
ON SOLVING LARGE SPARSE SYSTEMS OF NONLINEAR

EQUATIONS USING THREADS

MIRCEA DRAGAN

Abstract. This paper presents an algorithm for parallel solving of nonlinear systems.

The current implementation uses threads on a Windows 2000/NT operating system and

is independent on the numerical method used for solving the system.

1. Introduction

Solving large nonlinear systems of equations in parallel requires some additional tasks

to be done. One of these tasks is to decompose the system into smaller subsystems in

a proper way (see for example [5]). This task is not enough for solving the subsystems

obtained. There is necessary a way to communicate among these subsystems solvers in

order to get the proper solution. One possibility to do this is to use threads in Windows

2000/NT. This technique will be described in the paper. Similar work using threads can

be found in [1].

Using threads is far from being the best method for parallel and distributed solving

of subsystems obtained after decomposing the system. But this technique is, in some

situations, the only one you can use, especially if you don’t have a parallel computer or a

network to solve the system using a better way.

In particular for our purpose the best way to use threads is to solve each subsystem

obtained in a separate thread. One problem which arises is that we don’t know in advance

how many subsystems we have and, as a consequence, we don’t know how many threads

we need. The number of subsystems and the number of threads is determined at runtime

and is dependent of the input data.

To solve the system in parallel we need to share a memory zone where we keep the

solution. We also don’t know in advance how big is the memory needed for solution and

how we have to share data. All this information we get at runtime and thus the shared

memory is dynamic allocated.

There are several methods how to write a multithreading program ([2], [3], [4], [6], [7]).

A very important problem is how to deal with shared data. This can be done in several

ways. One way is to use critical sections, which we use in our implementation.

AMS (MOS) Subject Classification. 68W10, 68W15, 65Y05, 65H10.
Key words and phrases. Parallel algorithm, asynchronous algorithm, iterative methods, sparse nonlin-

ear system, thread, shared memory.

1



2 MIRCEA DRAGAN

2. Description of the parallel method

In this section we present a method to write a parallel program using threads. The first

step is to decompose the system into subsystems. This can be done, for example, using

the algorithm below. A complete description of this algorithm can be found in [5].

proc decompose(G, s)
empty the edge stack

construct the adjacency structure of G
for w a vertex do

if w is not yet numbered then

biconnect(w, 0)
endif

if edge stack is not empty then

empty the edge stack and get a new subsystem

endif

endfor

identify equations for each subsystem

determine articulation points which belongs to two subsystems

end

proc biconnect(v, u)
number [v] = + + i
lowpt [v] = number [v]
for w in the adjacency list of v do

if w is not yet numbered then

add (v, w) to edge stack
biconnect(w, v)
lowpt [v] = min (lowpt [v] , lowpt [w])
if lowpt [w] > number [v] then
start new subsystem

while new top edge e = (u1, u2) on edge stack
has number [u1] > number [w] do

delete (u1, u2) from edge stack

if equation u1 is not yet in current subsystem
add equation u1 to current subsystem

endif

if equation u2 is not yet in current subsystem
add equation u2 to current subsystem

endif

enddo

delete (v,w) from edge stack

if equation v is not yet in current subsystem
add equation v to current subsystem

endif



ON SOLVING LARGE SPARSE SYSTEMS OF NONLINEAR EQUATIONS USING THREADS 3

if equation w is not yet in current subsystem
add equation w to current subsystem

endif

endif

else if (lowpt [w] > number [v]) and (w 6= u) then
add (v, w) to edge stack
lowpt [v] = min (lowpt [v] , number [w])

endif

endfor

end

The next step is to organize threads, which means creating, calling and destroying

threads. Each thread is responsible to solve one subsystem and to communicate with

others.

Each thread computes a solution of its subsystem, if one can be calculated. When

one thread ends, it communicates this by returning a proper value to signalize success

or failure in finding a solution. If any thread fails, then the whole system fails. The

algorithm for this is

proc thread

for each subsystem i
success [i] = start_thread(i)

endfor

determine if all subsystems returned success or failure and return the result

end

The procedure start_thread creates the thread, computes the solution of its subsys-

tem if one can be computed and waits until it finishes, as follows:

proc start_thread(i)
state = subsystem(i)
wait until the thread is finished
return state

end

The variable state returns true in case of success and false in case of failure.
In solving a nonlinear system, one step (iteration) is usual of type xk+1 = F

¡
xk
¢
, where

xk+1 contains the value which is actually calculated in the step and xk contains the old
value. Each thread computes a step of its subsystem using a shared memory zone (in fact

a shared array) which contains the next iteration xk+1 of the whole system. In the case
one thread needs some variables which don’t belong to its subsystem, it can take their

values from this shared array. When next step is actually performed, the algorithm used

for the computation must be modified as follows: before an element of xk+1 is computed,
the access to its value is locked until the computation is done, and after that the lock is

removed. This way we are sure that no other thread has access to this value during the



4 MIRCEA DRAGAN

updating process. During the locking process all other threads which need access to this

value are waiting until the lock is removed.

The values of the array xk+1 are actually computed in an asynchronous way, such that
if one subsystem gives the next iteration faster than another, for the first subsystem the

old values of the second subsystem are used.

The locking mechanism is implemented using critical sections ([4], [6], [7]). The algo-

rithm which performs this is

proc subsystem(i)
for j = 1 to number of equations in subsystem i
perform operations related to the solving method

which don’t involve computation of xk+1j

enter critical section

compute xk+1j

leave critical section

perform operations related to the solving method

which don’t involve computation of xk+1j

endwhile

return failure or success in getting a solution for the subsystem

end

In the algorithm above we denoted by xk+1j the jth component of xk+1 being calculated.
The number of equations in each subsystem we know only at runtime.

In a numerical method used for solving the subsystems there might be some steps

which do not involve any assignments to xk+1j . Such steps can be needed to be performed

before the computation of xk+1j (which actually means using the old value for xk+1j ) and

some steps can be necessary to be done after the computation of xk+1j (which actually

means using the new calculated value for xk+1j ). The most important thing is that any

assignment to xk+1j must be done in a critical section. In a concrete algorithm there can

be more sections where a value for xk+1j is computed. All these sections must be critical,

otherwise the behavior of the algorithm is not defined.

The algorithm is independent of the method used to solve the system.

3. Experimental results

In this section results obtained for different systems are illustrated. We compare the

results obtained with the same method and input data, using the algorithm described

above, and solving the system without decomposing it. The method chosen is Newton

SOR and is not the best one, but can be used for our purpose.

One thing which should be mentioned is that there are some situations in which a

system can be decomposed into subsystems and can be solved using the method above,

but the system cannot be solve as a whole with the same method and input data, and

the other way around.



ON SOLVING LARGE SPARSE SYSTEMS OF NONLINEAR EQUATIONS USING THREADS 5

To illustrate these situations, let’s consider the system

2 (x1 − x2)− 2 cos (x3)− sin (x4 − 1) = 0
sin (x1 − x2)

x2
2
− sin (x3) + sin (x4) = 0

x1 + x3 − tan (x2)− x4 = 0
x1 + x5 − 4x4 − 2 = 0

2 (x5 − x6)− 2 cos (x7)− sin (x8 − 1) = 0
sin (x5 − x6)

x6
2
− sin (x7) + sin (x8) = 0

x7 − tan (x6) + x5 − x8 = 0
x5 + x6 − 4x8 + 2 = 0

(3.1)

Using the algorithm from [5], the system (3.1) can be decomposed into three subsystems,

{1, 2, 3, 4}, {4, 5}, respectively {5, 6, 7, 8}.
We denote by ω the relaxation factor for the Newton SOR method, by n the number

of iterations and by ε the approximation error. We will illustrate some particular cases
in solving this system in the tables below. We are interested in the number of iterations

needed to get the solution with the approximation ε, out of a maximum of 20, 000 iter-
ations. If we don’t get the solution in 20, 000 iterations, then we will denote this entry
in the tables by ‘none’. For the accuracy of solution we will consider for approximation

error the values ε = 10−5 and ε = 10−8.
If we denote by x0 the initial iteration, we consider the cases x0 = {1, 2, 3, 4, 5, 6, 7, 8},

x0 = {4, 4, 4, 4, 4, 4, 4, 4} and x0 = {8, 7, 6, 5, 4, 3, 2, 1}. The number of iterations depend-
ing on ω is given in the following tables:

Table 1: Initial values 1, 2, 3, 4, 5, 6, 7, 8

ω Parallel Normal

ε = 10−5 ε = 10−8 ε = 10−5 ε = 10−8

0.4 372 612 372 612
0.5 175 274 182 275
0.6 120 168 96 149
0.7 431 207 135 165
0.8 none none none none

0.9 60 73 69 82
1.0 177 294 none none

1.1 393 442 544 563



6 MIRCEA DRAGAN

Table 2: Initial values 4, 4, 4, 4, 4, 4, 4, 4

ω Parallel Normal

ε = 10−5 ε = 10−8 ε = 10−5 ε = 10−8

0.4 394 630 394 630
0.5 174 288 202 288
0.6 109 161 93 146
0.7 96 163 245 273
0.8 none none 27 42
0.9 53 70 15763 15777
1.0 1306 8303 4687 4719
1.1 156 185 268 292

Table 3: Initial values 8, 7, 6, 5, 4, 3, 2, 1

ω Parallel Normal

ε = 10−5 ε = 10−8 ε = 10−5 ε = 10−8

0.4 366 601 397 620
0.5 161 257 189 280
0.6 108 158 108 158
0.7 211 292 302 333
0.8 none none none none

0.9 123 183 135 148
1.0 none none 886 1290
1.1 269 212 239 260

As one can see, there are two cases when the parallel method does not converge and

the normal method converges (see Table 2 for ω = 0.8 and Table 3 for ω = 1.0). In this
case the last subsystem (consisting of equations 5, 6, 7 and 8) has the same solution, but

the first subsystem (consisting of equations 1, 2, 3 and 4) diverges. There are cases when

one can compute the solution using only the parallel method (see Table 1 for ω = 1.0).
When both methods converge, the parallel method gives much faster the answer. This is

obvious especially with large systems.

4. Conclusions

Using threads in solving a system in parallel is maybe not the best method, but some-

times this is the only one available, especially if we don’t have a parallel computer or a

network to solve the system using a better way.

The advantage of the algorithm proposed is that it is independent on the solving method

used. The implementation can be also done on other operating systems which support

multithreading.

In the algorithm proposed in this paper the subsystems obtained are solved in an

asynchronous way. For some subsystems the next iteration can be computed much faster

than for others, which can imply the instability of the solution. If we denote by ni the



ON SOLVING LARGE SPARSE SYSTEMS OF NONLINEAR EQUATIONS USING THREADS 7

number of iterations for the subsystem i at a certain moment, we can introduce the
relation that the difference between the maximum of ni and the minimum of ni to be less
than a certain integer p.
As a future work the algorithm described in [5] will be extended using other techniques.

References

[1] B. Alkire, Parallel Computation of Hessian Matrices under Microsoft Windows NT, SIAM News, Vol.

31, Nr. 10.

[2] R. Asche, Synchronization on the Fly, Technical Report, MSDN Library, 1993.

[3] R. Asche, Multithreading for Rookies, Technical Report, MSDN Library, 1993.

[4] R. Asche, Detecting Deadlocks in Multithreaded Win32 Applications, Technical Report, MSDN Li-

brary, 1994.

[5] M. Dragan, On Decomposing Large Sparse Systems of Nonlinear Equations, Technical Report 01-05,

RISC Linz, 2001.

[6] M. Pietrek, Under the Hood, Microsoft Systems Journal, 1996.

[7] J. Vert, Writing Scalable Applications for Windows NT, Technical Report, MSDN Library, 1995.

Software Competence Center, Softwarepark Hagenberg, Hauptstrasse 99, A-4232 Ha-
gengerg, Austria
E-mail address: mircea.dragan@scch.at


