Solving the Resolution-Free SAT Problem
in Polynomial Time

by Sub-Model Propagation

Gábor Kusper

gkusper@risc.uni-linz.ac.at

Research Institute for Symbolic Computation (RISC-Linz)

Johannes Kepler University, Linz, Austria

http://www.risc.uni-linz.ac.at/

January 18, 2001

Abstract

The SAT problem is the problem of finding a model for a clause set. It is well known that the SAT problem is NP-complete on general clause sets. We have developed a new method, called Unicorn-SAT algorithm, which solves the SAT problem in polynomial time on resolution-free clause sets. A clause set is resolution-free if and only if no resolution can be performed on any two clauses of the clause set. For such a restricted clause set, we can find a model in polynomial time by sub-model propagation. We obtain the sub-model, i.e. a part of the model, by Lucky-negation of that clause of the set which has the smallest number of literals. Lucky-negation of a clause is the negation of all literals of the clause except one. Sub-model propagation is unit propagation by each literal of the sub-model. We obtain a model by joining the sub-models while we perform sub-model propagation recursively until the clause set becomes empty.

1 Introduction

Propositional Satisfiability is the problem of determining, for a formula of the propostional calculus, if there is an assignment of truth values to its variables for which that formula evaluates the true. By SAT we mean the problem of propositional satisfiability for formulas in conjunctive normal form (CNF).

SAT is the first, and one of the simplest, of the many problems which have been shown to be NP-complete. It is dual of propositional theorem proving, and many practical NP-hard problems may be transformed efficiently to SAT. Thus, a good SAT algorithm would likely have considerable utility. It seems improbable that a polynomial time algorithm will be found for the general SAT problem but we know there are restricted SAT problems that are solvable in polynomial time. So a "good" SAT algorithm should check first the input SAT instance whether it is an instance of such a restricted SAT problem. In this paper we introduce the resolution-free SAT problem which is solvable in polynomial time.

The restriction of SAT to instances where all clauses have length k is denoted k-SAT. Of special interest are 2-SAT and 3-SAT: 3 is the smallest value of k for which k-SAT is NP-complete [1], while 2-SAT is solvable in linear time [2, 3]. Horn-SAT is the restriction to instances where each clause has at most one unnegated variable. Horn-SAT is solvable in linear time [4], as are a number of generalizations such as Re-nameable Horn-SAT [5] and Generalized Horn-SAT [6].

The resolution-free SAT problem is also a restriction of SAT to instances where no resolution can be performed on any two clauses of the clause set. This could be a real problem if we want to prove a theorem by resolution but we do not reach the empty clause after doing all possible resolutions, than we have a resolution-free clause set. In this case the Unicorn-SAT provides a model for this clause set in polynomial time, and this model contains essential information why the theorem does not hold.

The main part of this paper is Section 5, in which we introduce the Unicorn-SAT algorithm and we show it is correct and solves the resolution-free SAT problem in polynomial time. In Section 2 the notions are defined. In Section 3 we show an important property of Lucky-negation. In Section 4 we prove lemmas, that are needed to prove that the Unicorn-SAT is correct. In Section 6 we show an example how the algorithm works.

2 Definitions

Let
[image: image1.wmf]V

 be a set of Boolean variables. The negation of a variable
[image: image2.wmf]v

 is denoted by
[image: image3.wmf]v

. Given a set
[image: image4.wmf]U

, we denote
[image: image5.wmf]U

 = {
[image: image6.wmf]u

 |
[image: image7.wmf]u

 (
[image: image8.wmf]U

}. Literals are the members of the set
[image: image9.wmf]W

 =
[image: image10.wmf]V

 (
[image: image11.wmf]V

. Positive literals are the members of the set
[image: image12.wmf]V

. Negative literals are their negations. If
[image: image13.wmf]w

 denotes a negative literal
[image: image14.wmf]v

, then
[image: image15.wmf]w

 denotes the positive literal
[image: image16.wmf]v

. A clause is a finite set of literals that does not contain simultaneously any literal together with its negation. The empty clause, denoted by (, is interpreted as False. A clause set (formula in CNF) is a finite set of clauses. The empty clause set, denoted by (, is interpreted as True. The length of a clause
[image: image17.wmf]C

 is its cardinality, denoted by |
[image: image18.wmf]C

|. The length of a clause set
[image: image19.wmf]S

 is its cardinality, denoted by |
[image: image20.wmf]S

|. Clauses of a clause set with minimal length are called minimal clauses of this clause set. If we say that a literal
[image: image21.wmf]v

 occurs in a clause or in a clause set, we mean that this clause or this clause set contains the literal
[image: image22.wmf]v

. However, if we say that a variable
[image: image23.wmf]v

 occurs in a clause or in a clause set, we mean that this clause or this clause set contains the literal
[image: image24.wmf]v

, or it contains the literal
[image: image25.wmf]v

. We denote by V{
[image: image26.wmf]S

} the set of variables occurring in the clause set
[image: image27.wmf]S

, and by |V{
[image: image28.wmf]S

}| its cardinality. We say that two clauses differ in some variables if these variables occur in both clauses but as different literals. We say that two clauses are semi-equivalent if and only if they differ in no variable. We say that resolution can be performed on two clauses if they differ only in one variable. A clause set is resolution-free if and only if no resolution can be performed on any two clauses of the clause set. Lucky-negation of a clause
[image: image29.wmf]C

, denoted by L(
[image: image30.wmf]C

), is the negation of all literals of the clause except the first one (according to some variable ordering). Note that Lucky-negation could be defined in different ways, not necessary by negation of the first literal. An assignment or a sub-model is a finite subset of
[image: image31.wmf]W

 that does not contain any literal together with its negation. Informally speaking, if an assignment
[image: image32.wmf]I

 contains a literal
[image: image33.wmf]v

, it means that
[image: image34.wmf]v

 has the value True in
[image: image35.wmf]I

.

Now we define the crucial notion of sub-model propagation.

Definition 2.1 (Sub-Model Propagation)

[image: image36.wmf]S

[
[image: image37.wmf]I

] (read: “sub-model propagation on clause set
[image: image38.wmf]S

 by assignment
[image: image39.wmf]I

”) :=

{
[image: image40.wmf]C

 \
[image: image41.wmf]I

 |
[image: image42.wmf]C

 (
[image: image43.wmf]S

 ((
[image: image44.wmf]v

[image: image45.wmf]v

 (
[image: image46.wmf]I

 (
[image: image47.wmf]v

 (
[image: image48.wmf]C

}.

[image: image49.wmf]C

[
[image: image50.wmf]I

] (read: “sub-model propagation on clause
[image: image51.wmf]C

 by assignment
[image: image52.wmf]I

”) :=

[image: image53.wmf]C

 \
[image: image54.wmf]I

, if
[image: image55.wmf]C

 and
[image: image56.wmf]I

 are semi-equivalent, undefined otherwise.

Note that if (
[image: image57.wmf]v

[image: image58.wmf]v

 (
[image: image59.wmf]I

 (
[image: image60.wmf]v

 (
[image: image61.wmf]C

 then
[image: image62.wmf]C

 and
[image: image63.wmf]I

 are semi-equivalent. Informally
[image: image64.wmf]S

[
[image: image65.wmf]I

] means for the clause set
[image: image66.wmf]S

 and the sub-model
[image: image67.wmf]I

 = {
[image: image68.wmf]v

1,…,
[image: image69.wmf]v

n}, we

· remove from
[image: image70.wmf]S

 all clauses containing the literals
[image: image71.wmf]v

i, and

· we delete all occurrences of the literals
[image: image72.wmf]v

i from the other clauses.

With other words sub-model propagation is equivalent to unit propagation [7] by each literal of the sub-model
[image: image73.wmf]I

. An assignment
[image: image74.wmf]I

 is a model for a clause set
[image: image75.wmf]S

 if
[image: image76.wmf]S

[
[image: image77.wmf]I

] is the empty clause set. A clause set is satisfiable if there exists a model assignment for it.

3 Properties of Lucky-negation

In this section let
[image: image78.wmf]C

 be a non-empty clause.

Lemma 3.1 (Trivial Properties of Lucky-negation)

L(
[image: image79.wmf]C

) is a clause, is an assignment, contains the first literal of
[image: image80.wmf]C

, contains the negation of all literals occurring in
[image: image81.wmf]C

 except the first one, contains all variables of
[image: image82.wmf]C

.

At this point the reader should realize that in this paper clause and assignment are defined by the same definition. Thus, we can use L(
[image: image83.wmf]C

) either as a clause or an assignment.

Lemma 3.2

Resolution can be performed on
[image: image84.wmf]C

 and L(
[image: image85.wmf]C

).

Proof:

From Lemma 3.1 we know that
[image: image86.wmf]C

 and L(
[image: image87.wmf]C

) differ in every variable of
[image: image88.wmf]C

 except the first. So
[image: image89.wmf]C

 and L(
[image: image90.wmf]C

) differ only in the first variable of
[image: image91.wmf]C

.

Hence, resolution can be performed on
[image: image92.wmf]C

 and L(
[image: image93.wmf]C

).

(
Lemma 3.3 (The Lucky Property)

Let
[image: image94.wmf]S

 be a resolution-free clause set that does not contain the empty clause. Let
[image: image95.wmf]C

 be an element of
[image: image96.wmf]S

. Then L(
[image: image97.wmf]C

) is not element of
[image: image98.wmf]S

.

Proof:

If L(
[image: image99.wmf]C

) would be an element of
[image: image100.wmf]S

 then
[image: image101.wmf]S

 would be non resolution-free since we know from Lemma 3.2 that resolution can be performed on
[image: image102.wmf]C

 and L(
[image: image103.wmf]C

).

Hence, L(
[image: image104.wmf]C

) is not element of
[image: image105.wmf]S

.

(
This is the property why we name Lucky-negation to "lucky", namely it provides a clause outside from the clause set and this is not so trivial.

4 Properties of Sub-Model Propagation

In this section we will see that clause set remains the same for certain properties after sub-model propagation by the Lucky-negation of a minimal clause of the set.

Lemma 4.1

Let
[image: image106.wmf]S

 be a resolution-free clause set that does not contain the empty clause. Let
[image: image107.wmf]C

 be a minimal clause of
[image: image108.wmf]S

. Then
[image: image109.wmf]S

[L(
[image: image110.wmf]C

)] does not contain the empty clause.

Proof:

It is suffices to show that there is no such a clause in
[image: image111.wmf]S

 such that the sub-model propagation by L(
[image: image112.wmf]C

) deletes every literal from it, i.e., L(
[image: image113.wmf]C

) is not element of
[image: image114.wmf]S

. (We do not need consider clauses which are subset of L(
[image: image115.wmf]C

) since
[image: image116.wmf]C

 is a minimal clause from
[image: image117.wmf]S

). We know from Lemma 3.3 that L(
[image: image118.wmf]C

) is not element of
[image: image119.wmf]S

.

Hence,
[image: image120.wmf]S

[L(
[image: image121.wmf]C

)] does not contain the empty clause.

(
We see that Lucky-negation allows to simplify (perform sub-model propagation) the clause set without the danger that the clause set becomes unsatisfiable (it will not contain the empty clause).

Lemma 4.2

Let
[image: image122.wmf]S

 be a resolution-free clause set and let
[image: image123.wmf]I

 be an assignment. Then
[image: image124.wmf]S

[
[image: image125.wmf]I

] is resolution-free.

Proof:

Let
[image: image126.wmf]B

' and
[image: image127.wmf]C

' be elements of
[image: image128.wmf]S

[
[image: image129.wmf]I

]. Then we know by definition of sub-model propagation that
[image: image130.wmf]B

' =
[image: image131.wmf]B

[
[image: image132.wmf]I

] and
[image: image133.wmf]C

' =
[image: image134.wmf]C

[
[image: image135.wmf]I

] for some elements
[image: image136.wmf]B

 and
[image: image137.wmf]C

 of
[image: image138.wmf]S

. It can be shown that
[image: image139.wmf]B

 and
[image: image140.wmf]I

 are semi-equivalent and
[image: image141.wmf]C

 and
[image: image142.wmf]I

 are semi-equivalent, i.e.,
[image: image143.wmf]B

 and
[image: image144.wmf]C

 differ in no variable among variables of
[image: image145.wmf]I

. From this and from the definition of sub-model propagation we can obtain that
[image: image146.wmf]B

[
[image: image147.wmf]I

] and
[image: image148.wmf]C

[
[image: image149.wmf]I

] differ in the same variables like
[image: image150.wmf]B

 and
[image: image151.wmf]C

, i.e., no resolution can be performed on
[image: image152.wmf]B

[
[image: image153.wmf]I

] and
[image: image154.wmf]C

[
[image: image155.wmf]I

]. Hence,
[image: image156.wmf]S

[
[image: image157.wmf]I

] is resolution-free.

(
Now we see that a resolution-free clause set that does not contain the empty clause has the same properties after sub-model propagation by the Lucky-negation of some minimal clause of the set.

Lemma 4.3

Let
[image: image158.wmf]X

 be a clause set,
[image: image159.wmf]I

 be an assignment. Let
[image: image160.wmf]S

 be a clause set such that
[image: image161.wmf]X

[
[image: image162.wmf]I

] =
[image: image163.wmf]S

. Let
[image: image164.wmf]B

 be an element of
[image: image165.wmf]S

. Then
[image: image166.wmf]X

[
[image: image167.wmf]I

 (L(
[image: image168.wmf]B

)] =
[image: image169.wmf]S

[L(
[image: image170.wmf]B

)].

Proof:

[image: image171.wmf]I

 and
[image: image172.wmf]B

 have no common variable since
[image: image173.wmf]B

 is element of
[image: image174.wmf]S

 =
[image: image175.wmf]X

[
[image: image176.wmf]I

]. Therefore
[image: image177.wmf]X

[
[image: image178.wmf]I

 (L(
[image: image179.wmf]B

)] =
[image: image180.wmf]X

[
[image: image181.wmf]I

][L(
[image: image182.wmf]B

)]. Hence,
[image: image183.wmf]X

[
[image: image184.wmf]I

 (L(
[image: image185.wmf]B

)] =
[image: image186.wmf]S

[L(
[image: image187.wmf]B

)].
(
This lemma allows us to join the sub-models to get the final model. Note that this lemma could be written in a more general way.

Lemma 4.4

Let
[image: image188.wmf]S

 be a non-empty clause that does not contain the empty clause. Let
[image: image189.wmf]B

 be an element of
[image: image190.wmf]S

. Then |
[image: image191.wmf]S

[L(
[image: image192.wmf]B

)]| < |
[image: image193.wmf]S

| and |V{
[image: image194.wmf]S

[L(
[image: image195.wmf]B

)]}| < |V{
[image: image196.wmf]S

}|.

Proof:

[image: image197.wmf]S

 and L(
[image: image198.wmf]B

) have at least one common variable.

Hence, |
[image: image199.wmf]S

[L(
[image: image200.wmf]B

)]| < |
[image: image201.wmf]S

| and |V{
[image: image202.wmf]S

[L(
[image: image203.wmf]B

)]}| < |V{
[image: image204.wmf]S

}|.

(
5 The Unicorn-SAT Algorithm

Now we introduce the Unicorn-SAT algorithm and we show that it solves the resolution-free SAT problem in polynomial time.

Let RfS(
[image: image205.wmf]S

) be the predicate which is true if
[image: image206.wmf]S

 is resolution-free clause set, false otherwise. Let MinC(
[image: image207.wmf]S

) be the set of minimal clauses of
[image: image208.wmf]S

. Let M(
[image: image209.wmf]S

,
[image: image210.wmf]I

) be the predicate which is true if
[image: image211.wmf]I

 is a model for
[image: image212.wmf]S

, false otherwise.

We use "{}" to mark formulas that are true at the respective points of algorithm, in order to prove the correctness of the algorithm in the Hoare calculus.

Algorithm 5.1 (Unicorn-SAT):

Unicorn-SAT(
[image: image213.wmf]X

,
[image: image214.wmf]Z

)

input: clause set
[image: image215.wmf]X

 that is resolution-free and does not contain the empty clause,

output: clause
[image: image216.wmf]Z

, a model of
[image: image217.wmf]X

.

START

{((
[image: image218.wmf]X

 (RfS(
[image: image219.wmf]X

)}
the precondition

{((
[image: image220.wmf]X

 (RfS(
[image: image221.wmf]X

) (
[image: image222.wmf]X

[(] =
[image: image223.wmf]X

}
logical consequence rule and by a trivial property of sub-model propagation

(
[image: image224.wmf]S

,
[image: image225.wmf]I

) := (
[image: image226.wmf]X

, ();

{((
[image: image227.wmf]S

 (RfS(
[image: image228.wmf]S

) (
[image: image229.wmf]X

[I] =
[image: image230.wmf]S

}
by assignment axiom

{((
[image: image231.wmf]S

 (RfS(
[image: image232.wmf]S

) (
[image: image233.wmf]X

[I] =
[image: image234.wmf]S

}
the loop invariant

while (
[image: image235.wmf]S

 (() do

{((
[image: image236.wmf]S

 (RfS(
[image: image237.wmf]S

) (
[image: image238.wmf]X

[
[image: image239.wmf]I

] =
[image: image240.wmf]S

 (
[image: image241.wmf]S

 ((}
by while rule

{((
[image: image242.wmf]S

 (RfS(
[image: image243.wmf]S

) (
[image: image244.wmf]X

[
[image: image245.wmf]I

] =
[image: image246.wmf]S

}
logical consequence rule

let
[image: image247.wmf]B

 (MinC(
[image: image248.wmf]S

);

{((
[image: image249.wmf]S

 (RfS(
[image: image250.wmf]S

) (
[image: image251.wmf]X

[
[image: image252.wmf]I

] =
[image: image253.wmf]S

 (
[image: image254.wmf]B

 (MinC(
[image: image255.wmf]S

)}
by assignment axiom

{((
[image: image256.wmf]S

[L(
[image: image257.wmf]B

)] (RfS(
[image: image258.wmf]S

[L(
[image: image259.wmf]B

)]) (
[image: image260.wmf]X

[
[image: image261.wmf]I

 (L(
[image: image262.wmf]B

)] =
[image: image263.wmf]S

[L(
[image: image264.wmf]B

)]}
logical consequence rule and by Lemmas 4.1 - 4.3

[image: image265.wmf]S

 :=
[image: image266.wmf]S

[L(
[image: image267.wmf]B

)];

{((
[image: image268.wmf]S

 (RfS(
[image: image269.wmf]S

) (
[image: image270.wmf]X

[
[image: image271.wmf]I

 (L(
[image: image272.wmf]B

)] =
[image: image273.wmf]S

}
by assignment axiom

{((
[image: image274.wmf]S

 (RfS(
[image: image275.wmf]S

) (
[image: image276.wmf]X

[
[image: image277.wmf]I

 (L(
[image: image278.wmf]B

)] =
[image: image279.wmf]S

}

[image: image280.wmf]I

 :=
[image: image281.wmf]I

 (L(
[image: image282.wmf]B

);

{((
[image: image283.wmf]S

 (RfS(
[image: image284.wmf]S

) (
[image: image285.wmf]X

[
[image: image286.wmf]I

] =
[image: image287.wmf]S

}
by assignment axiom

{((
[image: image288.wmf]S

 (RfS(
[image: image289.wmf]S

) (
[image: image290.wmf]X

[
[image: image291.wmf]I

] =
[image: image292.wmf]S

}

od

{((
[image: image293.wmf]S

 (RfS(
[image: image294.wmf]S

) (
[image: image295.wmf]X

[
[image: image296.wmf]I

] =
[image: image297.wmf]S

 (
[image: image298.wmf]S

 = (}
by while rule

{
[image: image299.wmf]X

[I] = (}
logical consequence rule

[image: image300.wmf]Z

 :=
[image: image301.wmf]I

;

{
[image: image302.wmf]X

[
[image: image303.wmf]Z

] = (}
by assignment axiom

{M(
[image: image304.wmf]X

,
[image: image305.wmf]Z

)}
the postcondition

HALT.

Now we see that from the precondition (the clause set is resolution-free and does not contain the empty clause) the postcondition follows (the computed assignment is a model for the clause set) if we follow the steps of the algorithm. The only question is whether the algorithm stops always or sometime runs for forever. We know from Lemma 4.4 that it stops always.

Theorem 5.1 (Correctness)

Let
[image: image306.wmf]S

 be a resolution-free clause set that does not contain the empty clause. Then after execution of Unicorn-SAT(
[image: image307.wmf]S

,
[image: image308.wmf]I

),
[image: image309.wmf]I

 is a model for
[image: image310.wmf]S

.

Proof:

From Algorithm 5.1 and from Lemma 4.4 we can obtain that Unicorn-SAT stops for every resolution-free clause set that does not contain the empty clause and gives back a model for it.

(
Now we can prove that Unicorn-SAT is a polynomial time algorithm.

Theorem 5.2

Let
[image: image311.wmf]S

 be a resolution-free clause set that does not contain the empty clause. Let n be the number of variables occurring in
[image: image312.wmf]S

 and m the length of
[image: image313.wmf]S

. Then the time complexity of Unicorn-SAT(
[image: image314.wmf]S

,
[image: image315.wmf]I

) is min(O(n2m), O(m2n)).

Proof:

From Lemma 4.4 we know that
[image: image316.wmf]S

 decreases in every iterations at least by one clause and also at least by one variable. So there are min(n, m) iterations in the worst case. The most expensive computation in an iteration is the sub-model propagation which is an O(m (n) operation.

Hence, the time complexity of Unicorn-SAT(
[image: image317.wmf]S

,
[image: image318.wmf]I

) is min(O(n2m), O(m2n)). (
6 Example

We show how the Unicorn-SAT algorithm works for an example. We assume that variables are sorted by alphabetic order.

Example 6.1

Let
[image: image319.wmf]X

 := {{
[image: image320.wmf]a

,
[image: image321.wmf]b

,
[image: image322.wmf]c

},{
[image: image323.wmf]b

,
[image: image324.wmf]c

,
[image: image325.wmf]d

,
[image: image326.wmf]e

},{
[image: image327.wmf]a

,
[image: image328.wmf]b

,
[image: image329.wmf]c

,
[image: image330.wmf]d

},{
[image: image331.wmf]c

,
[image: image332.wmf]d

,
[image: image333.wmf]e

}}.
[image: image334.wmf]X

 is resolution-free clause set and does not contain the empty clause, so Unicorn-SAT can be applied to it. Step of Unicorn-SAT and values of variables:

After initialization (
[image: image335.wmf]S

,
[image: image336.wmf]I

) = ({{
[image: image337.wmf]a

,
[image: image338.wmf]b

,
[image: image339.wmf]c

},{
[image: image340.wmf]b

,
[image: image341.wmf]c

,
[image: image342.wmf]d

,
[image: image343.wmf]e

},{
[image: image344.wmf]a

,
[image: image345.wmf]b

,
[image: image346.wmf]c

,
[image: image347.wmf]d

},{
[image: image348.wmf]c

,
[image: image349.wmf]d

,
[image: image350.wmf]e

}}, ().

After first iteration (
[image: image351.wmf]S

,
[image: image352.wmf]I

,
[image: image353.wmf]B

) = ({{
[image: image354.wmf]d

,
[image: image355.wmf]e

},{
[image: image356.wmf]d

,
[image: image357.wmf]e

}}, {
[image: image358.wmf]a

,
[image: image359.wmf]b

,
[image: image360.wmf]c

}, {
[image: image361.wmf]a

,
[image: image362.wmf]b

,
[image: image363.wmf]c

}).

After second iteration (
[image: image364.wmf]S

,
[image: image365.wmf]I

,
[image: image366.wmf]B

) = ((, {
[image: image367.wmf]a

,
[image: image368.wmf]b

,
[image: image369.wmf]c

,
[image: image370.wmf]d

,
[image: image371.wmf]e

}, {
[image: image372.wmf]d

,
[image: image373.wmf]e

}).

The model
[image: image374.wmf]Z

 for
[image: image375.wmf]X

 is {
[image: image376.wmf]a

,
[image: image377.wmf]b

,
[image: image378.wmf]c

,
[image: image379.wmf]d

,
[image: image380.wmf]e

}.

References

1. Stephen Cook. The complexity of theorem proving procedures. In Proc. 3rd Ann. ACM Symp. on Theory of Computing, pages 151--158, New York, 1971.

2. S. Even, A. Itai and A. Shamir. On the complexity of timetable and multi-commodity flow problems. SIAM Journal on Computing, 5(4), 1976.

3. Bengt Aspvall, Michael F. Plass and Robert Endre Tarjan. A linear-time algorithm for testing the truth of certain quantified boolean formulas. Information Processing Letters, 8(3):121--123, March 1979.

4. W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the satisfiability of propositional Horn formulas. Journal of Logic Programming, 1(3):267--284, 1984.

5. Bengt Aspvall. Recognizing disguised NR(1) instances of the satisfiability problem. Journal of Algorithms, 1:97--103, 1980.

6. Vijaya Chandru and John Hooker. Extended Horn sets in propositional logic. Journal of the ACM, 38(1):205--221, 1991.

7. M. Davis and H. Putnam. A Computing Procedure for Quantification Theory. Journal of the ACM, 7:201--215, 1960.

� Sponsored by Upper Austrian Government and European project Calculemus RTN1-1999-00301.

PAGE
6

_1041410551.unknown

_1041411177.unknown

_1041411304.unknown

_1041411342.unknown

_1041411501.unknown

_1041411674.unknown

_1041411721.unknown

_1041605340.unknown

_1041411749.unknown

_1041411751.unknown

_1041411753.unknown

_1041411733.unknown

_1041411666.unknown

_1041411657.unknown

_1041411513.unknown

_1041411650.unknown

_1041411511.unknown

_1041411506.unknown

_1041411508.unknown

_1041411504.unknown

_1041411351.unknown

_1041411361.unknown

_1041411366.unknown

_1041411368.unknown

_1041411371.unknown

_1041411364.unknown

_1041411356.unknown

_1041411359.unknown

_1041411354.unknown

_1041411346.unknown

_1041411349.unknown

_1041411344.unknown

_1041411323.unknown

_1041411332.unknown

_1041411337.unknown

_1041411339.unknown

_1041411334.unknown

_1041411327.unknown

_1041411330.unknown

_1041411325.unknown

_1041411314.unknown

_1041411318.unknown

_1041411321.unknown

_1041411316.unknown

_1041411309.unknown

_1041411311.unknown

_1041411306.unknown

_1041411196.unknown

_1041411295.unknown

_1041411300.unknown

_1041411302.unknown

_1041411297.unknown

_1041411205.unknown

_1041411210.unknown

_1041411215.unknown

_1041411217.unknown

_1041411220.unknown

_1041411213.unknown

_1041411208.unknown

_1041411200.unknown

_1041411203.unknown

_1041411198.unknown

_1041411187.unknown

_1041411191.unknown

_1041411194.unknown

_1041411189.unknown

_1041411182.unknown

_1041411184.unknown

_1041411180.unknown

_1041411140.unknown

_1041411158.unknown

_1041411168.unknown

_1041411173.unknown

_1041411175.unknown

_1041411170.unknown

_1041411163.unknown

_1041411165.unknown

_1041411161.unknown

_1041411149.unknown

_1041411154.unknown

_1041411156.unknown

_1041411151.unknown

_1041411144.unknown

_1041411147.unknown

_1041411142.unknown

_1041411019.unknown

_1041411028.unknown

_1041411038.unknown

_1041411137.unknown

_1041411031.unknown

_1041411033.unknown

_1041411024.unknown

_1041411026.unknown

_1041411021.unknown

_1041410560.unknown

_1041410569.unknown

_1041411014.unknown

_1041411016.unknown

_1041410572.unknown

_1041410574.unknown

_1041410565.unknown

_1041410567.unknown

_1041410562.unknown

_1041410555.unknown

_1041410558.unknown

_1041410553.unknown

_1041410183.unknown

_1041410221.unknown

_1041410258.unknown

_1041410532.unknown

_1041410541.unknown

_1041410546.unknown

_1041410549.unknown

_1041410544.unknown

_1041410537.unknown

_1041410539.unknown

_1041410534.unknown

_1041410277.unknown

_1041410400.unknown

_1041410405.unknown

_1041410410.unknown

_1041410412.unknown

_1041410407.unknown

_1041410403.unknown

_1041410282.unknown

_1041410294.unknown

_1041410303.unknown

_1041410308.unknown

_1041410284.unknown

_1041410280.unknown

_1041410268.unknown

_1041410272.unknown

_1041410275.unknown

_1041410270.unknown

_1041410263.unknown

_1041410265.unknown

_1041410261.unknown

_1041410240.unknown

_1041410249.unknown

_1041410254.unknown

_1041410256.unknown

_1041410251.unknown

_1041410244.unknown

_1041410247.unknown

_1041410242.unknown

_1041410230.unknown

_1041410235.unknown

_1041410237.unknown

_1041410232.unknown

_1041410225.unknown

_1041410228.unknown

_1041410223.unknown

_1041410202.unknown

_1041410212.unknown

_1041410216.unknown

_1041410218.unknown

_1041410214.unknown

_1041410207.unknown

_1041410209.unknown

_1041410205.unknown

_1041410193.unknown

_1041410197.unknown

_1041410200.unknown

_1041410195.unknown

_1041410188.unknown

_1041410190.unknown

_1041410185.unknown

_1041409868.unknown

_1041409944.unknown

_1041410107.unknown

_1041410173.unknown

_1041410178.unknown

_1041410181.unknown

_1041410176.unknown

_1041410169.unknown

_1041410171.unknown

_1041410109.unknown

_1041409982.unknown

_1041410002.unknown

_1041410012.unknown

_1041410022.unknown

_1041410033.unknown

_1041410038.unknown

_1041410040.unknown

_1041410043.unknown

_1041410035.unknown

_1041410027.unknown

_1041410030.unknown

_1041410025.unknown

_1041410017.unknown

_1041410020.unknown

_1041410014.unknown

_1041410007.unknown

_1041410009.unknown

_1041410004.unknown

_1041409992.unknown

_1041409997.unknown

_1041409999.unknown

_1041409994.unknown

_1041409987.unknown

_1041409989.unknown

_1041409984.unknown

_1041409963.unknown

_1041409972.unknown

_1041409977.unknown

_1041409979.unknown

_1041409975.unknown

_1041409968.unknown

_1041409970.unknown

_1041409965.unknown

_1041409954.unknown

_1041409958.unknown

_1041409961.unknown

_1041409956.unknown

_1041409949.unknown

_1041409951.unknown

_1041409946.unknown

_1041409906.unknown

_1041409925.unknown

_1041409935.unknown

_1041409939.unknown

_1041409942.unknown

_1041409937.unknown

_1041409930.unknown

_1041409933.unknown

_1041409928.unknown

_1041409916.unknown

_1041409921.unknown

_1041409923.unknown

_1041409918.unknown

_1041409911.unknown

_1041409914.unknown

_1041409909.unknown

_1041409887.unknown

_1041409897.unknown

_1041409901.unknown

_1041409904.unknown

_1041409899.unknown

_1041409892.unknown

_1041409894.unknown

_1041409889.unknown

_1041409878.unknown

_1041409882.unknown

_1041409885.unknown

_1041409880.unknown

_1041409873.unknown

_1041409875.unknown

_1041409871.unknown

_1041409793.unknown

_1041409831.unknown

_1041409850.unknown

_1041409859.unknown

_1041409864.unknown

_1041409866.unknown

_1041409861.unknown

_1041409854.unknown

_1041409857.unknown

_1041409852.unknown

_1041409840.unknown

_1041409845.unknown

_1041409847.unknown

_1041409842.unknown

_1041409835.unknown

_1041409838.unknown

_1041409833.unknown

_1041409812.unknown

_1041409821.unknown

_1041409826.unknown

_1041409828.unknown

_1041409823.unknown

_1041409816.unknown

_1041409819.unknown

_1041409814.unknown

_1041409802.unknown

_1041409807.unknown

_1041409809.unknown

_1041409805.unknown

_1041409797.unknown

_1041409800.unknown

_1041409795.unknown

_1041409633.unknown

_1041409695.unknown

_1041409704.unknown

_1041409714.unknown

_1041409788.unknown

_1041409791.unknown

_1041409719.unknown

_1041409723.unknown

_1041409725.unknown

_1041409721.unknown

_1041409716.unknown

_1041409709.unknown

_1041409711.unknown

_1041409707.unknown

_1041409700.unknown

_1041409702.unknown

_1041409697.unknown

_1041409686.unknown

_1041409691.unknown

_1041409693.unknown

_1041409688.unknown

_1041409681.unknown

_1041409684.unknown

_1041409679.unknown

_1041408538.unknown

_1041409564.unknown

_1041409573.unknown

_1041409582.unknown

_1041409587.unknown

_1041409589.unknown

_1041409592.unknown

_1041409585.unknown

_1041409578.unknown

_1041409580.unknown

_1041409575.unknown

_1041409568.unknown

_1041409571.unknown

_1041409566.unknown

_1041409559.unknown

_1041409562.unknown

_1041408549.unknown

_1041408350.unknown

_1041408392.unknown

_1041408424.unknown

_1041408473.unknown

_1041408377.unknown

_1041408144.unknown

_1041408311.unknown

_1041408328.unknown

_1041408188.unknown

_1041408137.unknown

_1041408139.unknown

_1041407988.unknown

_1041408021.unknown

