the desired algorithm) applied to a term which identifies a certain class of
possible inputs (this is sometimes called pattern matching programming). The
clauses are such that all possible inputs are considered (covering), and no two
clauses may apply to the same input (mutual exclusion) – these properties are
automatically insured by the synthesis method.

Related work and originality. [18] introduces deductive techniques for
algorithm synthesis, in particular for constructing recursive algorithms. These
techniques are applied in [23] to manually derive several sorting algorithms in the
theories of integers and strings. They present also a rule for generating auxiliary
algorithms, see also [20]. Later implementations using some of these principles
are in [17,22]. We presented a more detailed survey of synthesis methods in [8].
In the current paper we follow some of the principles from [18,23], but we develop
different proof–based techniques for algorithm synthesis.

The theory of multisets is well studied in the literature, including compu-
tational formalizations (see e. g. [19], where finite multisets are called bags). A
presentation of the theory of multisets and a good survey of the literature related
to multisets and their usage is [1] and some interesting practical developments
are in [21]. In previous work on synthesis, multisets are not explicitly used in
the process of proof–based algorithm synthesis. They are just mentioned in the
problem specification (e.g., in expressing the permutation of two objects), but
their definition and properties are not involved in the process of proof–based
algorithm synthesis. In this paper we explicitly use multisets, their definition
and properties in the entire process of algorithm synthesis.

In our previous work we study proof–based algorithm synthesis in the theories
of lists, sets and binary trees [12] separately ([14], [8], [15]), but without using
multisets.

A systematic formalization of the theory of lists using multisets for the proofs
of correctness of various sorting algorithms is mechanized in Isabelle/HOL6,

4 The construction of the object desired for the synthesis uses only the objects which
are already present in the proof, and does not try to decompose some of them.

5 We use LHS for left hand side and RHS for right hand side.
6 https://isabelle.in.tum.de/library/HOL/HOL-Library/Sorting Algorithms.html

Synthesis of Algorithms on Binary Trees 3

but this does not address the problem of algorithm synthesis. An interesting
formalization in a previous version of Theorema [5], which includes the theory
exploration and the synthesis of a sorting algorithm is presented in [4], which also
constituted the inspiration of our previous research on proof–based synthesis.
However, in that pioneering work, the starting point of the synthesis (besides
the specification of the desired function) is a specific algorithm scheme, while in
our approach we use induction principles and dynamic induction.

In contrast to other investigations and to our previous research, the current
study uses multisets in the synthesis problem and in the entire process of al-
gorithm synthesis, combined properties which are necessary in the process of
algorithm synthesis, the automatically generated proofs are performed in the
new version of the Theorema system [6, 24], and the investigation is performed
in parallel on the two domains. We already investigated the proof–based syn-
thesis of auxiliary algorithms on binary trees: Merge [11], and Insert [13], see
also [15], but we did not use multisets and we applied different proof techniques.
In our current approach using multisets we investigate in companion papers the
synthesis of Delete on lists and trees [9] and the synthesis of sorting algorithms
on lists [10].

Moreover, this paper describes more precisely the practical techniques for
cascading and for general Noetherian induction, and illustrates them in more
detail on several examples. For the purposes above, three novel inference
rules are introduced, and seven inference rules and seven strategies are
extended for these case studies on binary trees using multisets.

2 Proof–Based Synthesis

2.1 Context

Notations. We use square brackets for function and for predicate application,
for instance: f [x] instead of f(x) and P [a] instead of P (a). Quantified variables
are placed under the quantifier, as in ∀

X
and ∃

X
.

The objects occurring in the formulae are: elements — objects from a totally
ordered domain (denoted a, b, c) which are members of composite objects; mul-
tisets denoted A, B,C; and binary trees denoted L, R, S, T, X, Y, Z. (Multisets
and binary trees are also addressed as composite objects).

Knowledge base. For space reasons, we list explicitly only the formulae which
are used in the proofs presented in this paper, the theory exploration includes
more statements.

Elements of various composite structures are any objects whose domain
is totally ordered (notation ≤ and <). The ordering on elements is extended
to orderings between an element and a composite object (denoted �,≺) and

4 I. Dramnesc and T. Jebelean

between composite objects (denoted �), by requiring that all elements of the
composite object observe the ordering relation7.

Finite multisets are composite objects which may contain the same elements
several times, that is each element has a certain multiplicity. ∅ denotes the empty
multiset, {{a}} denotes the multiset having only the element a with multiplicity
1. The union (additive) is denoted by] : multiplicity is the sum of multiplicities
— like in [16]. Union is commutative and associative with unit ∅, these properties
are used implicitly by the prover. We use M for the multiset of elements of a
tree. When two trees have the same elements (that is, their multisets are equal),
we call them equivalent.

A finite binary tree is either ε (empty) or a triplet 〈L, a,R〉, where L and R
are trees. The multiset of a tree has the following property:

Property 1. ∀
a,L,R

(
M[ε] = ∅

M[〈L, a,R〉] =M[L]] {{a}}]M[R]

)
Sorted trees are defined in the following way:

Definition 1.

∀
a,L,R

(
IsSorted[ε]

IsSorted[〈L, a,R〉]⇐⇒ IsSorted[L] ∧ IsSorted[R] ∧ L � a � R

)

Problem and Approach Given two trees X, Y , merge them into a tree Z.
Moreover, if X,Y are sorted, then Z should be also sorted. The synthesis con-
jecture has the general structure ∀

X,Y
(I[X, Y] =⇒ ∃

Z
O[X,Y, Z]), where I is the

input condition and O is the output condition.
In the general case X, Y, Z are not required to be sorted, there is no input

condition8 and the output condition O[X,Y, Z] is (M[Z] =M[X]]M[Y]), thus
we have:

Conjecture 1. ∀
X
∀
Y
∃
Z

(
M[Z] =M[X]]M[Y]

)
For sorted trees we also consider the input condition I[X, Y] : (IsSorted[X] ∧
IsSorted[Y]) and we add IsSorted[Z] to the output condition, thus we have:

Conjecture 2.
∀
X
∀
Y

(IsSorted[X] ∧ IsSorted[Y]) =⇒ ∃
Z

(
M[Z] =M[X]]M[Y] ∧ IsSorted[Z]

)
One may try to prove the conjectures by various induction principles, using
one argument or both. For space reasons we focus in the present case study on
domain definition based induction and on induction on first argument: ∀

X
P [X]

is proven by the induction principle established by the inductive definition of
7 Note that this introduces exceptions to antisymmetry and transitivity when the

empty composite object is involved
8 This means that the input condition is the logical constant True and the implication

from the synthesis conjecture reduces to O[X, Y, Z].

Synthesis of Algorithms on Binary Trees 5

the domain. When necessary we refine this induction to a dynamic induction
method which is applicable to any Noetherian domain: in the induction step we
start to prove the induction conclusion P [t] (t ground term) by assuming some
induction hypotheses P [X0], . . . , P [Xn] according to the inductive definition of
the domain (X0, . . . , Xn are Skolem constants). If during the proof we need
some assumption P [t′] where t′ (also ground term) represents an object which is
strictly smaller than the object represented by t in the Noetherian ordering, then
we may assume P [t′] holds, that is we can add it to the induction hypotheses.
The soundness of this technique is presented in detail in [15], and it allows to
discover concrete induction principles based on the general Noetherian induction.
The principle of well–founded induction is described as a deduction rule in [18].
Similarly, we use the Noetherian ordering induced by the strict inclusion of the
corresponding multisets, which conveniently extends to a meta–ordering between
terms, induced by the strict inclusion of the constants occurring in the respective
terms. The practical technique for this dynamic induction is described as proof
strategy ST-6 and is illustrated on several examples below.

Moreover we use the cascading method pioneered in [3]: when the proof fails,
from the failed goal the prover constructs a conjecture synthesis statement which
can be used to obtain the auxiliary function which is necessary for the current
synthesis. We have been using this for the case of lists in [8, 10], and in this
paper we describe it in a more systematic manner as proof strategy ST-7 and
we illustrate it on several examples: all insertion algorithms are generated by
cascading starting from failed merging–synthesis proofs. [23] presents a method
as a generalization of [18] (an “eureka step” is presented as a rule) for generation
auxiliary procedures. Their method seems to be similar to cascading, but they
use different deductive steps to generate the new statement to be proven and the
development of the corresponding auxiliary functions. Moreover, in this paper we
present the cascading method as an automatic proof technique in the Theorema
system.

Induction Principle for Binary Trees. We use the induction principle es-
tablished by the domain definition. In order to prove ∀

X
P [X] (base case) prove

P [ε]; (induction step) for Skolem constants a, L0, R0 assume induction hypoteses
P [L0], P [R0] and prove induction conclusion P [〈L0, a, R0〉], where 〈L0, a, R0〉 is
the subject of the induction conclusion.

In order to synthesize a merging algorithm as a function F [X, S] we prove
Conjecture 1 (take S for Y and T for Z) by transforming S into a Skolem
constant S0 and performing induction on X:

Base case: We prove ∃
T
O[ε, S0, T]. If the proof succeeds to find for T a ground

witness =1[S0] then we know that F [ε, S] = =1[S].
Step case: For arbitrary but fixed a, L0 and R0 (new constants), assume:

∃
T
O[L0, S0, T] and ∃

T
O[R0, S0, T], which are Skolemized by introducing two new

constants T1 and T2. We prove: ∃
T
O[〈L0, a, R0〉, S0, T]. If the proof succeeds

to find a witness =2[a, L0, R0, S0, T1, T2], then we know that F [〈L, a,R〉, S] =

6 I. Dramnesc and T. Jebelean

=2[a, L,R, S, F [L, S], F [R,S]]. T1 and T2 are replaced by F [L, S] and F [R,S],
respectively. Multiple witnesses generate several conditional equalities. Addi-
tional arguments to =2 may be introduced by dynamic induction as described
above and also below at strategy ST-6.

In the case of sorted trees, the proof schema is the same, only the given trees
(L0, R0, S0, T1, T2) are assumed to be sorted, and the witness obtained has to be
also sorted.

2.2 Special Inference Rules and Strategies

Following natural style proving, we use Skolem constants (denoted with nume-
rical underscore like V1) introduced for existential assumptions and universal
goals, as well as metavariables (denoted with star power like T ∗) introduced for
existential goals. The prover uses classical inference rules (split ground conjunc-
tions, rewrite by equality, etc.) as well as special rules appropriate for trees and
multisets.

The strategies are similar to the ones in [8, 15]. The first four strategies are
briefly described in [9] and the last three strategies extend the ones in [10] on
binary trees. The inference rules: IR-1, IR-2, IR-3, IR-4, IR-5, IR-6, and
IR-8 are adapted for these current case studies of synthesis (they extend the
inference rules for lists in [9] and [10]) and all the others presented in this section
are novel.

These inference rules and strategies are not specific to the problem of tree
merging, but are developed in general for the automation of proof based synthesis
of algorithms on lists and trees.

Special Inference Rules.
Each rule is illustrated with an example from the experiments presented in

Section 3.
IR-1: Eliminate assumed formulae from goal. In a conjunctive goal, delete

the part which is already an assumption, or an instance of it. For example goal
(34) becomes (35).

IR-2: Rewrite by equality. Example: goal (5) is transformed into (6).
IR-3: Transform to multiple atoms. This rule transforms parts of the goals

or of the assumptions (like e.g. IsSorted) into simpler atoms (e.g. by definition).
Example: goal (33) becomes (34).

IR-4: Transform union of M in goal. Example: goal (7) becomes (8).
IR-5: Solve metavariables. Example: goal (32) to (33).
IR-6: Reduce the goal using assumptions. Example: transforms goal (35)

using the assumption (24) into (36).
IR-7: Generate branches for trees. This rule extracts the symbols from a

multiset, arranges the symbols and generates branches with new goals. Example:
when the goal isM[T ∗] =M[L0]]{{a}}]M[R0]]M[S0] extracts the symbols:
L0, a, R0, S0 and generates the permutations of (L0, R0, S0). The element a is

Synthesis of Algorithms on Binary Trees 7

considered to be the root of the obtained trees. From all permutations only those
are considered which correspond to the current assumptions about ordering.

IR-7-a: Generate branches for binary non-sorted trees. Example: if the as-
sumptions are (3) and (4), then the prover generates an OR node with four
branches, having goals: (7), (9), (11), and (13).

IR-7-b: Generate branches for binary sorted trees. Example: the assumptions
are the ones above in IR-7-a and also (17), (18), and the goal (19), then the
prover generates an OR node with two branches, having in the goal IsSorted[T ∗]
and also: on one branch goal (20) and on another branch goal (23).

IR-8: Simple goal conditional assumption. When the proof fails and the
current goal is ground and contains only simple elements (not composite objects),
then the proof stops and its result is considered to be this goal (as opposite to
True when the proof succeeds, or False when it fails). Typically this happens
in branches generated by the rule IR-7, and the unproved goal will become a
condition in the synthesized algorithm, as explained below at strategy ST-4.
Example: goal (37).

Strategies
ST-1: Quantifier reduction. This strategy organizes the inference rules for

quantifiers (e. g. when applying an induction principle), and it is more effective
on goals. For the soundness of the prover it is necessary to keep track of the order
in which Skolem constants and metavariables have been introduced, because a
Skolem constant which cannot be generated before a certain metavariable cannot
be used in a solution for that meta–variable.

ST-2: Priority of local assumptions. We consider as local assumptions ground
formulae which are generated during the current proof and as global assumptions
definitions and properties in the knowledge base. The strategy consists in using
first the local assumptions. Example: when the goal isM[W ∗] = {{a}}]M[U0]]
M[V0] and the assumption is M[W1] = M[U0]]M[V0], the new goal will be
M[W ∗] = {{a}}]M[W1] because we give priority to terms containing the Skolem
constants generated by the induction hypothesis (they correspond to recursive
calls).

ST-3: Generate more local assumptions. Example: apply Modus Ponens on
local assumptions.

ST-4: Conditional branches. Alternative branches generated by the rule IR-
7 may finish with success (proof value is True), failure (False), or some “simple”
goal (proof value is this goal) as explained at IR-8. One may see the correspon-
ding OR node of the proof as constituting the logical operation “or” applied
to the proof values. If the result is True – that is, the disjunction is a logical
consequence of the current theory (we can just say “it holds”), then the proof
can be considered successful, and in fact it can be transformed by eliminating
the false proof values, and by considering the remaining disjunction as a basis
for proof by cases – which will now be an AND node, having on each branch the
previous proof value as assumption. This approach in fact discovers automati-
cally the basis for the case distinction proof. Moreover, if there are subsets of the
disjunction which already hold disjunctively (we can say they are “covering”),

8 I. Dramnesc and T. Jebelean

then each such subset can be a basis for the case distinction, thus we can have
several successful proof alternatives.

The strategy we employ does not actually transform the proof, because we
are only interested in the algorithm. Instead, the respective proof values (simple
failed goals) on the branches are taken as conditions for the logical equalities
which compose the synthesized algorithm.

ST-5: Pair multisets. Often the goal contains an equality like M[Y ∗] =
M[t1]]M[t2]] . . . , where Y ∗ is the metavariable we need to solve, and t1, t2, . . .
are ground terms. The main flow of the proof consists in transforming the union
on the LHS of the equality into a single M[t], because this gives the solution
Y ∗ → t. Therefore the prover groups pairs of operands of] together (no matter
whether they are contingent or not, because commutativity), creating alterna-
tives for different groupings. (Consequently the pair will be transformed into an
single multiset term by equality rewriting, or it will be treated by strategy ST-6
or ST-7).

ST-6: Dynamic Induction. As mentioned in Subsection 2.1, we use Noethe-
rian induction based on the well–founded ordering between composite objects
determined by the strict inclusion of the corresponding multisets. This is checked
syntactically by the meta-relation between terms induced by the strict inclusion
of the multisets of constants occuring in the terms. When a ground term t′

occurring in the goal is smaller than the subject t of the current induction con-
clusion P [t], then P [t′] is used as: ∀

Y
(I[t′, Y] =⇒ ∃

Z
O[t′, Y, Z]). Then the prover

chooses a ground instantiation s (also part of the goal) for Y , it checks whether
I[t′, s] holds, it creates a new Skolem constant like for instance Z1 and it as-
sumes O[t′, s, Z1] holds. In the synthesized algorithm Z1 will be replaced by
F [t′, s] (where F is the name of the currently synthesized function). Typically
the terms t′ and s come from a pair of multiset terms by application of the
strategy ST-5. Example: goals (40) and (42) are obtained using P [X] (15).

ST-7: Cascading. When a pair of multiset terms t1[x], t2[y] (x, y constants)
is chosen by applying strategy ST-5, it may be that there exists no equalities
among the current assumptions for reducing it to a single multiset term, or the
reduction does not lead to a successful proof. In this case the prover constructs
the conjecture: ∀

X,Y
(I[X, Y] =⇒ ∃

Z
(M[Z] = t1[X]] t2[Y] ∧ Q[X, Y, Z])), whose

proof results in the synthesis of a new function F [X, Y] having the properties
required by the current proof situation: I[X, Y] is composed conjunctively from
the assumptions which contain only the constants x, y (which are replaced by
X, Y) and Q[X, Y, Z] is inferred from the current goal.

3 Experiments

3.1 Synthesis of merging on non–sorted binary trees

The proof of Conjecture 1 by Induction on X proceeds as described in Subsec-
tion 2.1 for the formula P [X] : ∀

S
∃
T

(
M[T] =M[X]]M[S]

)
. On both branches

Synthesis of Algorithms on Binary Trees 9

(base case and induction step), the universal S is Skolemized to S0 (“arbitrary
but fixed”) and the existential T is replaced by the metavariable T ∗ (unknown
witness), according to ST-1.

Proof. Base case: Prove

M[T ∗] =M[ε]]M[S0]. (1)

Apply IR-4 using Property 1 and the goal becomes:

M[T ∗] =M[S0]. (2)

Apply IR-5, the obtained substitution is {T ∗ → S0}.
Induction step: Assume

M[T1] =M[L0]]M[S0], (3)

M[T2] =M[R0]]M[S0] (4)

and prove:
M[T ∗] =M[〈L0, a, R0〉]]M[S0]. (5)

Apply IR-2 using Property 1 and the goal becomes:

M[T ∗] =M[L0]] {{a}}]M[R0]]M[S0]. (6)

Apply IR-7-a: using the assumptions (3), (4) and generate and OR node with
four branches:
Branch-1: The new goal is:

M[T ∗] =M[L0]] {{a}}]M[T2]. (7)

Apply IR-4 and the goal becomes:

M[T ∗] =M[〈L0, a, T2〉]. (8)

Apply IR-5 and the obtained substitution on this branch is {T ∗ → 〈L0, a, T2〉}.
Branch-2: The new goal is:

M[T ∗] =M[T1]] {{a}}]M[R0]. (9)

Apply IR-4 and the goal becomes:

M[T ∗] =M[〈T1, a, R0〉] (10)

and the substitution is {T ∗ → 〈T1, a, R0〉}.
Branch-3: The new goal is:

M[T ∗] =M[R0]] {{a}}]M[T1]. (11)

Apply IR-4, the goal becomes:

10 I. Dramnesc and T. Jebelean

M[T ∗] =M[〈R0, a, T1〉] (12)

and the substitution is {T ∗ → 〈R0, a, T1〉}.
Branch-4: The new goal is:

M[T ∗] =M[T2]] {{a}}]M[L0]. (13)

Apply IR-4, the goal becomes:

M[T ∗] =M[〈T2, a, L0〉] (14)

and the substitution is {T ∗ → 〈T2, a, L0〉}.

Since all branches succeed, each of them generates an alternative algorithm,
thus we have:

Algorithm 1 Concatenation of trees.

∀
a,L,R,S

(
Conc[ε, S] = S

Conc[〈L, a,R〉, S] = 〈L, a, Conc[R,S]〉

)

as well as three other concatenation algorithms where the RHS of the second
equality is: 〈F [L, S], a, R〉, 〈R, a, F [L, S]〉, or 〈F [R,S], a, L〉.

3.2 Synthesis of merging on sorted binary trees

The proof of Conjecture 2 by Induction on X proceeds as described in Subsec-
tion 2.1 for the formula P [X] :

∀
S

(
(IsSorted[X]∧ IsSorted[S]) =⇒ ∃

T
(M[T] =M[X]]M[S]∧ IsSorted[T]

)
(15)

On both branches (base case and induction step), the universal S is Skolemized
to S0 (“arbitrary but fixed”) and the existential T is replaced by the metavariable
T ∗ (unknown witness), according to ST-1. The proof is similar with the previous
one, with the difference that at the induction step in addition to the induction
hypothesis (3), (4) one obtains more assumptions regarding the ordering.

Proof.
IsSorted[T1] ∧ IsSorted[T2], (16)

IsSorted[〈L0, a, R0〉]. (17)

By IR-3 from (17) obtain:

IsSorted[L0] ∧ L0 � a ∧ a � R0 ∧ IsSorted[R0]. (18)

The goal is similar to (6), in addition T ∗ has to be sorted:

M[T ∗] =M[L0]] {{a}}]M[R0]]M[S0] ∧ IsSorted[T ∗]. (19)

Synthesis of Algorithms on Binary Trees 11

Apply IR-7-b using the induction hypothesis (3), (4), and also (17), (18) and
generate two branches:
Branch-1: The new goal is

M[T ∗] =M[T1]] {{a}}]M[R0] ∧ IsSorted[T ∗]. (20)

Apply IR-4 and the goal is:

M[T ∗] =M[〈T1, a, R0〉] ∧ IsSorted[T ∗]. (21)

Apply IR-5, the obtained substitution is {T ∗ → 〈T1, a, R0〉} and the remaining
goal is:

IsSorted[〈T1, a, R0〉]. (22)

Apply IR-3 using Property 1, IR-2 using (16), (18), IR-6 using (3), (18) and
the remaining goal is S0 � a. The proof fails on this branch.
Branch-2: The new goal is

M[T ∗] =M[L0]] {{a}}]M[T2] ∧ IsSorted[T ∗]. (23)

Similarly, the obtained substitution is {T ∗ → 〈L0, a, T2〉} and the remaining goal
is a � S0. The proof fails.

However synthesis is still possible by the technique described below.
Cascading–synthesis of insertion on binary trees: The prover applies

strategy ST-5 (pair multisets) by grouping {{a}} and M[R0] – for which we
already know a � R0 – and then strategy ST-7 (cascading), producing the
conjecture:

Conjecture 3.
∀

a,R

((
IsSorted[R] ∧ a � R

)
=⇒ ∃

S

(
M[S] = {{a}}]M[R] ∧ IsSorted[S]

))
By proving this conjecture we obtain the algorithm Prepend which places a given
element as the leftmost node of a given tree:

Algorithm 2 Prepend an element to a tree.

∀
a,b,L,R

(
Prepend[a, ε] = 〈ε, a, ε〉

Prepend[a, 〈L, b,R〉] = 〈Prepend[a, L], b, R〉

)
However, by using this auxiliary function the main proof still does not suc-

ceed, therefore a merging algorithm cannot be found.
Similarly, for the goal (23), by grouping M[L0] and {{a}} – for which we

already know L0 � a, we obtain the conjecture for the synthesis of the auxiliary
function Append, which places a given element at the rightmost node of a given
tree, but in this case the synthesis of the merging algorithm still fails.

If for proving (19) we groupM[S0] and {{a}}, then there is no more ordering
between them, and the conjecture is:

Conjecture 4. ∀
a,X

(
IsSorted[X] =⇒ ∃

S

(
M[S] = {{a}}]M[X] ∧ IsSorted[S]

))

12 I. Dramnesc and T. Jebelean

By proving this conjecture we obtain the function Insert which places a given
element as the appropriate position in a sorted tree.

Prove Conjecture 4 by applying Induction on X.

Proof. Base case: The obtained substitution is {T ∗ → 〈ε, a, ε〉}.
Induction step: Assume

M[S1] = {{a}}]M[L0], (24)

M[S2] = {{a}}]M[R0], (25)

IsSorted[S1] ∧ IsSorted[S2], (26)

IsSorted[〈L0, b, R0〉], (27)

IsSorted[L0] ∧ L0 � b ∧ b � R0 ∧ IsSorted[R0] (28)

and prove:
M[S∗] = {{a}}]M[〈L0, b, R0〉] ∧ IsSorted[S∗]. (29)

Apply IR-2 using Property 1 and the new goal is:

M[S∗] = {{a}}]M[L0]] {{b}}]M[R0] ∧ IsSorted[S∗]. (30)

Apply IR-7-b considering b to be the root of the obtained tree, using the as-
sumptions (24), (25), (27) and generate two branches:
Branch-1: The new goal is:

M[S∗] =M[S1]] {{b}}]M[R0] ∧ IsSorted[S∗]. (31)

Apply IR-4 using Property 1 and prove:

M[S∗] =M[〈S1, b, R0〉] ∧ IsSorted[S∗]. (32)

Apply IR-5, the substitution is {T ∗ → 〈S1, b, R0〉} and the new goal is:

IsSorted[〈S1, b, R0〉]. (33)

Apply IR-3 using Definition 1 and the goal becomes:

IsSorted[S1] ∧ S1 � b ∧ b � R0 ∧ IsSorted[R0]. (34)

Apply IR− 1 using (26), (28) and the remaining goal is : S1 � b. (35)

Apply IR− 6 using (24) and the new goal is : a ≤ b ∧ L0 � b. (36)

Apply IR− 1 using (28) and the remaining goal is : a ≤ b. (37)

By IR-8, (37) becomes the conditional assumption on this branch.
Branch-2: The new goal is:

M[S∗] =M[L0]] {{b}}]M[S2] ∧ IsSorted[S∗]. (38)

Similar as in the previous branch, the obtained substitution is {T ∗ → 〈L0, b, S2〉}
and the conditional assumption on this branch is b ≤ a. By ST-4 we obtain:

Synthesis of Algorithms on Binary Trees 13

Algorithm 3 Insertion in a sorted tree.

∀
a,b,L,R

 Ins[a, ε] = 〈ε, a, ε〉

Ins[a, 〈L, b,R〉] =

{
〈Ins[a, L], b, R〉, if a ≤ b

〈L, b, Ins[a, R]〉, if b < a

By the cascading strategy ST-7, we continue the proof of the merging conjecture
by replacing in the goal (19) the subterm {{a}}]M[S0] (which generated the
conjecture for synthesizing Ins) by the corresponding instance Ins[a, S0] :

Proof.

M[T ∗] =M[L0]]M[R0]]M[Ins[a, S0]] ∧ IsSorted[T ∗]. (39)

Apply strategy ST-5 (pair multisets) and ST-6 (dynamic induction) to M[R0]
and M[Ins[a, S0]]. The object represented by R0 is smaller in the well founded
ordering than the object 〈R0, a, L0〉, which is the subject of the current induction
conclusion (formula (15) with substitution X −→ 〈R0, a, L0〉). Therefore we
may assume P [R0] holds, and use Ins[a, S0] for the instantiation of the second
argument, thus by Skolemization we obtain an object R1 observing:

M[R1] =M[R0]]M[Ins[a, S0]] ∧ IsSorted[R1]. (40)

Apply equality rewriting using this to transform goal (39) into:

M[T ∗] =M[L0]]M[R1] ∧ IsSorted[T ∗]. (41)

Since the object represented by L0 is smaller in the well founded ordering than
〈R0, a, L0〉, we can again apply Noetherian induction to obtain L1 with:

M[L1] =M[L0]]M[R0] ∧ IsSorted[L1]. (42)

Apply equality rewriting using this to transform goal (41) into:

M[T ∗] =M[L1] ∧ IsSorted[T ∗] (43)

which gives the solution T ∗ = L1 and the proof succeeds, giving the algorithm:

Algorithm 4 Merge sorted trees, version 1.

∀
a,L,R,S

(
Merge[ε, S] = S

Merge[〈L, a,R〉, S] = Merge[L, Merge[R, Ins[a, S]]]

)

Note how a nested recursion — for which a concrete induction principle would be
difficult to guess — is produced automatically by our method. This algorithm
is interesting because it is probably optimal: essentially it inserts one by one
the elements of the first tree into the (sorted) second tree. Note also that the
assumptions (17) and (18) are not necessary for the success of the proof, and
indeed the algorithm produces a sorted tree even if the first argument is not
sorted. Similarly to the situation with lists [10], since the first argument does

14 I. Dramnesc and T. Jebelean

not need to be sorted, both this algorithm and the next one can be used for
sorting as Merge[T, ε]. Sorting is performed by traversing the tree and inserting
the elements one by one in a new sorted tree, which appears to be optimal.

There are many ways in which the subterms of the RHS of the equality in
(19) can be grouped pairwise and then be used in a similar manner to cascade
new auxiliary functions and to produce new merging algorithms. We present
here only one other alternative, which is interesting because it is tail recursive,
and only slightly less efficient than the previous one.

The proof is modified as follows:

Proof. Strategy ST-5 (pair multisets) on the goal (39) groups the subterms
M[L0] and M[R0], and then strategy ST-7 (cascade) generates the conjecture:

∀
L,R
∃
X
M[X] =M[L]]M[R] ∧ IsSorted[X] (44)

The proof of this is very similar to the proof of Conjecture 1 (for synthesis of mer-
ging on non-sorted trees) presented at the beginning of Section 3.1, with the dif-
ference that the proof starts with the additional assumptions IsSorted[L0, a, R0],
IsSorted[T1], IsSorted[T2], while the goal has also IsSorted[T ∗]. Therefore the
proof succeeds on the first branch with the same witness 〈L0, a, T2〉, which is
proven sorted by applying the definition and the properties of ordering to the
assumptions — so the same Algorithm 1 Conc also concatenates sorted trees
into a sorted tree.

Strategy ST-7 (cascading) replaces in goal (19) the pair M[L0]]M[R0] by
M[Conc[L0, R0]] to get:

M[T ∗] =M[Conc[L0, R0]]]M[Ins[a, S0]] ∧ IsSorted[T ∗]. (45)

Since Conc[L0, R0] is smaller in the well–founded ordering than 〈L0, a, R0〉, stra-
tegy ST-6 (dynamic induction) uses it together with the instantiation
M[Ins[a, S0]] for the second argument, and obtains L2 with the property:

M[L2] =M[R0]]M[Ins[a, S0]] ∧ IsSorted[L2]. (46)

By equality rewriting this transforms the goal (45) into:

M[T ∗] =M[L2] ∧ IsSorted[T ∗] (47)

which gives the solution T ∗ = L2 and the proof succeeds, giving the algorithm:

Algorithm 5 Merge sorted trees, version 2.

∀
a,L,R,S

(
Merge[ε, S] = S

Merge[〈L, a,R〉, S] = Merge[Conc[L, R], Ins[a, S]]]

)
Similarly to the other version, since the first argument does not need to be sorted,
this can also be used for sorting as Merge[T, ε]. This algorithm is interesting
because it is tail recursive, even as it is slightly less efficient than the previous
one.

Synthesis of Algorithms on Binary Trees 15

4 Conclusions and Further Work

Our experiments demonstrate the possibility of automatic synthesis of complex
algorithms on (possibly sorted) binary trees, using the notion of multiset. In
certain cases, depending on the proof strategy, several algorithms are produced
for the same function or from different proofs the same algorithm is produced.

Even as some of the synthesized algorithms are relatively straightforward and
sometimes not optimal, this case study helps in at least three ways. First, the
study develops the underlying theory and helps understand better the principles
of theory exploration, for instance by a parallel development one has hints about
interesting functions on trees suggested by the classical operations on multisets
(insertion corresponds to union with one element, merging corresponds to union,
etc.). Second, the study helps to develop efficient proof methods for these do-
mains, in particular by using specific inference rules and strategies which are
also taylored for synthesis proofs, notably for discovering induction principles
for nested recursion. Finally, the various algorithms which are produced can
constitute a test field for methods of automatic evaluation of efficiency, time and
space consumption, etc.

A distinctive feature of our approach is the use of natural–style proofs, which
is facilitated by the Theorema system. The natural style of proving (as formula
notation, as proof text, and as inference steps) has the advantage of allowing
human inspection in an intuitive way, and this facilitates the development of
intuitive inference rules which embed the knowledge about the underlying do-
mains.

The experiments presented here continue our previous work on synthesis of
deletion algorithms and sorting algorithms on lists using multisets and is prereq-
uisite for further work on synthesis of more complex algorithms for sorting and
searching, including algorithms which combine operations on several domains.

References

1. Blizard, W.D.: Multiset Theory. Notre Dame Journal of Formal Logic 30(1), 36–66
(1989). https://doi.org/10.1305/ndjfl/1093634995

2. Buchberger, B.: Theory Exploration with Theorema. Analele Universitatii Din
Timisoara, Seria Matematica-Informatica XXXVIII(2), 9–32 (2000)

3. Buchberger, B.: Algorithm Invention and Verification by Lazy Thinking. Analele
Universitatii din Timisoara, Seria Matematica - Informatica XLI, 41–70 (2003)

4. Buchberger, B., Craciun, A.: Algorithm Synthesis by Lazy Thinking: Using Prob-
lem Schemes. In: Proceedings of SYNASC 2004. pp. 90–106 (2004)

5. Buchberger, B., Dupre, C., Jebelean, T., Kriftner, F., Nakagawa, K., Vasaru, D.,
Windsteiger, W.: The Theorema project: A progress report. In: Calculemus 2000.
pp. 98–113. A.K. Peters, Natick, Massachusetts (2000)

6. Buchberger, B., Jebelean, T., Kutsia, T., Maletzky, A., Windsteiger, W.: Theo-
rema 2.0: Computer-Assisted Natural-Style Mathematics. Journal of Formalized
Reasoning 9(1), 149–185 (2016). https://doi.org/10.6092/issn.1972-5787/4568

16 I. Dramnesc and T. Jebelean

7. Bundy, A., Dixon, L., Gow, J., Fleuriot, J.: Constructing Induction Rules for De-
ductive Synthesis Proofs. Electronic Notes Theoretical Computer Science 153, 3–21
(March 2006). https://doi.org/10.1016/j.entcs.2005.08.003

8. Dramnesc, I., Jebelean, T.: Synthesis of List Algorithms by Mechan-
ical Proving. Journal of Symbolic Computation 68, 61–92 (2015).
https://doi.org/10.1016/j.jsc.2014.09.030

9. Dramnesc, I., Jebelean, T.: Case Studies on Algorithm Discovery from Proofs: The
Delete Function on Lists and Binary Trees using Multisets. In: SISY 2019. pp.
213–220. IEEE Xplore (2019)

10. Dramnesc, I., Jebelean, T.: Proof–Based Synthesis of Sorting Algorithms Us-
ing Multisets in Theorema. In: FROM 2019. pp. 76–91. EPTCS 303 (2019).
https://doi.org/10.4204/EPTCS.303.6

11. Dramnesc, I., Jebelean, T., Stratulat, S.: Combinatorial Techniques for Proof-
based Synthesis of Sorting Algorithms. In: SYNASC 2015. pp. 137–144 (2015).
https://doi.org/10.1109/SYNASC.2015.30

12. Dramnesc, I., Jebelean, T., Stratulat, S.: Theory Exploration
of Binary Trees. In: SISY 2015. pp. 139 – 144. IEEE (2015).
https://doi.org/10.1109/SISY.2015.7325367

13. Dramnesc, I., Jebelean, T., Stratulat, S.: A Case Study on Algorithm Discovery
from Proofs: The Insert function on Binary Trees. In: SACI 2016. pp. 231–236.
IEEE (2016). https://doi.org/10.1109/SACI.2016.7507376

14. Dramnesc, I., Jebelean, T., Stratulat, S.: Proof-based Synthesis of Sor-
ting Algorithms for Trees. In: LATA 2016. pp. 562–575. Springer (2016).
https://doi.org/10.1007/978-3-319-30000-9 43

15. Dramnesc, I., Jebelean, T., Stratulat, S.: Mechanical Synthesis of Sorting Algo-
rithms for Binary Trees by Logic and Combinatorial Techniques. Journal of Sym-
bolic Computation 90, 3–41 (2019). https://doi.org/10.1016/j.jsc.2018.04.002

16. Knuth, D.E.: The Art of Computer Programming, Volume 2: Seminumerical Al-
gorithms. Addison-Wesley, 3 edn. (1998). https://doi.org/10.1137/1012065

17. Korukhova, Y.: Automatic Deductive Synthesis of Lisp Programs in the System
ALISA. In: JELIA 2006. pp. 242–252. Springer LNAI 4160 (2006)

18. Manna, Z., Waldinger, R.: A Deductive Approach to Program Synthesis. ACM
Transactions on Programming Languages and System 2(1), 90–121 (1980).
https://doi.org/10.1145/357084.357090

19. Manna, Z., Waldinger, R.: The Logical Basis for Computer Programming, vol. 1:
Deductive Reasoning. Addison-Wesley (1985). https://doi.org/10.2307/2275898

20. Manna, Z., Waldinger, R.: Fundamentals Of Deductive Program Synthe-
sis. IEEE Transactions on Software Engineering 18(8), 674–704 (1992).
https://doi.org/10.1109/32.153379

21. Radoaca, A.: Properties of Multisets Compared to Sets. In: SYNASC 2015. pp.
187–188 (2015). https://doi.org/10.1109/SYNASC.2015.37

22. Smith, D.R.: Kids: a semiautomatic program development system.
IEEE Transactions on Software Engineering 16(9), 1024–1043 (1990).
https://doi.org/10.1109/32.578788

23. Traugott, J.: Deductive Synthesis of Sorting Programs. Journal of Symbolic Com-
putation 7(6), 533–572 (1989). https://doi.org/10.1016/S0747-7171(89)80040-9

24. Windsteiger, W.: Theorema 2.0: A System for Mathematical Theory Exploration.
In: ICMS’2014. LNCS, vol. 8592, pp. 49–52 (2014). https://doi.org/10.1007/978-
3-662-44199-2 9

