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Chapter 1

Introduction

This work deals with the most important means for finding closed form solu-
tions of non-linear differential equations (DEs for short), the so called non-
trivial symmetries that a given DE may admit. Apart from being used in
finding exact solutions of DEs, symmetries also reveal important information
about the properties of DEs; they can be used to verify and develop numerical
schemes, to obtain conservation laws of a given DE, and even gauge theory
is based on the continuous symmetries of certain relativistic fields.

The study of symmetries has been initiated by Sophus Lie. Roughly
speaking, a symmetry is a point- or contact-transformation that does not
change the form of a DE. Obviously, the entirety of symmetry transforma-
tions of any given DE forms a group. The term symmetry group is applied
to the largest group of transformations with this property. The symmetry
problem for DEs comes in various versions. On the one hand, there is the
classification problem. It aims at obtaining a complete survey of all pos-
sible symmetries for a class of given DEs, e.g. DEs of a given order in a
predetermined number of dependent and independent variables. We will be
concerned with this version of the problem. The starting point of this ap-
proach is always a listing of groups whose differential invariants determine
the general form of a DE that may be invariant under the respective group.
On the other hand, the symmetry group of any given particular DE needs
to be determined algorithmically, and may then be applied for simplifying
the equation, finding special classes of solutions, etc. The key for solving
the latter problem is the Janet base for the so-called determining system of
the respective equation, since its coefficients determine the symmetry group.
These two versions of the problem are closely related to each other.



Sophus Lie (1842-1899) determined all continuous transformation groups
of the two dimensional plane [7], and gave normal forms for any ordinary DE
that is invariant under one of those groups. Thereby, higher order equations
are given implicitly, since they can be derived recursively from the corre-
sponding equations of lower order.

We deal with the extension of this program to a special class of partial
differential equations.

Problem 1 We aim at a contribution to the symmetry classification prob-
lem for partial differential equations of order two in one dependent and two
independent variables, i.e. to provide a listing of all possible symmetry groups
that may be admitted by this family of equations.

A complete strategy to tackle the whole classification problem is as follows:

1) List all finite continuous transformation groups of the three dimensional
space in coordinates x, y, and z.

2) Find all differential invariants of the groups given in 1) where z depends
on x and y. For a given group, the DEs invariant under this group are
functions of these invariants.

3) Determine the group types, i.e. by using each invariant from 2), find
criterions that allow to identify the symmetry group for a given DE
from our classification.

In Chapter 2 (“Basic Theoretical Concepts”), we introduce the theory
necessary to calculate differential invariants and basic theory of Lie algebras
of vector fields. In Chapter 3 (“The Space Point Groups”), we give a listing
of all continuous groups of the three dimensional space that is based on work
by S. Lie [7, 8] and U. Amaldi [1], thereby solving point 1) of the above
strategy. In Chapter 4 (“Differential Invariants of Order 2”), the differential
invariants of most of the space groups listed in Chapter 3 are determined,
thereby solving the second part of 2) to a large extent. In Chapter 5 (“Lower
Invariants”) the lower invariants for the same group classes as in Chapter 4
are provided. Finally, in Chapter 6 (“Examples and Conclusion”) we consider
some classical PDEs, indicate a way to compute higher invariants, and outline
remaining work and open problems.



Due to the huge number of space groups, point 3) of the above outline is
not considered in this work. This last step would be accomplished by com-
puting the Janet base of the determining system of any differential invariant
from 2), applying a general point transformation to it, which in general de-
stroys the Janet base property, and reestablishing the Janet base property by
applying the algorithm Janet base again. Thereby, a classification of Janet
bases for determining systems of DEs for this class would be achieved.



Chapter 2

Basic Theoretical Concepts

In this chapter, we provide the basic notions and some theory in order to
be able to tackle the indicated classification problem for PDEs of order two
in one dependent and two independent variables. In Section 2.1 (“Symme-
tries of ODEs”) we present the theory for ordinary differential equations.
The concepts and methods outlined there may be extended to the case of
partial differential equations, which is sketched in Section 2.2 (“Symmetries
of PDEs”). The remaining three sections, Section 2.3 — 2.5, introduce no-
tions used in Chapters 3, 4 and 5 to structure the presentation of space groups
and their invariants. For a further treatment of the subject symmetry groups
and differential equations any of the modern textbooks [2, 3, 9, 10] may be
consulted. Text books with main emphasis on applications in physics are
(11, 12].

2.1 Symmetries of ODEs

As mentioned above, the starting point in our strategy is a listing of groups
whose differential invariants determine the general form of a DE that may
be invariant under the respective group. We clarify the notion of transfor-
mation groups of differential equations in Subsection 2.1.1 (“Transformation
Groups of Differential Equations”). The notion of invariance under such a
group is investigated in Subsection 2.1.2 (“Infinitesimal Generators and Pro-
longations”). In Subsection 2.1.3 (“Differential Invariants of Point Transfor-
mations”), we introduce the differential invariants for a given transformation
group. They are determined by a system of PDEs whose solutions are the



desired invariants. Finally, in Subsection 2.1.4 (“Differential Invariants of
ODEs: An Example”), we give an example that demonstrates the computa-
tion of differential invariants for one chosen plane group.

2.1.1 Transformation Groups of Differential Equations

Introducing new variables into a given DE is a widely used method in order
to facilitate the solution process. Usually this is done in an ad hoc manner
without guaranteed success. In particular, there is no criterion to decide
whether a certain class of transformations will lead to an integrable equation
or not. A critical examination of these methods was the starting point for
Lie’s symmetry analysis. We will now have a look on the behavior of DEs
under special kind of transformations.

Let an ODE of order n be given as

w(z,y, g, ,y™) =0. (2.1)
The general solution of such an equation is a set of curves in the z-y-plane
depending on n parameters C1, ... ,C),, given by

O(z,y,Cq,...,Cp) =0, (2.2)

compare any textbook on ordinary DEs, e.g. [3]. Invertible analytic transfor-
mations between two planes with coordinates (x,y) and (u,v), respectively,
that are of the form

u=o(x,y), v=p(z,y), (2.3)

are called point transformations. We will encounter them in the form of
one-parameter groups of point transformations

u=o(x,y,a), v=px,vy,a). (2.4)

Here the real parameter a ranges over an open interval including 0, such that
for any fixed value of a, equation (2.4) represents a point transformation. In
addition, there exists a real group composition ¢ such that

0¢)



Group transformations of this kind may be reparametrized such that we have
®(a,a) = a + a, and such that a = 0 represents the identity element.
An equation (2.1) is said to be invariant under the change of variables

r = ®(u,v), y = V(u,v),

where v = v(u), if it retains its form under this transformation, i.e. if the
functional dependence of the transformed equation on u and v is the same as
in the original equation (2.1). Such a transformation is called a symmetry of
the DE. The same transformation acts on the curves (2.2). If it is a symmetry,
the functional dependence of the transformed curves of v and v must be the
same as in (2.2). This is not necessarily true for the parameters Ci, ... ,C,
because they do not occur in the DE itself. This means, the entirety of
curves described by the two equations is the same, to any fixed values for the
constants however may correspond a different curve in either set. In other
words the solution curves are permuted among themselves by a symmetry
transformation. It is fairly obvious that all symmetry transformations of a
given DE form a group, the symmetry group of that equation.

2.1.2 Infinitesimal Generators and Prolongations

Let a curve in the (z-y)-plane described by y = f(z) be transformed under a
point transformation of the form (2.3) into v = g(u). Now the question arises
daf

how the derivative ¢’ = == corresponds to v' = Z—Z under this transformation.

A simple calculation leads to the first prolongation

oo v Pty

— /
Sd T ooy V)

Note that the knowledge of (z,y,y’) and the equations of the point transfor-
mation (2.3) already determine v" uniquely, the knowledge of the equation of
the curve is not required. This may be expressed by saying that the line ele-
ment (z,y,y’) is transformed into the line element (u,v,v") under the action
of a point transformation. Similarly, the transformation law for derivatives
of second order is obtained as

o= WXt XY Xy
du or +oyy

For later applications it would be useful to express the second derivative v”
explicitly in terms of o and p. We do not give this quite lengthy formula here,

9



but instead provide the prolongation formulas for one-parameter groups of
point transformations of the form

u=o(z,y,a),v=pry,a). (2.5)

Here the transformation properties of the derivatives may be expressed in
terms of the prolongation of the corresponding infinitesimal generator

U =¢&(x,y)0: +n(z,y)0,, (2.6)
where
d d
£($,y) = %O—(xvgﬁa)hz:(b 7)(3373!) = %p(ﬂfyy,a)m:o-

The n-th prolongation of (2.6) is now defined as
U =U + Z C(k)8y<k), where
k=1

¢ = D(n) -y D),
(W = D" D) —y®D(E) for k=2,3,...

Hereby, D is the operator of total differentiation w.r.t. z, i.e.
D=0, +Y y"dyu.
k=1

We give the two lowest (’s explicitly:
((1) =1+ (ny - £:p)y/ - £yy/27

2 2
¢ = n + 20y, — &) + (0, — 26,V
— &0+ (n, — 28,0y — 3,0y

These two innocent looking expressions should not divert from the fact that
the number of terms in ( (k) grows roughly as 2. But ¢ (%) is at least linear and
homogeneous in £(x,y) and n(x,y) and its derivatives up to order k. In ad-
dition, ¢ does not depend explicitly on z and y but only on ¢/, ¢/”, ... ,y*.
For k > 1, y®) occurs linearly and v’ occurs with power k + 1 in ¢ (k).

10



2.1.3 Differential Invariants of Point Transformations

In order to obtain a classification of possible symmetries of DEs, the in-
variants of all finite groups of the plane have been determined by Lie. The
starting point for this classification was a listing of all finite groups of point
transformations of the plane (compare Section 3.2 “Lie’s Classification of the
Groups of the Plane”).

Any r-parameter Lie group may be represented by r infinitesimal gener-
ators

67‘8‘2 + T}iay, Z - 1, e ,T. (2.7)

Any ordinary DE of order m with an r-parameter Lie group as symmetry
group has to vanish under all m-th prolongations of the generators (2.7)
and vice versa, i.e. this DE is a solution of the following system of linear
homogeneous first order partial differential equations:

(00 + 1m0y + > CP0,0) 2 =0, i=1,..,r, (2.8)
j=1

where ® = ®(z,y,y/,vy",...). The system (2.8) is called system of differential
invariants, its fundamental solutions are called the differential invariants of
the respective Lie group. Lie has discussed these systems in detail, for a
recent presentation see [10].

The group property guarantees that (2.8) is a complete system for ®
with m + r — 2 solutions. It may be brought into Jacobian normal form,
an analogon of the triangular form for matrices, before attempting to solve
it. The dependencies of the fundamental solutions may then be chosen such
that

CI)1 = @1(£,y, ylv s 7y(7"—1))7
@2 = ®2(x7y7 y/7 cee 7y(7‘))7

cbm—r-l-? = q)m—r+2 (377 Y, ylv s 7y(m))

The invariants are linear in the highest derivative.

11



2.1.4 Differential Invariants of ODEs: An Example

In this subsection we give an example demonstrating the notions introduced
in this section. We consider a group taken from Lie’s listing of all finite
groups of the plane, namely

13 = {04,220, + yd,, 2°0, + xyd, }.

Prolongation of its three generators up to the third order yields the following
system of differential invariants (2.8):

®, =0,
209, + y®, — P, — 3y D, — 5y" Py =0,
2@, + 2y®, — (v'r — y)®y — 3y 2P, — (59" + 3y")®,n = 0.

Using some strategy for solving systems of linear PDEs, for example iterated
narrowing transformations as introduced in the next section, we might arrive
at the following two fundamental solutions:

@1 = y//y37 @2 = y///y5 + 3y//y/y4.
The DEs of order not higher than three that have the respective Lie group
g13 as symmetry group have the general form w(®q, ®5).

2.2 Symmetries of PDEs

The classification problem for partial differential equations has not yet been
dealt with. In this thesis partial differential equations of order two in one
dependent and two independent variables will be treated.

To this end, we have to start with a listing of continuous space groups,
acting on the variables z, y, and z. Finding the differential invariants is
accomplished in analogy to the ordinary case: the group generators have
to be prolongated to order two; the prolongations are then interpreted as
a system of linear PDEs whose fundamental solutions provide a basis of
differential invariants.

The prolongation formulas that have to be applied in the case of three
variables, one of them dependent on the two others, are given in Subsection
2.2.1 (“Extended Infinitesimal Transformations”). For solving systems of

12



linear PDEs we introduce the narrowing method in Subsection 2.2.2 (“Solving
Systems of Linear Homogeneous PDEs:”).

With these techniques we compute the differential invariants listed in
Chapter 4 (“Differential Invariants of Order Two”) from the space groups
listed in Chapter 3 (“The Space Point Groups”). An example demonstrating
this proceeding is presented in Subsection 2.2.3 (“Differential Invariants of
PDEs: An Example”), concluding this section.

2.2.1 Extended Infinitesimal Transformations

In this subsection, we introduce the prolongation formulas that apply to the
case of partial differential equations, i.e. we deal with one dependent vari-
able u and n independent variables z = x1,...,z, (compare [2]). Partial
derivatives Ox;, ...0x;, u are represented by formal variables w;, ;, , called
differential indeterminates. They are symmetric in their indices. The dif-
ferential variables of order k are denoted by u®. We also use the conven-
tion to sum over the range of multiply occurring indices in products, e.g.
(Di&;)u; = Z;L:l(Difj)Uj-

The one-parameter Lie group of transformations in the parameter

xf = Xi(z,use) = 2 + €€,(z,u) + O(e?), (2.9)
u* = U(z,u;e) = u+ en(z,u) + O(e?), (2.10)
i=1,2,...,n, acting on (z,u)-space has as its infinitesimal generator

X = 61(1} u)asz + 77(357 u)au
The k-th extension of (2.9), (2.10), given by

v} = Xi(z, use) = w4+ e&;(x,u) + O(?), (2.11)

uw* = U(z,u;e) = u+en(z,u) + O(?), (2.12)
Uiy i = Uirig..iy (x,u, uV, ... ,u(k);g) (2.13)
= Ujyig...ij, + 5771(fz)21k ($7 U, u(1)7 s :u(k)) + 0(52)7 (214)

wherei =1,2,... ,nand 4 =1,2,... ,nforl=1,2,... ,kwithk=1,2,...,
has as its k-th extended infinitesimal

(5('1:7 u)7 n(1:7 u)? /"](1) (‘/L‘7 u7 u(l))7 ) n(k) (‘/L‘7 u? u(1)7 AR u(k)))7

13



with corresponding k-th extended infinitesimal generator

X = & (2, 1)y, + (@, w)dy + 1" (@, u,uM)0y, + ..
(k)

+ nilig...ik Wiqig... iy )

k = 1,2,...; explicit formulas for the extended infinitesimals {n®)} result
from the following theorem.

Theorem 2 The coefficients of the k-th prolongation X*®) may be obtained
recursively as follows:

0" =D — (Di€;)uy, i=1,2,... n, (2.15)
(k) - D (kil) (leé-))ulllg’tk,1]7 (216)

Nivio...ix ix Mivio. iy

uw=12... . nforl=12,...  kwithk=23,...

Proof. Let
D, X, D X,
A=| z
D, X, D, X,
Then by (2.11) we have
Di(z1+¢€&) Di(za+e&s) -+ Dimn +2§,)
A D2($1'+ =3 D2($2'+ &) D2($n'jL e€y) O(e?) =
Do(w1 +¢€,) Dalws+e€s) .. Daln+E,)
I+eB+O0@),

where [ is the n X n identity matrix and

D&y Di&y -+ Dié,
B_ D2:§1 D2:§2 D2:§n (2.17)
Dn£1 Dn£2 T ann

14



Then

At =T —-eB+0(e%). (2.18)
From
uj Uy DU
I R Y e
ul U, DU

(2.12), (2.13), (2.17) and (2.18) it follows that

uy + enéli uy +eDin
1
Ug + € us +€Dan
PTIR  =r—em) | T v 0,
U + n'y) Un +€Dn1]
and thus
1
77%1; Dln U1
D U
772 = 2/’7 - B . .2 )
leading to (2.15). Then from
u;iz...ik,ll Uiig..in_11 D1\Uijig..i 11
Uisiyig a2 || Uiigeina2 | 41 DyUisiy..ig 12
ufliz...ikfln Ui1i2---ik71n DnUiliQ...ikfl’rL

15



(2.13), (2.14), (2.17) and (2.18) we get

i (k)
Uiyig..ig_ 11 T EMitig i 11

WUirig..ig_12 T E€Nilig ip 12

(k)

uilig...ikfln + gniliz...ik,ln

r (k—-1)
Wirig..ip 11 T 5D177¢112...ik,1

kf
Wiyig. i 12 T €D277@( Y

i ip
[ —eB] teetker oy O(e2),
(k—1)
L Ugyiy..55_1n + 5Dn77i1i2...ik,1
and hence
(k) (k=1)
Nivig..ip_11 DlniliZ-nikfl Wiyin..ip—_11
k D (k-1 S
Niyig.ip_12 | 2N 140 in 1 B Wiyig..ig_12
X = . - : . )
(k) D (k_l) uiliz...ikfln

Nivio..ig_1n
w=12,... ,nforl=1,2,...  k—1withk=23,..., leading to (2.16).

Specializing Theorem 2 to the case of one dependent variable and two
independent variables z; and x5, we have for the extended one-parameter
Lie group of transformations given by

r; = Xi(T1, 22, u;€) = m; + €&;(21, T2, u) + 0(52)7 =12,
u* = U(xy, 2, u;€) = u+ en(zy, 22,u) + O(?),
u; = Ui(21, 2, u, up, ug; €) =

_ (1) 2y s
- Uz + 5771‘ (l‘l,ZEQ,U,Ul,Ug) + 0(6 )7 1= 1727
* . —
Uy = Uij(ﬂfl,xz,lb, Uy, Ug, Uiy, Uiz, U2 €) =
(2
tj

~
<

o ) 2 ..
= Uij T €N (561,562,%%1,’&2,U117U127U22) + 0(5 )7 i,7=1,2,

etc., the following extended infinitesimals:
g,

(1)_ﬁ @_% %S 0¢, 2 Yso
N, ') + [8u 8x1]u 0x, ou (1) ou e



w_ o O 09, 06 0%\ 0%
2 Do + [Gu Gxg]u2 &vgul ou (u2) o, 1
@ _ O°n Py P&, P
M = ox? * 0r10u  Or? Jus ox? ta [Gu Oz,
0&, 8277 8251

B 28_331u12 + [8u2 B 2(9x18u
¢,

o2

() — 2052

s 0% 2 1 2
(u1)” — Ou (u1)"ug — 3==ugun — =gty

ou ou

— 2—2 U1U12,

ou

2 2
778 = 7751)

_ 8277 + 8277 _ 8262 ]U [ 8277 _ 8261
 Ox1015 Ori0u  0x10xs 2 O0xra0u  0x10%9
Lo om 08 0%, 06 9%
0xy Y22 [au oxy 8x2]u12 0z v o0x10u (u2)
[8277 _ 8251 . 8252 8251
ou? 0Oxi0u  Oxx0u 090U
o, o€, o, 2%,

2
B (u1) ug — 2—=Suguyy — 2—==ugung —

ou ou EN

Juy

Jurug — (U1)2

2 2 2 2
(2)2877 [2 877 862 aflu _{_[%_2&]1@2

Ory0u 856%] 2 013 M Oxs

2 2
8 62 ](u2)2_2 ig

0%n
+ ou2 28x28u
0&, %3} %3

2 1
Uy (u2)” — 3="FUglloy — ——UgUgg — 2——Ualig,

ou ou ou

etc. These expressions are the basis for calculating second order prolonga-
tions of possible symmetries for PDEs in one dependent and two independent
variables.
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2.2.2 Solving Systems of Linear Homogeneous PDEs

Let us consider a system of linear homogeneous PDEs of the form

= 0
Y x) e =0, p=1,...,m, (2.19)
v=1 al',/

where x = (z1,... ,x,), and the f* are continuous on some domain G. We

introduce the so called narrowing transformation for solving systems of the
form (2.19) by reducing this problem to solving single linear homogeneous
PDEs, compare [5].

More precisely, assume that we know n — 1 functionally independent so-
lutions W!(x),... ,¥" !(x) for one of the differential equations in (2.19),
w.l.o.g. for the m-th equation. Then we have for an arbitrary continuously
differentiable function ((yi, ... ,y,—1) that

C(UH(x),..., 0" (x))

forms an integral of the m-th equation, too. One may now try to narrow down
the domain of functions ¢ in such a way that ¢(¥!(x),... , ¥""1(x)) also sat-
isfies the remaining differential equations of the system (2.19). For this pur-
pose, we plug z(x) = ((y1, ... ,Yn_1) With y, = U¥(x) into the system (2.19),
thereby trying to get a system of differential equations for ((y1,... ,Yn_1)-
By using a slightly altered approach, the following facts might be proven [5]:

Theorem 3 We assume that (2.19) satisfies the integrability conditions in
G, in particular the coefficients are continuously differentiable. Let ¥'(x),...,
Unl(x) be a fundamental system of twice continuously differentiable func-
tions for the m-th equation with

1 n—1
ot ..., unh 20
8(561, ... ,CCn_l)
By the substitution
o =UNX), . Y = VX)), Y =y (2.20)

the domain G is transformed to a convex domain H (if this is not a priori
the case, then the domain G has to be made smaller appropriately). Finally,
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we assume that in no subdomain of G we have f™ = 0. Then the integrals

of (2.19) are exactly those functions z(x) = (P!, ..., 9" 1) where { runs
through the solutions of the system

—

n—

a

=0, pu=1,....,m—1, 2.91
. 0 (2.21)

9" (x)

b
Il

where the functions
g'uk:szj\ljclzw ﬂ:]-?"'7m_]-;k:17"'7n_17
v=1

depend only on yi, ... ,y,—1 after carrying out substitution (2.20). In addi-
tion, system (2.21) satisfies the integrability conditions.

Further details may be found in [5].

2.2.3 Differential Invariants of PDEs: An Example

We give an example for the computation of a basis of differential invariants
of a given Lie group in three space. We assume that we can solve single linear
PDEs. The group ipyy = {0:, 0y, 0y, x0r — Y0y, YOy, vy + y0y + 0, } under
consideration is taken from the listing in Section 3.4 (“Lie’s Imprimitive
Space Groups”). By prolongation up to order two we get the following system
of differential invariants:

o, =0, &, =0,
@, — 2P, — 2P, — 2244P.,, =0,
@, —y®, — 2, P, +2,P,, +22,P,  — 22,,P.,, =0,
y®, — 2., — 224y, — 200 P.,, =0,
@, +y®, + 0, — 2,9, — 2,9, — 22, P, — 225D, — 22,,P.,, = 0.

These six equations in eight variables allow two fundamental solutions. The
first two equations express that ® does not explicitly depend on z and y. So
we consider the remaining four equations in six variables. To this end, let

[vgo), véo),véo),vio), véo),véo)] = (2, 24, 2y, Zuws Zuys Zyy|. An integral basis for the
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third remaining equation leads to the following narrowing transformation:

o) =, oD = o, oD = 0 oD = )

0) (0 0) (0
o NONCEINONO
4 (0) 9
Uy

0 0 0 0 0) (0) (O
b _ 000 ol P~ 20

Vs 0
(0572

The other three equations are transformed by it into

W, 1 0e

e od) od)
—|—2(v§1)v£1)—l—v§1)vél)) + (1), (1) o, (1), (1) _

Vs ', v v =0,
2 6 Uél) Uél) 2 5 ’Ué(ll) 6 5 Uél)
w0 el 99
T Ty AU Ty T Ty = U
Uy Ug Us
FoLiiS) oo oo™ oot LIS
) — vy u)_zén m — 20" 0 — 20" o
Uy Uy U3 Uy Vs

Now we iterate. An integral basis for the second of the above equations leads
to the narrowing transformation

@ _ @ @ _ @O (2 _ (1)

V" =7V ,Ug” =Uy , U5 =Ug7,

(2) Uél) (2) D)y, (1)y2

Vo' = Ty V4 T Us (vy )"
(U2 )2

The other two equations are transformed by it into

(200?500

2v =0,
3 véz) 4 v§2)
P2 B v§2) od 2 B 512) op 2 o
U§2) v§2) vf)

We iterate again; an integral basis for the first of the above equations leads
to the narrowing transformation

o = 0P o) = 0@ o = o,
3 2 2 2
o) = —oPuP + (052,
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The other equation is transformed by it into

HPB) C® od3) C® Hd3) _
vf’) 2 vég) 3 v§3)

An integral basis for this single linear PDE is

(3) (3)
@&3) — ,053)641)1 7 q)g’) — ’U§3)6401 )
By inverting the above three narrowing transformations we arrive at two
fundamental solutions of the original system of differential invariants. They
are

4z 4z

By = (22, — zwazyy)e”, o= (24922 — 220220y + Zeaz) )€
Then w(®y,Py) = 0 represents the most general PDE of order two in one
dependent and two independent variables which has ip,, as symmetry group.

We show for example that @, is invariant under d,, and y9,. We have that
0, is the infinitesimal generator of the one-parameter transformation group

I=x+a §y=y, Z=2. (2.22)

P = (5g — Zzz 73@)642 = (Z;y - fozyy)e4z = (Ziy - Zzzzyy)€4z = ¢y,

i.e. @; is invariant under (2.22). Note that the third equality sign holds
because of z; = zx% = Zg.
On the other hand, yd, is the infinitesimal generator of the one-parameter

group of transformations

T=x+ay, y=y, z==z. (2.23)
Again, we have
D) = (Z%g — ZaaZgg)e’ = (Z;y — Zazyy ) = (Ziy — Zuayy )€ = Py,

i.e. ®; is invariant under (2.23). For the third equality sign, note that
dx dx

Zzg = Zp— *+

I zyd—y = 2z + azy,
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and hence

2

2 2 _ 2 2
Zgy = (Zoy + azyy)” = 2, + 202592y + 072y,

Yy

Furthermore,
Zoz = (22 + 02y)z = Zaz + 02y

=(z @%—z @)+a(z @%—z @)
— xTx dl‘ Ty dy yr dl‘ vy dy

2
= Zgp T A2y + A2y + a7 2y,

2
= Zgx + 2025y + "2y,
Hence we have

(2y — Zss2yy) = (2ay + 2020y2yy + 0 2,) — (Zza2yy + 2020y 2y + a’2y,)

2
Zpy — ZaxZyy-

2.3 Two Types of Invariants

In this section we introduce the notion of a basis of differential invariants.
In the formulation, we specialize to the order two case with one dependent
variable z and two independent variables x, y. Additionally, the concept of
lower invariants is introduced.

We denote the variables by V' := {z,y, 2} and the differential variables
by W := {2z, 2y, Zzx, Zay, Zyy ;- Their union is denoted by U := V U W. Let
G, be an r-parameter space point transformation group with generators

Xa:Z&w(V)&j, a=1...,r
veV

A function F(U) is an invariant of the two times extended transformation
group with generators

XP=>"6,0V0+> CuV)dy, a=1..r

veV weWw

if and only if it solves the following system of homogeneous linear partial
differential equations:

XDF)=0, a=1,...,r (2.24)
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Hereby, ¢, ,, for w € W are the prolongations of order one and two, respec-
tively. The function F' is called a differential invariant of order two.

We define r, to be the rank of the coefficient matrix of the system (2.24),
ie.

Ty = Ta’nk([goz,vv Ca,w]gez‘i.q.l.),iw)'

The number of variables U involved in (2.24) is eight, so any n := 8 — r,
functionally independent solutions Wy (U),... , ¥, (U) of (2.24) form a basis
of its solution space, i.e. any other solution of (2.24) has the form

F=a0,(U),..., 0,U)).

Since the solutions of (2.24) are by definition the differential invariants,

Uy (U),...,V,(U) are called a basis of differential invariants for G,. In the
following chapters, the totality of differential invariants for a given group will
be represented by a basis of differential invariants for the group.

We will always be able to provide a basis of differential invariant for any
r-parameter group with r < 7. For groups with more than seven parameters,
the rank r, in general is eight, hence the system (2.24) admits only trivial
constant solutions. Only in exceptional cases, the rank r, might be less than
eight, thus allowing to compute an invariant basis. These exceptions are also
documented in this work.

Let us now assume that G, is an r-parameter group with » > 8 and
r. = 8. We might replace the system (2.24) with an equivalent system by
choosing eight equations that leave the new system with full rank, w.l.o.g.
we consider

XPF)=0, a=1,...,8 (2.25)

We can expect to find a non-trivial solution of (2.25), if the determinant of
its quadratic coefficient matrix

d = det([€npr Canlocr 5 )
vanishes. We call any irreducible factor f of d that satisfies
XP(f)=;0, a=1,....8, (2.26)

a lower invariant of G,. The computation proceeds by factoring the deter-
minant d into irreducible factors and applying the test (2.26) for each factor.
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2.4 Basic Notions for Lie Algebras

In this section we introduce several basic notions for Lie algebras of vector
fields, the only type of Lie algebras considered in this work. The notions
introduced for later use are commutator table, derived series, isomorphism
and similarity. Details and the purely algebraic theory of Lie algebras as
introduced by W. Killing may be found in the book by Jacobson [4].

Definition: A Lie algebra of vector fields is a vector space L of operators
X =) ,&(x)0,, endowed with the commutator [-,-] such that
(X, Y] =XY -YXeL, X,Y € L.

Remark: The commutator is bilinear, skew-symmetric and satisfies the Ja-
cobi identity

X, [V, Z]+[Y,[Z X]] + [Z,[X,Y]] =0, X,Y,ZcL.

From now on, we denote a Lie algebra of vector fields by LA for short.

Definition: We say that the finite LA L has dimension r, written dim(L) =
r, if L is the linear span of r linearly independent operators X1, ... , X, with
constant coefficients, written L = {X,... , X,.}. We call X;,..., X, a basis
of L. The matrix

j=1,...,r
(X, X500
is called the commutator table of L w.r.t. Xy,...,X,. The constants c; j in

the relations
[Xi,Xj] :Zci’j’ka7 i, j = 1, , T
k=1

are called structure constants.
The commutator table is skew symmetric and has only zeros in the diag-
onal.

Example: Let L = {X;, X5, X3}, where X; = 2719, for i = 1,2,3. The
commutator table of L is

0 X1 2Xo
- X 0 X3
—2X, X3 O
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Definition: The derived algebra L™ of a LA L is the LA generated by all
commutators of L

LW = [L,L] = {[X,Y]| X,Y € L}.
Derived algebras of higher order are defined recursively by
LO+D = (L®)™), i > 1.

The derived series of a finite LA is the sequence of dimensions of its derived
algebras. We present the derived series in the form of the finite sequence

(dim(L), dim(L®Y), ..., dim(L®)),
where ¢ is the smallest number 0 < ¢ < dim(L) + 1 such that
LO =L vi> 1.

Example: Consider L = ipy3 4 = {0,,0,,y0, + 0.} with dim(L) = 3. By
considering the commutator table of L

0 0 0
0 0 9|,
0 —d, 0

we see that LY = [L,L] = {d,}, and hence dim(L(")) = 1. Since L® =
LM, LY = {}, we have dim(L®) = 0. Hence the derived series is

(dim(L), dim(L®W), dim(L®)) = (3,1, 0).

The group classification of ordinary DEs f(z,y,3/,... ,4"™) = 0 in Sec-
tion 4.1 is based on the enumeration of all possible LAs (infinitesimal groups
in Lie’s terminology) in the (z,y)-plane. In the enumeration given in Section
3.2, the algebras are maximally simplified by a proper choice of bases and by
means of a suitable change of variables. Associated with these two types of
simplifying transformations are two distinctly different notions: isomorphic
and similar LAs.

Definition (Isomorphic LAs) Let L and K be two LAs, and let dim(L) =
dim(K). A linear one-to-one map f of L onto K is called an isomorphism if
it preserves the commutation relation, i.e. if

fIX Y] =[f(X), f(Y), X YeL
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If the LAs L and K can be related by an isomorphism, they are termed
isomorphic LAs.

Theorem Two finite-dimensional LAs are isomorphic if and only if one can
choose bases for the algebras such that the algebras have, in these bases,
equal structure constants, i.e. the same table of commutators.

Definition (Similarity) The LAs of vector fields L and L are similar if one is
obtained from the other by a change of variables. It means that the operators
X =) &(x)0,, and X =Y &;(%)0z, of L and L are related by

=), &= X@) e, i=1.m,

where 77!(z) denotes the inverse of the change of variables Z(z).

Example: Let X = 9, be the operator of translation in y in the (z,y)-
plane. We compute the transformed operator X under the change of variables
r=x+y, y = x—y. Without having to consider the inverse variable change

r=(T+9)/2,y=(T—7)/2 we get
£o = 0y(@)|smz1 =1, & = 0y(Y)|sezr = —1, ie. X =05 — 9.

Remark In order that two LAs with the same dimension and the same
number of variables are similar, it is necessary that they are isomorphic.
The converse is not true.

It is precisely similarity that is of use in group analysis as a criterion of re-
ducibility of one DE to another by a suitable change of variables. Nonetheless,
establishing isomorphism is important as a first step for the determination of
similarity. We state a theorem about deciding similarity for computational
purposes; we introduce the notion of connectedness first.

Definition (Connectedness) Differential operators Xy, ... , X, are said to be
connected if there exist functions \;(z), not all zero, such that

this being satisfied as an operator identity in a neighborhood of a generic z.
If the relation (2.27) implies \; = ... = A\, = 0, we say that the operators
Xi,..., X, are unconnected.

Theorem (Sirnilari_ty of gr(llps) In order that two groups X1, ..., X, in the
(z,y, z)-space and X1, ..., X, in the (T, 7, Z)-space, respectively, are similar,
the following conditions are necessary and sufficient.
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1. The two groups must have the same structure, i.e. if the relations
(Xi, X;) = 1_; cijuXy, are valid, it must be possible to choose suitable

linear combinations X; = Z;Zl q/ijyj with constants v,; such that the

?i satisfy the relations (Yi,yj) = > cijk?k, i.e. the structure
constants have the same values as for the Xj;.

2. If Xj,..., X, are unconnected whereas X,; = > 7| ®;(,y,2)Xj,
the corresponding generators X1, ... , X, are also unconnected, where-
as the relations X,.; = Z;L:ﬁij (T,7,%Z)X; are valid such that the
equations ®;;(r,y,2) = ®;;(T,7,%) are consistent. In particular, they
should not generate a relation among x, y and z on the one hand, or
7, y and Z on the other.

The proof of this theorem may be found in [3].

2.5 Systems of Imprimitivity

In this section we introduce systems of imprimitivity. Lie used their number
and type to obtain a classification of groups allowed by various manifolds
[7, 8]. The presentation of plane and space groups in the following chapters
is organized that way. Transitivity and primitivity are notions from substi-
tution theory; Lie extended them to transformation groups. Details may be
found in [7, 10].

We introduce the notion of transitivity first.

Definition (Transitive and Intransitive Groups) Let D be a domain in R™.
An r-parameter transformation group T, : D — D with parameter space
P C R" is called transitive iff

Vz,ye€ D Jaec P:T,(%) =g. (2.28)

If (2.28) is not satisfied, we call T' intransitive.

Example: The translation group T(a, ap)(z1,%2) = (21 + a1,22 + ag) of
the plane is obviously transitive. For every choice of two points (71, Z2),
(%1,72) we have T(g,_z, g,—z,)(Z1,T2) = (¥1,¥2). The transformation group
Tlay,a0)(T1,2) = (21,22 + a1x1 + az) is obviously intransitive. For every
choice of two points (Z1,Z2), (¥1,%2) with Z; # g1, there is no choice of
parameters (a1, az) such that 7{z, 5,y maps the first point into the latter.
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If the infinitesimal generators of the transformation group are known, the
following criterion may be used to decide transitivity.

Theorem: A group of the n-dimensional space with r infinitesimal genera-
tors X = > 0" &(2)0,,, k= 1,... 7, is transitive iff

i=1,...,r

rank([{k’i} k:l,...,n) =n. (2.29)

Hereby, rank denotes the maximal number of unconnected lines of the ma-
trix.

Example: We consider pg = {0,, 0y, 0,, 20y — Y0y, 20, — 20,,y0, — 20, }, a
space group from Section 3.3 (“The Primitive Space Groups”). By applying
criterion (2.29)

100 »y 0 —z
rank 01 0 —x =z 0 =3
001 0 —y =z

we conclude that pg is transitive. As a second example, we consider the
space group ip; = {0y, 8y, 0y, YOy, 29, Yoy, ¥*0, + xyd,, y*d, + xyd, } from
Section 3.4 (“The Imprimitive Space Groups”). By applying criterion (2.29)

2 T

10 zy 00 z¢ 2y
rank 0100z vy zy v =2
000O0OO0OO0OTO0O O

we conclude that ip; is intransitive.

Prior to introducing imprimitive groups, we introduce the notion of an
invariant manifold.

Definition (Invariant Manifold) A manifold M C R" is called invariant
under the transformation 7" : R” — R™ iff T'(M) = M. It is invariant under
the transformation group 7' iff it is invariant under all transformations of 7'

Definition (Primitive and Imprimitive Groups) A transitive group of the
n-dimensional space is called imprimitive iff it determines at least one parti-
tion of the space into (n — ¢)-parameter families of invariant g-dimensional
manifolds for some ¢ with 1 < ¢ < n — 1. If no such partition exists, the
group is called intransitive.
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Example: The translation group of the plane considered in the example
above T{4, 40) (71, Z2) = (@1 + a1, T2+ ay) is transitive and transforms any line
Ty = o+ into Zo = aZ;+ 4 with the same value of .. For fixed a, the one-
parameter family of one-dimensional invariant manifolds 7 = {Mg | 5 € R},
where Mg = {(x1,22) | x2 = axy + [}, is a partition of the plane, hence we
have that T" is imprimitive.
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Chapter 3

The Space Point Groups

Lie used the term type of a point group for the full equivalence class of the
respective group w.r.t. point transformations. Therefore the type is com-
pletely determined by providing a canonical representative for the class. Lie
gave a classification of the groups of the plane in [8] by providing a canonical
representative for each type.

In this chapter we list all finite continuous space groups. After introducing
some notation in the first section, Lie’s classification of the groups of the plane
is discussed in Section 3.2. The following three sections, Section 3.3-3.5,
present listings of the groups of the 3-dimensional space. They are divided
into three categories according to their systems of imprimitivity. These three
categories are not claimed to be disjoint, but they represent a full list of
groups. While the groups in section 3.5 are extracted from a paper by Ugo
Amaldi [1] who completed Lie’s listing, the remaining sections of this chapter
can be extracted from [7, 8.

This listing of space groups is the basis for the classification problem for
PDEs in one dependent and two independent variables. We also indicate
the group size for any listed group; the only exceptions are groups whose
number of generators can be seen immediately, and the Amaldi groups of
type B, which have not been processed within the frame of this work.

3.1 Some Notation

In this subsection we introduce some notation used to simplify the presenta-
tion of space groups.
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Definition: For an integer variable v and an integer constant or variable n
we write v — n forv=1,... ,n. We write v —=* n forv=0,... ,n.

Definition: For a term ¢, we denote by ti_, the list

tlv=1,tlv=1+1],... ,tlv =ul.
Similarly tzj:: Z denotes
t=Lo=1],...,tlv=0Lv=4a,... ,tfv=u,0=1],... ,tfv =u,v = 1.

k—l

Also several multi-parameter ranges are allowed, for example t7= etc.

Example:

20, +ix"10,):_, = 0,,20, + 0,, ... ,x°0, + sx*10,.
Y i=0 y) L0y Y

i, j\J—n __ n .2 2, n m m,n
('y) o) =y, ... ,xy" 2%y, ... %y ooy, Ty

Definition: For a truth value formula b, we denote by [b] the truth value of
b w.r.t. its actual arguments.

Example:

[i>t]=1if i >t, [i > t] = 0 otherwise.

Definition: For a generator g = £,0,+£,0,+&30, and v € {z, y, 2} we denote
by g, the generator received by applying the operator 9, to the coefficients
of g.

Example: Let g := 2°0, + szyd, + [(s — 2)zx + sy]9,. Then

Gz = 220, + sy0y + (s — 2)20,.

3.2 Lie’s Classification of the Groups of the
Plane

The importance of the plane groups originates from the fact that any group
of point symmetries of an ODE must be similar to one of those finite groups
of point transformations. Furthermore, the classification of space groups is
based on a suitable extension of the groups of the plane. Any of the groups
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listed below is a representative of a full equivalence class that may be obtained
by applying an arbitrary point transformation. Actually, not all of them do
occur as symmetry group of an ODE of given order, compare Chapter 4.1
(“Invariants of Lie’s Plane Groups”).

The listing of plane groups given below is organized by their systems of
imprimitivity. Tt is taken from [10] and follows closely the one given by Lie
[8] with some minor corrections included.

Primitive Groups

g1 : {0, Y0y, 0y, 0y, x0y — YOy }.

g2 : {0y, 0y, 20y, YO, 0y, YOy }.

g3 : {0s, 0y, 20y, Y0y, Oy, YOy, 220y + xyd,, TyO, + Y0y }.
Two Systems of Imprimitivity z — const. and y = const.
g1: {0y, y0,}.

85+ {0z, 9y, YO, }-

86 : {0z, Oy, Y0y, 20, }.

g7 : {0, 0y, x0; + cyo, }, ¢ ¢ {0, 1}.

gs : {0y, 40y, y°0, }.

8 : {0, 0y, Y0y, y*0, }.

g10 : {0; + 0y, 20, + YOy, 220, + Y20, }.

g1 : {0, 0y, Y0y, 20,,y?0, }.

g12 : {0y, 0y, Y0y, T0r, Y20y, 220, }.

System of Imprimitivity x = const.

g13 : {0x, 220, + y0,, 20, + xyd,}.
814 : {yayv a:c: xaz: x2az + Iyay}
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g5 : {0y, 20y, ®1(2)0y, ..., D.(x)0,}, size: r +2 > 2.
g6 : {0y, 20y, ®1(2)0y, ... , D.(2)0y,ydy}, size: r +3 > 3.

g7 : {€%0,, xe™ 0, ... ,xPre™ 0y, 0, },

[>1,a1(a; — 1) =0, size: 1—|—l—1—2§€:1pk > 3.

g1s : {0, xe™ 0, ... ,xPre™ 0y, y0,, 0},
1> 1, (a1,as) = (0,1), size: 2+ 1+ S, pp > 4.

g9 : {0,,20,,...,2" 1, Oy, x0; + cyd,}, size: r +2 > 4.
g2 : {0y, 20,,...,2" 0y, 0y, 20y + (ry + a")0, }, size: r +2 > 3.
g : {0,,20,,...,2"0,,yd,, Oy, x0, }, size: r + 3 > 5.

g2 : {0,,20,,...,2" 0y, Oy, 200, + (r — 1)ydy, °0, + (r — 1)zyd, },
size: r +3 > b.

g2s : {0y, 20,,... ,2"710,,y0,, O, x0y, ¥*0, + (r — 1)zyd, }, size: r +4 > 6.

System of Imprimitivity y = ax + const.

824 : {0y, 0y, 20, + Y0, }.

go5 - {8y,$8z + yﬁy}

826 : {0z, 0,}-
System of Imprimitivity y = ax + const.
g7 - {0y}

3.3 The Primitive Space Groups

Lie gave a partial classification of the point groups of the three-dimensional
space. Among them are all primitive space groups. The listing given below
is taken from Chapter 7 in [8] (“Bestimmung aller primitiven Gruppen des
dreifach ausgedehnten Raumes”). Let G := 0,, 0, 0..
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p1: {G’ (l‘av, Y0, Zav)v:w,y,zv (u2au +uvd, + Uwaw){u,v,w}:{w,y,z}}a size: 15.
P2 {G, (20y, Y0y, 20y )=y y.. }, Size: 12.
bs3: {G7 (Can - Uay)’l):y,27 ('Uau, w@u){u’v’w}:{z,y’z}h size: 11.

Pa : {0:, 20y, yOu, 20y — YOy, 0y + YOy + 220, 2(20; + YOy + 20.), 9, 9-, 9, §= }
g = 20, — y(x0, + Y0, + 20,), g := 20, + x(x0, + y0, + 20,), size: 10.

Ps  {G, (U0, — v0u) (o)~ (z.).(.2),(00) }» Size: 6.
P : {0, +y0, + 20,} U ps, size: 7.

P7: {(au+vaz){u,v}:{x,y}7 (Uav+zaz)v:z,ya (u28u+(xy_Z)av+uzaz){u,v}:{x,y}}7
size: 6.

Ps 1 {G, (U0, —V0u) (u,0)=(2,9),(2,2),(,2)» 9> (2ug — S(2, Y, 2)Op) (w,0) =(,9), (2,2, (%) }
g :=x0y +y0, + 20,, S(x,y,2) := x* + y* + 22, size: 10.

3.4 Lie’s Imprimitive Space Groups

In his partial classification of the point groups of the three-dimensional space,
Lie divided the imprimitive space groups into three categories, according
to their systems of imprimitivity. He computed the groups of the first two
categories explicitly; we present them in this section. They are extracted from
Chapter 8 in [8] (“Bestimmung gewisser imprimitiver Gruppen des dreifach
ausgedehnten Raumes”).

System of Imprimitivity ¢(z,y, z) = const.

ipy : {0y, Oy, (U0y) (uw)efzyy2 (W20 + TYOy) fuvi={a,y} }» Size: 8.

ipy : {y0y, 20y, ©0, — Y0y, (Zi(2)0,); ="}, 1 > 1, Z1 = 1, size: 21 + 3.
ip; : {20, + y0,} Uip,, size: 2] + 3.

ip, : {0.} Uip,, size: 9.

ips : {0, 20y, YOy, x0y — Y0y, (2'e*0,); 3" fLh=1,m >0,

k—h, i—*my
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A pairwise disjoint integers, w.l.o.g. A\; = 0, size: 4 + 2h + 2 Zzzl my.

ipg : {20, +yd,} Uips, size: 5+ 20+ 230 my.
ip; : {20.} Uip,, size: 10.
ipg : {0,, 20y, YOy, 0y — Y0y, 20, + a(x0y + yd,), (2'0,); -2}, size: 2m + 7.
ipg : {20y, YO, 20y — yOy, 0y + Y0y, (2°0,)1_y, (2'0y); 20}, size: 2m + 8.
ipyo : {#%0.} Uip;, size: 11.
ipy; 1 {0, 20y, Y0y, 20, — Y3y, 9, 9=, (2°9,); =50},

g := 220, + mz(z0, + yd,), size: 2m + 8.
ipyy : {220, + mz(20, + yd,) } Uipy, size: 2m + 9.
Two System of Imprimitivity ¢(z,y, z) = const., ¥(x,y, z) = const.
ipy3 : {0s, 0y, 20, + 0,20, — yd, — 220,,y0, — 2%0,}.
ipyy : {0z, Oy, 20y, YOr, 0y — YOy } = (iPy)i=1-
ipys : {0} Uipyy = (ips)ji ™, size: 6.
ipyg : {0z, O, (27710, + %x’ﬁz)?:l, 0y — YOy, YOy + %yQGZ}.
ipy;: {(xpy"az)ﬂpﬁ*h} Uipyy, (iP17)h=0 = Py, size: h + 6.
ipg : {20.} Uip,,, (ip1g)h=0 = (iPg)a=m=0, size: h + 7.
ipyg : {(2'0.)7_0} Uip14 = (iP11)m=o0, size: 8.
ipy : {20, +y0,} Uip,s, size: 6.
ipy;, : {20, +y0,} Uipy, = (ips)i=1, size: 6.
ipyy : {20, +y0, + 0.} Uip,,, size: 6.
ipys : {20, + Y0y, + a20,} Uip,,, size: h +7,

(iP23)a=h=0 = (ip6>7}7::11:)\1:07 (ipz3)2;8 = (ipg)m=0-
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ipyy : {0y + Y0, + 220,} U ipyg, size: 7.

ipys : {20, + y0,} Uipyg, (iPas)n—0 = iPgm—o, Size: h + 8.

ipyg : {20, + y0,} Uipyg = (ip19)m=o, size: 9.

ipyr : {(w?0, + 2yd, + 2=y — 22)0.) {uw)=(wy} } U iPyo, size: 8.
ipyg 1 {(W?0y + 2Y0y) fuv}={wy) } U iPsy, size: 8.

ipyg : {(4?0y + 2y0y + 3u0.) fuw}={ay} } UiPsy = ipy, size: 8.

ips 1 {(u?0y + 2y0y + huzd.) {uvi={z.y} } U (iP23)a=2n/3,

ipg; : {20., (U0 + 2Yy0y + uz0.) fuvi={ay}} U iPyy, size: 9.

ip33 : {('LL28U + CCyav){u,v}:{z,y}} ) ip26 = iplo, size: 11.

3.5 Amaldis Imprimitive Space Groups

Lie gave in his book [8] not all imprimitive space groups explicitly. He did so
for the groups of categories I and II that are listed in the previous Section 3.4.
He only gave two methods on how to compute the groups of category II1. They
have two systems of imprimitivity of the form

o(z,y,z) = const., (z,y, z) = const. (3.1)
In addition, these systems can be written as a system of surfaces of the form

Qp(z,y, 2),¥(x,y, 2)) = const. (3.2)

This category of groups is actually much larger than the first two categories.
It was the Italian mathematician Ugo Amaldi who explicitly computed the
representatives by the first method proposed by Lie [1]. To this end, let us
consider an m-parameter space group G,,, which is doubly imprimitive in the
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above sense. First we apply a point transformation to G,, that transforms
the invariant congruence (3.1) into the star

x = const., y = const., (3.3)

the set of lines parallel to the z-axis. Furthermore, it should transform the
system of surfaces (3.2) into

T = const.,

the bundle of planes normal to the z-axis. This amounts to saying that the
generators X; of GG, now have the following form:

X; = &(2)0, + (2, y)0, + (2,9, 2)0,, 1=1,...,m.
Their projections
X7 = (@), + (@ y)dy,  i=1,..m,

which are not necessarily linear independent, form an imprimitive group in
two variables of dimension [ < m. Since the groups of the plane are already
classified (compare Section 3.2), we assume w.l.o.g. that the projected group
of G,, represents one of those known forms. Hence the generators X; of G,
have the following form:

Xi = gz($)aw + 77@(%9)8@; + Ci(ajvy? Z>8Z7 1= 1, e ,l,
Xi: Qﬁi(x,y,Z)az, ]:1,,m—l

The ¢,(x,y, 2)0, generate a subgroup of G,,, the biggest subgroup that leaves
all lines of the form (3.3) invariant. Each single line allows one of four cases,
namely the identity transformation, or a group with one, two, or three pa-
rameters (compare [8], page 6). As a consequence, the subgroup generated
by the ¢,(z,y, 2)0, is equivalent to the identity transformation, or to a sub-

group with generators of one of the following three forms (compare [8], page
155):

gpj(a;y)azﬂ j: 1727”' 7m_l7 or
8Z7g0j(x7y)aza j:1,2,...,m—l—1, or
20,  j=0,1,2.
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Corresponding to those four cases, we get the following possible forms for
G

fi(x>a:c+ni(x>y)ay+Ci(xvyv Z)az (Z = 1727"' J)v ([BD
(

w;(z,9)0. (1=1,2,... ,h>0).
§i(x)8z—|—77i(sc,y)(9y+§i(cc,y, Z)az 1= 1727"’ 71)7 ([C])
Zaz: Soy(xvy>az (] = 1727 te 7h > O)

#9,  (j=0,1,2).

Conclusion Starting with the imprimitive groups of the plane, one has
to consider each of the cases [A], [B], [C] and [D] in order to obtain the
corresponding groups of the space. In the cases [A] and [D], this reduces to
determining the functions (,(x,y, z) such that all commutators

X X; - X;X;
belong to the linear hull of the respective generators.

Amaldi also performed further precalculations revealing the structure of
the unknown functions more closely.

Category B: For a group of type [B], we can choose
Ci(w,y,2) = Ci,l(x7y)z + Ci,z(% Y), i=1,2,...,1
Category C: For a group of type [C], we can choose
Cila,y, 2) = (x,9)z, 1=1,2,... 1.
Category D: For a group of type [D], we can choose

Ci(1:7yvz):()7 2217277l
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Concerning the functions ¢, (z,y) that occur in types [B] and [C], Amaldi
derived some theorems on differential systems with constant coefficients for
later use, compare pages 279-282 in [1].

Theorem If an h-dimensional linear real function space S, of functions of
x and y is transformed into itself by the operations d,, 9y, it is possible to
choose a fundamental basis in S;,, made up of a finite number of groups of
functions of the form

b
ey g n=0,...,7r m=0,... , hh+...+h_pi1.

Two groups are distinguished by at least one of the constants a, b, and in
general also by the maximal values of the exponents m, n.

Corollary If an h-dimensional linear real function space Sj of functions of
z and y is transformed into itself by the operations x0,, y9,, it is possible to
choose a fundamental basis in S;,, made up of a finite number of groups of
functions of the form

2%y’ log 2™ log y", n=20,...,r, m=0,..., h+...+h_pni1.

Two groups are distinguished by at least one of the constants a, b, which
are roots of the respective fundamental equations of x0,, y0, in S, and in
general also by the maximal values of the exponents m, n.

3.5.1 Amaldis Imprimitive Plane Groups

Amaldis listing of the imprimitive groups of the plane does not strictly follow
Lie’s classification given in Section 3.2. Not considering the structure of
invariant fibers of curves, any parameter is given free variability. By this,
the number of groups is reduced to the minimum. In addition, the order
in which the groups are listed has been chosen to shorten the calculations,
which are inevitably long and hard anyway. Where it was possible, any group
G, is followed by the minimal group G;; in which it is contained. This has
the following advantage: suppose the corresponding space groups for G, are
already known. If

Xi,..., X,
are the generators that must be added to GG; to obtain GG;.4, then by adding
X; + ((z,y,2)0,, i=1,2,...,t
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to the corresponding and already calculated space groups of G}, we reduce
the calculations for G;,; to the calculations of the remaining functions (.
Following these considerations, the following listing of groups is obtained.

ip, :

ipy

ips :
ip, :
ip;s :

ipg :

ip;

ipg :

ipy :

1P1o

1P1;

ipyy
: {(9y,y(9y,8z}.
ipyy :

('0y);
H(Y'0y)iz0, 0=}
('0,);

P13

1P5

1Pg6 -

1Py7 -

1P1s

1Pqg

(7€)% 9, ay € {0,1), 1+ Y8 > 2, size: 1+1+ Y, s

1P9og

1P2;

:{x’y

{

0,0, 0, —i—cya} s> 1, size: s+ 3.

0,02,9, 9z }y § > 1, g := 220, + sxyd,, size: s+ 4.

{(a*
{
{y0y, (20, +[i = Q]xyay)?:o}-

(2°0y);
(2'0y);
{(2%0,)i=5, O, 20, + (sy + )0y}, s > 1, size: s+ 2.
(20y)5_ 0, YOy, O, 20 }, 8 > 1, size: s + 4.

(2°0y);

0, Y0y, (20, + [1 = 2]s2yd,)7 o}, s > 1, size: s+5.

: {aﬂcvgv gw}: g = x28x + xyﬁy.

{(@'0z +y0y)io}-
{0y}

{0y, yo,}.
{0, 0y}

{0y, 20, + yO,}.

{ o}

{ =0 8x7$a }
{(y'0y)ic0, (2'02)i0 }-

{0y, 20y, (Vi(2)0y)i_,}, s > 0, size: s+ 2.

{0y, 0y, (¥i(x)0y)i_1, Y0y}, s > 0, size: s+ 3.

i—l

{(27e%79,)20% My, 0,1, 1> 0, 143 s > 0, size: 241+ 30, s

i—*l, j—*s; 7y
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3.5.2 Example Calculations

We demonstrate the calculation of the space groups of type [A] corresponding
to ip;, denoted by ip; 4. This space group will be of the form

{0, + @00, 20y + 10,, ... ,x°0y + a;50,, 0r + [0y, 0y + cyO, + (10,1},

where o; = a;(2,9, 2), 8; = B;(z,y,2) fori =0,... ,s and j = 0,1. Consid-
ering the commutator

8&0 aOz()
+ 60 az -

[0y + 540z, 0y + ap0;] = ( ppe

we conclude that

dag o Doy Py _ OBy

ox 0z dy o 0z

This is the condition such that the two linear equations

o 0o
oy 9z Ox 0z
form a complete system; the common solution ( is guaranteed to depend on
z (compare [7], page 91ff). Choosing this function ¢ as new z, the generators

Oy + 00z, 0y + a0, are reduced to 0., 9, respectively, while the remaining
generators do not change their nature. So we assume ip; 4 to be of the form

+ By 0

{0y, 20y + 010, ... ,2°0y + @s0;, Oy, £, + cyOy + (10, }.

By considering the commutators

8,

[0, 20y + cy0y + ,0.] = 0, + o 0.,
0

[@@@+@@+m@hw@+é%@

we conclude that 8, = ,(z). From
[0y, x'0y + ;0] = ix 1(9y + %82, [0y, 2'0y + 0,;0,] = o 0,
we conclude that
Oa; .
a; = oz, 2), 8_(:); = i1, i=1,...,s.
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Let now t < s be such that g = a1 = ... = o417 = 0, oy # 0. Then
o = oy(z) and we can reduce a4 to 1 by choosing [ i—j as new z. From
9B

182

[2'0, + 0., 20, + cyd, + 3,0.] = (c — t)z*d, + P

we have that 3, = (¢ — t)z + b;.

Case ¢ # t: we choose z + 2L as new z and thereby reduce b; to 0. As

c—t
above, by considering

(20, + ;0,, 10, + cyd, + (c —t)20,]

Cigo;i = (i — t)a;. Together with %% = jo;_; this implies

we conclude that = I

iza;_1 = (i — t)a;. Hence we get

ipy 4 : {0,,20,, ... ,2'719,,2'9, + (})2°0., 219, + (") z'0,,.. .,
z*0y + (i)xs_taz, Oz, ©Oy + cyOy + (¢ — t)20,}, 1 <t < s.

Case ¢ = t: in this case we have 3; = const., and hence

ip} 4 : {0,,20,,... ,2'719,,2'9, + (})2°0., 219, + (") z'0.,.. .,
xsay + (i)x87taz7 ax: xa:l) + tyay + Cag}, 1<t <s.

As an additional example we consider the calculation of ip; 4, a space
group where Amaldis calculation was slightly erroneous. First of all we note
that ip, and ip, differ only by the additional generator x20, + szyd,:

ipy[s| = {0y, 20, ... ,x°0,,y0y, Oy, 20, },
ips[s] = {8,,20,, ... ,7°0,,y0,, O, 0y, ¥*0, + sxyd,}.

Furthermore, we suppose to already know the corresponding space group to
ip, of type [A]:

t t+1
ipy 4ls,t] = {0y, 20,, ... , 2719, 210, + (t) 2°0,, v, + ( —it_ )xlﬁz,

S

oo, 200, F (t) 710, 0,, y0y + 20,10, — t20,}.
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Following the comment in the previous subsection, our ansatz for ip; is of
the form

ip5 als,t] = {0y, 20, . .. ,2'719,, 210, + <z> 2°0,, v, + <t —it_ 1) z'0,,. ..
z°0, + (i) 2°719,, 0y, YO, + 20,, 20, — t20,, 10, + sxyd, + ((z,y, 2)d.}.

By considering
[0,, 220, + sxyd, + ((z,y,2)0,] = sx0, + ¢, 0-

we conclude that the cases ¢ > 1 are not possible (_this point was overlooked
by Amaldi) and that ¢, = s, i.e. {(z,y,2) = sy + ((7, z). By considering

[0, 220, + sxyd, + (sy + ((z, 2))0,] = 220, + syd, + (,0,

we conclude that ¢, = (s — 2)z, i.e. {(z,2) = (s — 2)zz + ((z). Finally, by
considering

(20, + 0., 220, + szyd, + (sy + (s — 2)zz + ((2))0.] =
(s — 1)2%0, + 2(s — 1)z0, + (,0.

we conclude that ZZ =0, i.e. Z(z) =C, wlo.g. Z(Z) — 0. Hence we arrive at
ip5,A[S] = {8157 a?J’ xay + 827 128?; + 21'82:7 C. 737581; + SCE’Silaz?

20, — 20,,y0, + 20,,2°0, + sxyd, + (sy + (s — 2)22)d.}.

3.5.3 Amaldis Groups of Type A

We recall that the n-th Amaldi space group(s) of type A, denoted by ip,, 4
with optional additional indices, is/are represented by generators of the form

()0 + n;(z,9)0, + (;(z,y,2)0;, i=1,2,....,1,
where
gz(x)aw—{'nz(aj?y)ayu 1= 1727"' 7l

are the generators of the n-th Amaldi plane group, as listed in Section 3.5.1
(“Amaldis Imprimitive Plane Groups”).
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iPi,A {(20, + [1 > 1] (i)x"*tﬁz)fzo, Op, ©0y + cy0y + (¢ — )20, },
0<t—1<s,size: s+ 3.

ipi 4 ¢ {(2'0, + [i > {] () 2i40.):_g, Ou, 20y + tyd, + 0.},
0<t—1<s,size: s+ 3.

ip%,A : {(xzay + ixi_laz)f:07817g7gz}a S Z 07
g =220, + szyd, + [(s — 2)zx + sy|0,, size: s +4.

ipg,A : {(xiay)f:max?g?gz}, S 2 17
g := 2?0, + szyd, + z(x + ¢2?)0,, size: s+ 4.

ipgvA : {02, 0y, 0,292, 7, 300}, 9 1= 2°0,+20,, § := 220,423y +2(cx+Y)0..

ipé’A {(2'0,+[i > ] (i)xi_tﬁz)f;(},&E,:cax—l—(sy—ir:cs)ay—l—[(s—t)z—l— (3)z*710.},
1 <t<s,size: s+ 2.

ipg’A {(2%0,)525, O, 20y + (sy + 2°)0, + 0.}, s > 1, size: s+ 2.

ipy 4 {(2'0y + [i > 1] (i)xi’tﬁz)fzo, Oz, YOy + 20,, 0, — t20,},
0<t—1<s,size: s+ 4.

ips 4 : {0, (2'0y +i2"710,)}_y, 20, — 20,90, + 20;,9}, s > 0,
g := 2?0, + szydy, + (sy + (s — 2)z2)0,, size: s+ 5.

ipg 4 : {0z,90y, g, %(Qz —yo,)}, g:= 220, + zy0, — 2axz0,, a € {0,1}.
ip7 4 {029, 92}, 9 := %0, + 2Y0, + y?0..

ipg 4 - {(2°0: + 40, + [i = 2]e(y — 2)0:)7_o}-

ipg 4 : {0y}

ipyo4 : {0k, 90, + 0.}

iPn,A : {axvay}'

ip1g 4 1 {0y, 20, + YO, + cO.}.

ip13.4 1 {0k, 0y, y0y + 0.}
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i1t {0y, 9,595}, 9 7= y20, + (22y + 22°)0..

Dty 4 {0y 9,500}, 9 7= Y20y + (22y + ¢2°)d..

iP15.4 {02, 0y, 9. 50y}, 9 = Y20y + (2y + c2)20..

iPi6. 4 {00, 0y ©0s, g, 29y}, 9 = y?0y + (2y + c2)20..

ipf&A {0, 0y, 205 + ¢20., 9,39y}, 9 1= Yy?0y + 22y0..

ipi’&A : {0n, 0y, 20y + 20., 9, 39y}, g = Y20,

ip17 .4+ {0y, (270:)70, 9 59w}, 9 = ¥20y + (2y + c2)20..

iprA {02, 0y, 9,29y, 7, 302}, 9 := y*0y + 2290, § := 2°0, + 2c2x0,.

ipl&A {0y, 20y, (Vi(2)0y + [1 > t]p;(7)0.)i, },
0, =1,0<t—-1<s, size: s+ 2.

ipl9,A : {yay + Zﬁz} U ipl&A, size: s+ 3.

ipgg 4 {0r, (€™ (270 + 73 ;j0.))12, "}, mig = Db Vir ()27 K,
w.lo.g. (710,711) = (0,1), size: 14+q+>°7 s > 2.
size: 3+h+3+2?:13i > 3.

3.5.4 Amaldis Groups of Type B

We repeat that the n-th Amaldi space group(s) of type B, denoted by ip,, 5
with optional additional indices, is/are represented by generators of the form

gz(aj)afb—i_nz(x:y)ay+Cz(aj7y7z)az7 Z: 1727'” 7l7
@j(ajvy)azu j:1727"'7h>07

where



are the generators of the n-th Amaldi plane group, as listed in Section 3.5.1
(“Amaldis Imprimitive Plane Groups”). Furthermore, ,(x,y, z) can be cho-
sen as

(i(x7y7 Z) = Ci,l(x7y)z + Ci,Z(xv y)7 1= 17 27 s 7l'

The Amaldi groups of type B have not been processed within the frame of
this work. For matter of completeness, the have been extracted from [1] and
listed here anyway. Features like the group size are not provided. For any
further details, we refer to [1].

For integers k,l, m with k > m, we define (k,l,m) := k(mt1)!

N(m+1+k—1)!

ip} 5 {0s, (280, + [k > tla (k, t,m;) a™Hh—tHlyn=ig,)s  (a™y"9,) TS0,
20y + Cyay + 0(2)82}7
1<t<s+1,mj >m;+sforj#i, mip >m;+2s—t,
C(z):=(m;+1+c(n—i+1)—1)z

ipiB :{0s, (2%, + [k > tla (k, t, my) 2™ T )s (xmy”’jﬁz);ffzj,
x0, + cyo, + C(2)0,},
C(z) == (m, +c—t+1)z; mj > m; +s.

ipi”B {0, (2°0,)5_y, 20y + cydy + ¢120;, (xmy"’jaz)?f*? ,
mj41 Z m; + S; c1 € {O, 1}

ip;B : {0, Or, 0y, 20, 220, + cx0,, x0y + Yy, ¥20; + 2xy0y, + (cy + c12)0s },
cor ¢ €40,1}.

ipng {0, (£°0,)5_0, 9, G, (2°0,)i_o }, g := 220, + sxY0, + s320,.
ipg’B : {0, (2°0,)5_y, 220, + sy0y, %0y + sxyd, + cxd, }, c € {0,1}, s # 2.

ipng {0, (Cﬁiay)f:o,g,gm, (azmy”*j);fffgwsj.}’

g := 2?0, + sxyd, + (mo + sn)x20,.

ip 1 {0s, (280, + [k > tla (k, t,my) amh=tyn =g, )l (amyn=10.)] 0,
x0y + (sy + 2°)0, + C(x,y,2)0,},
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mjy1 > mj+sforj#myq >mi+2s—1t,1<t<s,
Clz,y,2) :==[m; + 1+ s(n—i+1) —tlz + (s, t,my;) gmiTs—trlyn—t,

m<m;

1p3 5 {0s, (7°0,)i2), 20, + (sy + 2°)0, + c20., (xmy"_jﬁz)j:,*n ,
mji1 > m; +s; c € {0,1}.

ipiB : (2F0, + [k > t]a(k) mith=ttlyn=ig ye 0, y0, + C(x, 2)0,, Os,
20, + O(x, 2)0,, (x™y" 70 )Tj? ,
mjp1 > m; + s for j #4, miy > my + 25 — ¢,
C(z,2):=(n—1i+1)(z+cz™ ),
C(z,2) :== (m; + 1 —t)z + c(m; — my, — t)a™ L,

1pﬁLB {(‘T 0 )z 0> Sa + CI(CC y)@z,xﬁ + 02(37 Y,z )8278173/814 + 03(377 2)827
(l‘ yn Jaz)j;*n }7 Mj+1 > m; + s,
Ci(z,y) = a(n — i+ La™ iy,
Co(x,y, 2) == bz +c(b; — my, — 1)a™ ™ +a(m; +1 — s — b)g™i—stlyn—i+l
Cs(z,2) = (n—i+1)(z 4+ cx™ ™).

ip5 g+ {(2°0,)1g, 20 + C(2,9)0s, 8, y0, + C(2,y, 2)0s, (a™y"98,) 1507},
mgy 2> 8, Mjy1 > M, + S,
C(z,y) = bz + > a;(m; +1—b)a™itly" 7 + aby™*,

C(x,y,2) = cz+ Y '_ga;(n—j—c)a™ My +alc—n— 1)y

ips g {(2°9,)i=g, #°0y + ax®*'y"0,, 20, — Cy(x, 2)0s, O, yd, + Ca(x, 2)0.,
220, + szyd, + Cs(x, 2)0,, (x™y" 70, );’f ZLH)S 1, s> 2,
Ci(z,2) = 2z + c(n + 1)szsm+H)—1,
Co(, 2) = (n +1)(z + casm+D-1),
Cs(z,y,2) = (s(n+1) = 2)xz + n%ly”“ — cx*(r ),

ipg,B : {(xiay)f:[)v xaz + Cl (l‘, Y, Z)aza ya + 02(x Y,z )azv 817
x2ax + Sl'yay + C3($,y, Z)azv (l‘ yn ]a );nj*mO"rS]} E =My + 3]7
Cy(z,y,2) = bz + 37 a;(E; — b)z"iy" I + aby™*,
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Cs(z,y,2) == 1{(E, — 2b)z — >0 a;(Ej — 2b)xmotsitlyn=iy

+CL(E71 — 2b)yn+1}7
C3($, Y, Z) = EniUZ —+ Z?:O a,jg;Ej"‘?y”—j + aE71y"_1x.

ipg,B : {(xiay)f:[)v x@z - Cl(xvyv Z)azv yay + 02(x7y7 Z)aza 8:1:7

220y + seyd, + Ca(z,y, 2)0:, (a™y"90.) 755,

Ci(z,y,2) =2 = 21— s(j + Daat U= 1yn7 4 ayntt
CZ(‘T7y7 Z) = (n + 1)Z - Z?:O aj(j + 1)x8(j+1)_1yn_j7
Ca(z,y,2) == (s(n+1) = 2)zz + Y7 a;z"0y"=7 — 2azy™™ + vy,

ips 5 : {(2°0,)i g, 20, + C1(x, )0z, 0y, Y0, + Ca(z,y, 2)0,
220, + swydy + Cs(x,y, 2)0:, (x™y"~90,) 500,
Ci(z,y) = D 0_ga;(mo + sj + L)gmotsitiyn=,
Co(x,y, 2) = ¢{(mo + sn)z — Y7 a;(mg + sg)a™os7Hy =i+
+a(mo — 8)y" ™},
Cs(x,y, 2) := (mo + sn)xz + Y7o a;amorsIH2yn =i 4
+ 0o bjamo T Iy 4 a(mg — s)zy™

m<m;

ipé7B : {8337 yay + mei+1ymi+2837 xal‘ + (ml + l)zazv (xmyzmi+2imj az)jﬁ*h )

£U2 + ax + $yay + C(xv?% Z)aZ}v

C(.’E, Y, Z) = 2(m1 + 1)562 + m;+2

m;—+2

Y y M1 > My

C
mi+2aj

m<m;

ipéB : {0x, Y0y, 0y + b20., *0,, + xYy0, + 2bx20,, (xmy%*mj)jﬂ*h ,

Mjqp1 > M.

l—*m

ip7,B : {axv 220, + yay: xzax + xyay + (Cx + 0192)8,27 (xlyinaz)n:l"" ’m}-

ipg 5 : {0: + 0y, 20, + Y0, + 3 20,, 220, + y20, + C(x,y,2)0,, (2'0.)7, },

C(x,y,2) :=mzz+cly — )=+t

ipg {(‘I’j,k(x)yn"_iecjyaz)kﬂzuzo l“}, i=1,2,...,s.

1—*n;

ipiO,B : {8y7yay + CZ@Z, (\Ilj(x)yiaz)j_)li }7 ln S ln—l S o S lO-

i—*n
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iplo 5+ {0y, Y0, + €Oz, (Vj(2)y'0.)I i}, < by < ... < Do

ipll B : {8x’ a + C(.:B, y)az7 (xm,y eajz+bjya )m<ng, 'rL<'rLz]7

j—h1, i—k;

p,.q,dy 9 \PSPij, 450ij ¢ r<rij, s<s;; t own \E<tiu<u;
(CC ye K a )J—>h2, i—l; ’(CC y € ]8 )]—>h3 1—v; 7( 8 )]—»h }7

u—* U }

s
1P12B {0y, 20, + Y0y, (y'x% log" x0.),_,. n, i—i
WS -1 S S0, Uy S Uy S S Ui

m<m;;, n<ng;
j—h1, i—k;

ipisB {0k, 0y, yOy + (cz + ey t1)0., (x™y"e™*0,)

(x'y“0, )fit,l1 "Sul}, Up > Uy > ... > U,

3 u m. mn . .a;T m<mg;;,n<n;;
lp%?),B : {817 ay + a’xt ik 2827y8 + O(y7 )827 (il? yer 8Z)j—>h17]7:—>kj ]7
(2ty a.) i ="},
Cly,2) = (wi + Dz + eyt ug > up > ... > .
. i—l;
ip1y 5 : {0y, 9, 39y, (¥;(2)y'0.)I %,
g :=v*0y + (nz + 2cx)yd,, c € {O, 11, <l 1 <...<l.
ipty 5 {0y 9, 29y, (V5(2)0.)j-n}, g := ¥20y + 2(cx + €)yd., cc = 0.

mll

1p15 B - {817 8?47 9 2gy7 (‘T Y eaﬂla )l—> n, 1—1a;°? (xmylaz)ggmw (xmaz)m§m1}7
9 = y*0y + (nyz + 25y")0.,
in <in—1 <o Zidgy My, <m0 <o <mygs a # 0, mp < my.

1p15 B {8967 8@!7 9 2gy7 (‘T eajxa )T—»}Zn]v (xmaz)mﬁm0}7
g :=vy*0, — (2yz + az™1)d,, a; # 0.

: m,a;T m<m; m
lpiﬁ,B : {0z, 0y, Y0y, Y0y + ay0., (x™e% az)j—>h 7, (@™ 02 )m<imo }-

ipifi,B : {a:m 8yv gv %g?ﬁ xaz + C(y7 2)827 (w yla )ngm ( maz)mgml}v
Cly, z) = b(z = 25y"*), g := 4?0, + (nyz + 25y"+?)0., my > my.

ip%&B : {8327 ay: xaﬂ: + (m[) + 1)283, g9, %gw (xmaz)mgmo}v
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g :=y*9, — (2yz + ax™1)d,.
ip?67B : {830: ay: yay: 20y, yzay + ayo., (fmaz)mgmo}-

ip‘ll&B : {0x, 0y, YOy, 0y + b20,, Y?0y, (™0;)m<my }-

q<n

ipi?,B : {8907 ay: g, %gy7 g7 %ng (xpyqaz)pgm 3

g :=v*0, + (nyz + n2—j:2y”+2)8z, g =120, + (mzz — %xy”*l)az.

ip%’?,B . {83;7 ay, g, %ga;, g; %gy7 (xmaz)mﬁmo}v
g =220, + 2(mo + 1)x20,, § := 92831 — (2yz + az™ )0,

ipi’ZB : {0y, Oy, 0y, Y0y, 20, + ax0,, y* 0y + byd,, (™0, )m<me }-
ip‘ll7’B AWy, O, 20y + mp20,, 220, + (2mozz +az™ )0, (™0, ) m<me }-

ipig p : 10y + ¢20., 20, + b20., (Vi(x)0, + bi20.)i_,, G},
G = (yufifmof...fms guj(x)$m0 Hlszl \Ifl(il?)ml az)igu—mo—...—ms'

U=n,... 70’ ]‘}qu

ip19,B : {0y, Y0y + c20., 20y, (Vi(x)9,){—;, G}, G as in iplS,B'

ip2[)7B : {8337 (eaix(xjay + leaz)))ﬁ*sl, (xmyn—tec]"n,tdfaz)m*)*mjynft 7 G},

i—q t—"n, gt

mij,nftJrZ hl sil .
t_)*n7 j_’ant )

G = (xmy”*t*Z hle(cj,n—t+2 hlail)maz)

Tij as 1IN iPgg 4, 10 = 0.

. . ; —t P m~>*mg —t
1p21,B . {8307 yay + Zazv 81/7 (xlay + Wiaz)lev (xmyn ecj’n tzaz)t*)*n, jjiqn,tv G7
i j J—%s; <.
(e¥(2?0y + m350:) )iy }s iy Tij @S IN iPgg 4,

i—q

e m,n—t—h—> h; (Cin_t+> hja;)x m>mjn—t+hs+3 husi
G = ($ Yy > le( jnt 2 air) 8Z)tﬂ*n, J—qn—t :

3.5.5 Amaldis Groups of Type C

We repeat that the n-th Amaldi space group of type C, denoted by ip,, ¢, is
represented by generators of the form

fz(x)aﬂf—{_nz(x:y)ay+Cz(x7y7 2)827 L= 1727"' 7l7
Zaz: Soj(xv y)azu j = 1727 ce 7h > 07
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where
gz(x)aw—{'nz(x?y)ayu Z: 1727"' 7l

are the generators of the n-th Amaldi plane group, as listed in Section 3.5.1
(“Amaldis Imprimitive Plane Groups”). Furthermore, ,(x,y, z) can be cho-
sen as

C(xyy,2) = Ei(:c,y)z, i=1,2,...,1.

lplc {8:1:,(378 )z 0,1’8 +Cy8y728z7(37 yl ]8 )m_, m; 5

Jj—xl
mjy1 > m; + s, size: b+ 1+ s+ Zj:[) m;.

ip2,C : {am (xiay)f:[)vgvgx - Ozazv Zaz: ( l Ja )m_) mo+3]} C .= mo + Sl;

j—*l

g := 220, + sxyd, + C20,, size: 6 +1+s+mo(l+1)+sl(l+1)/2.

ips. ¢t {0s, (2°0,)i2), 20, + (sy + °)0y, 20,, (2™y' 70, )]ﬁ*z ,
mjy1 > mj+ s, size: 44+1+ s+ ijomj-

1P4c {(33 Oy)i_g, YOy, Op, £y, 20, (Ccmyl 3o, )mﬂ*mj 7

j—*l

mjp1 > mj + s, size: 64+ 1+ s+ ijomj.

ip5,C : {(xiay)f:m yay: afb? xa:m g7 2827 (xmyl—jaz)m"*m0+3]‘ 9

Jj—*l

g asinipy g, size: 7+ 1+ s +mo(l + 1)+ sl(l+1)/2.

ipg o 1 {0n, Y0y, x0y, ¥%0, + Y0y + cx20;, 20, (x™Y " 9;)

]*}*l ?

mjy1 > my, size: 6+ 1+ ijo m;.

ip7,C {02, 9, 9o Zaz:( y "o, )ln—>l,m., h
g := 2?0, + xyd,, size: m*/2+ 3m/2+ 5.

ip&c : {(.’L‘Z&D + ylay + [Z = 2]mx282)12:07 2827 (xiaz)iﬂ*mh
m > 0, size: m + 5.

ipg,C : {8?472827( ( )y eCJya )i:ls m—* mj}

m—* m]l

lj,mj S lj,mj—l S ce S lj,(), size: 2+ Z]Hs
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iplO,C : {ayv yazﬁ Zaz: (\Il](x)ylaz)z:ilm )
lm S lmfl S cee S l[)7 size: 3 + ZZO l7f

. ="l
1P11c {0z, 0y, 20, (xkyleamz%my@) e *km}v

m—p, k—

Lo, < o1 < oo < Loy Size: 34 p+ 3Pk + SE Ry

m—p

Prac {0y, 20, + y0,, 20, (y'z* (log" x)@z)“H*ul,i 1,

l—*m, i—1;

i <1 <o Zvdg, s S <. S ugy, sizer 340 Y ui

ipl3,0 : {8127 ay7 yay, Zaz, (.’Eiyjeamﬁaz)J_’ JImyi }7

m—s, 1—*im

S ks
1— im

Jmyi = i1, Size: 445+ 300 g DT

ip1yc {0y, Y0y, Y20, + my20., 20., (V;(2)y'0, )1}, size: 4+ 1+ Im.

ip1s.c ¢ {00, 0y, Yy, 20y + py20:, 20, (a™y'e™ 0, )1 T Y,
size: 5+ (p+ 1) Zle m;.

="

ip1g.c {0, 20y, 0y, Y0y, Y20y +1y20,, 20., (x'y70.)1 1 Y, size. T+1+m+Im.

. v,l i j—*n
ip17.o 1 {0:, 0y, 20y, Y0y, (v*0, + lvz@z)g({r?ﬂi)’(ym)}, 20,, ('Y 0,)] e }

size: 8 +m + n + mn.

S

D15 ¢ 5 {0y, (Va()0y)is 205, (52 0u(a) [T Wla)™ 05077,

Uy =z, size: 3+ s+ ZL:O Ju (S+u+2).

u

s+z+2) )

. ) . . ! .
ip1g ¢ : {y0,} Uip g, same parameter ranges, size: 4 +s+ 3 Ju (
3 . m, l—>" h (a, i+ hiag)z m*’*Ml,j,thl,j+Z hisk

iy, ¢ ¢ {(a™y kel O )it =iy, b0, 1y [l 0

| La; J—%s;
Or, 20, (e way)iﬂq Foar € {01}, g+ 3 s > 2,
ize: Ay ¢ I+q\ ya@ [, =~ .
size: 24+q+ Y i 8+t g QZ( q ) j=1 Zhe{o,... ne Mijn.
. ) mo 1= by (e 43 hrag)z g\ Mo n=mi+30 hesk
ipy; ¢ : {(2™y e O et, 5o he{0,... [}a+ 1T hy—*

O, Y0y, 20, (27e%20,)1 250 ag =0, a1 =1, ¢ > 0, g+ > 5; > 0,

fa q .. t I+q+1 @ b, —~ ,
size: 44+ q+ Yo si+ 212 QZ( q+1 ) j=1 Zhe{O,--- Ayatt Mijn.
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3.5.6 Amaldis Groups of Type D

We repeat that the n-th Amaldi space group of type D, denoted by ip,, p, is
represented by the generators of the form

£z(x)am+nz(x7y)ay7 1= 1727"’ 7l7
20, 1 =0,1,2,

where
gz(x)aw—{'nz(aj?y)ayu Z: 1727"' 7l

are the generators of the n-th Amaldi plane group, as listed in Section 3.5.1
(“Amaldis Imprimitive Plane Groups”).

ip; p : {(2'0y)i_g, O, 20, + cydy, (2'0.)7_y}, s > 1, size: s+ 6.

ipy p : {(2°0y)i0, On, G, 92s (2°0:)70}, 8 > 1, g := 20y + sxyd,, size: s+ 7.
ips p : {(270,)i=), 0p, 20, + (sy + x°)9y, (2°0.)2_}, s > 1, size: s+ 5.

ipyp : {(20,)i 0, Y0y, O, 20y, (2°0.)7o}, s > 1, size: s+ 7.

ips p : {(2'0,)i0, Y0y, (2°0y + [i = 2|s2ydy)7_, (2°0.)7o}, s > 1, size: s+ 8.
ips p : {¥0y, (470, + [i = 2]ayd,)7,, (2'0.)7,}.

ip7p 1 {0z, 9, 9o, (2'0:)70}, 9 1= 270, + 2y0),.

ips.p : {(2'0: +y'0y)7_p. (2'0:)i0}-

ipg p : {0y, (2'0:)70}-

ip1.p * {0y, y0y, (2°0:)7 }-

ip11,p 1 {0k, 0y, (2'02)is0 }-

iPyy p {0y, 20, + 40y, (2°0.)7}.

ip13.p 1 {0y, Y0y, Or, (2°0.)7o}-

ip1yp + {('0y)i0, (20:)i0}-
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iI)15,D :
: {(yiay)zz:m 8967 $8x, (2182)12:0}

1P16,D *

: {(yiay)?:m (xiaw)?:m (Ziaz)?:o}-

1P17.D

{(yiay)zz:m 8967 (2183)12:0}

ipls,D {0y, 20y, (Wi(x)0,)_1, (ZiaZ)zz:O}v s > 0, size: s+ 5.

ip1g p : {0y, 20y, (¥i(2)0,)i_1, Y0y, (2'0.)7_o}, s > 0, size: s + 6.

ip20,D : {(xjeaixay)j—’*é‘i?am (Ziaz)zz:[)}7 a; € {07 1}7 l Z 17 Zsi +l Z 27

i—l

size: 4414 30, 5.

1Po1,p

{(@0))i0, (770,17 4By, Oes (210:) 20}

i—l

a;=0,1>0,> 8 +s+1>1,size: 6—|—l—|—s—|—2ﬁzlsi.
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Chapter 4

Differential Invariants of Order
Two

In this chapter, we list differential invariants of order two of many of the
point transformation groups listed in Chapter 3 (“The Space Point Groups”).
These invariants of order two were obtained by first prolongating the cor-
responding generators to order two as described in Subsection 2.2.1 (“Ex-
tended Infinitesimal Transformations”). They form a fundamental system
for the corresponding system of differential invariants, which is obtained by
interpreting the prolongations as a system of linear PDEs in the variables
T, Y, 2, Zgy Zys Zazs Zays Zyy- Lhis system was usually solved by iterated narrow-
ing transformations as described in Subsection 2.2.2 (“Solving Systems of
Linear Homogeneous PDEs”).

In this chapter we treat all classes of space groups except Amaldis groups
of type B. All groups considered have less than eight parameters. Those
groups are guaranteed to have invariant bases. The next chapter deals with
groups that have more than seven parameters.

In Section 4.1 (“Invariants of Lie’s Plane Groups”), we present Lie’s re-
sults concerning the groups of the plane. In Section 4.2 (“Definition of Subex-
pressions”) we define expressions that simplify and shorten the presentation
of the invariant list. Finally, in Section 4.3 (“List of Invariants According
to Derived Series”) the complete list of invariants sorted lexicographically
according to their derived series is presented.
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4.1 Invariants of the Groups of the Plane

We present Lie’s results on differential invariants for the groups of the z, y-
plane with y depending on z. For each plane group, we give the two lowest
invariants ®; and ®5. The higher order ones may then be obtained recursively
by differentiation according to

0l

7—1 .
, J >3 (4.1)
o

(I)j:

The lower equations of the group are functions of the irreducible factors of
the determinant

§1 M di C?z;
A — §a Mo Cg Czr
g m (W (oD

. . . 111 1’ . .
In various cases, the abbreviation w = £ — %(Z—,)z for the Schwarzian deriva-

tive is used. This listing is taken from [10], it basically corresponds to the
listing given by Lie [6], with some minor improvements included.

. (1) (3y"y M —5y""2)3 (1) 3y"2y(5) —15y"y ///y(4)+40 1113 o s
gi: ¢ = gm0 o, T S AW Z gy
(2) (3y112y(5) 15y""y ///y(4)+40 ///3)2
go: D)

(3y//y(4) 5y///2)3 )

3y//3y(6)721y//2 ///y(5)+35y// ///2y(4)7%y///4
(3y//y(4) 5y///2)2 ’

oy =

A(2) _ 2y//2(5 1112 3y (4 ))

st q)g?)) — (1)53) _ AB) — —2y (9y//2 (5) _ A5y ()_‘_40?///3)27

p3

where

Py = 3y//y(4) _ 4y///37 ps = 3y//2 (5) _ 15y// /// (4) + 430y///3

Pe = 3y//2 (6) _ 24y//2 " (5) +60y” 112 ()_ 40y///4
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pr = gy//4y(7) _ 105y//3y///y(6) + 420y//2y///2y(5) _ 7000y//y///3y(4) + L;Oy///k’)7

Py = 27y//5y(8) _ 48y”’p7 - 84Oy///2p6 _ 2240y///3p5 _ 2800y///4p4 _ &?floymﬁ7

u = 2psp; — 35p,05 — T(ps — 503)°,

v = ps5(ps — 84pap + 352p3) — 12(p7 — Fpaps5) (ps — 5P7) + 2 (ps — 503)°-

1! 1"

g 2V =z o) =L, o) =17 AW =0,

gs: O =1 o) =12 AC —y.

Y Y
1,001 2, (4)
go: O =L, o) = AG = _yy
g O =L o) =L AD = (c— 1)y, c#1.

gs: 0P =2z o =w, A® =0

go: <I>59) =w, <I>§9) =, A =25

®§1°) (=yy"+2y'@'+1)?  §10) _ (z*y)2y’”+6y(/ﬂgfy)(y’+1)y” + 6(y’2+4,1y’+1)

yrs 9 2 y 9

g10¢

ALY =2y — x)%).

"

g

g (I)gll) _ w? (péu) _ ’ AL — 4y’2(y’y’” . %y”2).

g
o

g
W

g1at @&12) 4ww" —5w'? @(12) (4w?w'" —18ww’'w" +15w'3)?

= w3 ) w9 )

A(12) _ 4y/2(y/y/// _ %ym)'

g Y =y, Y =P 4 By yyt, ALY =2,
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@&14) (yy’”+3y’y”)2’ @514) _ 3yy”y(4)—4yy’”27 A = 9424/

yy//3 yy//3 y .

g14:

g15: <I)§15) =z, @;15) =D, A" =0, where
" P S SR
o oy ol

y// y/// . y(r+2)

816* (I)gw) =T, (I)gw) = (log D)";, A9 =0, D asin gs.
g O =yt ay + .. 4y, 87 = (@MY,

gis: <I>§18) = %l, <I>518) = %2, with D,D;, and D, as above, if the proper
values for the @y, are substituted. The invariants are of order [+ p,+1

and | + Y p, + 2 respectively.

gio: For c arbitrary: A9 = (c — r)y(r).

19) (r+1)°7" (19) (r+2)°7"
For c 7& T ®§. = nycfrfl 9 ®2 = nyc7r72 .

For c =1: @glg) =y, @glg) = ;/((:12))2
o0 q)§20) — y(r+1)ey<r>/r1’ q)gm)) _ y(r+2)€2y<r>m7 ACO) _ TR
gz O = %, PV = %’ ARD — 3/ 1)
8ot @92) = y(:é%, 222) = wjé%, AR = () where

vy = (r 4 Dyyr+2 — (r 4 2)0+D7,

Uy = (T + 1)2y(7~)2y(r+3) _ 3(7“ + 1)(1“ + 3)y(r)y(r+1)y(r+2)+



+2(r + 2)(r + 3)yr+*,

gt O =3, @Y =5 ACY =y ((r 4 2y — (4 1y,
1 1

where v, and vy are as in goo and
vg = (’I“ + 1)3y('r)3y(r+4) _ 4(’/“ + 1)2(’/“ + 4)y('r)2y(r+1)y(r+3)+
+6(r +1)(r +3)(r + 4)y Ty -

—3(r +2)(r + 3)(r + 4)ytH*,

ga4: q)§24) =y @524) = ;;%7 ACY = .

b

8o5: @&25) =, <I>525) =azy’, AP = —g.

gos: DY (v y" . y™) for m > 2, AR =1,

gor: P (z, /0", ... ,y™) for m > 1, ACD not defined.

4.2 Definition of Subexpressions

In order to give a compact presentation of the invariant list, we define the
following expressions for each class of groups. Their order is mainly deter-
mined by their appearance in the invariant list. For example if H; contains
a subexpression, that appears as H; at some other place in the subexpres-
sion list for type A, we refer to H; in order to shorten the presentation (e.g.
Hy := Hss/ ZZ) The recursion depth hereby usually is one, in a few cases it
is two.

We use the convention that free variables in the subexpression S match
the parameters of the group G, in case that S appears in the invariants of G.

Example: An entry in the invariant list of the form ipg o[m = [1]}: Ia,
where I5g is defined in the subexpression list as
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Y22y — A2+ (2mo + 1)cz — mo(mo + 1)z

129 =
Yzy — CZ +mpz

indicates that

Yz, — Az 4 3cz — 2z
Yzy —CZ+ 2

is a differential invariant of ipg o[m = [1]]. Note that mg = 1 since m = [my].

4.2.1 Subexpressions for Lie’s Space Groups

For Lie’s primitive groups we define
._ 2, .2 2 2 2
Fr=1+2+ Zys Fy = Zy — ZzxZyy) Fy = 272, + ZyZax — 2252y Zay.

For Lie’s imprimitive groups we define

G = 2, + 22y, Gy = ziy — ZawZyy, Go1 = G2 — 2gy,
Gg = Z{%Zyy + ijx:p - 2Z:chyzxy7

Gs1 = Gs+ 2,2y + Y2220y — 2202y — 2y) + y2zyy,
Gy 1= 2325y — ZyZax + 2(Za2yy — ZyZay),

Gs 1= Zgg + 222y — 2202y + 22(20y — 7).
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4.2.2 Subexpressions for Groups of Type A

Hy := (Hag)a=11c/t, Ha = H35/ZZ, H; = Z;_2H34, Hy = Z;_3H187
Hs .= zt/(c_t)zy, Hg = z(c+t)/(c_t)zyy, H; .= z(t+1)/(c_t)H29/zy,
Hg = H29/Z£2t+1)/t, Hy = z2zyy + Z2ZMC — 22,2y Zay,
Hy = zyy (22, + 222,) — xy, Hyy = (Hug)a=2, Hiz := cHs3 + Has/2,,
Hys = (H39)a:17 Hyy = Hls/Zy + CH33(H39)Q:2, Hys = Zy(H51)a:t>
Hig := Zyy(H51)a:2t7 Hy7 = HQQ(HE)l)a t+1/zy7 Hig := 2z, + 2ZZzy + ZZZyw
Hig := Hag /22", Hog 1= (Zeazyy — 22,)/(2y2yy) + 22 + cHas,
Hyy = (sHss + 27) /25" ™), Hay := Hoy /23150,
Hys = 2 Ss=1?/{(s=1)? +1}(H4o)a=73/2y28+2)/(5+2),
Hyy = (4cz”Hyg + (H40)a:2s+1)/(Z(s_l)/sZ;Q_SQ)/(4_8))7
Hys = {8c2*(2czHy + Hyg) + (H40)a:1}/z;1, Hoe = (Huag)a=(s+t)/t:
Hyy := Hig + (5 — 8%) 2, Hay, Hog := Hsy + 2Hzs3, Hog := 2,2y — 2y2ay,
Hso := (tHyo + SZyyH33)/Z§8+t)/t, Hsy i= 2y (2ap2yy — 22 oy) T 222, + 6Hss,
Hsy := {6Hs3(32y, + 2Hag) + 4(222yy + 2 202) + 8(22) — zgczyzgey)}/z?’/2
Hss :=log(z,), Hsq = 2z, + 22y, Has := 2y + 224y, Hae := (c2p + 22) Huz,
Hsp = (P2py + Z2Zyy + 2c224y) Har,
Hsg = Hur(200 + 222 /¢ — 2f 20y + [22yy) f20 /2,
Hsg := (czyyHss + aHss)/z), Hy := 22y, + az,, Hy = zHi,
Hy = HQ(H48)a:2s+17 Hyz = H18(H48)a:47 Hyy = H34(H48)a:37
Hys = {zyy (200 + 222,) — 22,} /2, Hug := 2] + sHss, Hyr := (Hs1)a—s,
Hyg = 2y /2, Hig = yzy, Hso = y*2yy, Hs = exp(az/c),
Hyo = —yHyg — (14 2a)2,2y, Hs3:=22+yz,,
Hsy = 4y2(2y 200 — 202ay) + 22(2224, — 322), Hss:= 2+ 2,
Hyg = 223 — 22, Hsy =1+ czy, Hsg 1= cz2yy — 22, Hsy,
Hsg := ¢*(Hap)am—2 — 6c2y — 4, Heo 1= 25 (224 — 2024) /25,
Hg = (zx/z)2c(H40)a:,1/2, Hegy = 2¢(2240/22 — 1) + 1,
Hgs == 90/2($){Zyy(2m + Zzy\Illll(x)) - Ziy} -
— Hao{ps(x) + 2y (VY (2)pa(2) — 5(2)) /() },
Hey := Hy + 22,V (x), Hgs := 2] + 224y, Hee = log((Has)a=2)-

61



4.2.3 Subexpressions for Groups of Type C

I =2,/ 2y, Iy = 2p0) 20, I3 = 2uy) 20, 1o = 2yy) 20, Is = 24/ 2y,

Is = zay/ 2y, Ir = 2yy /2y, Is = Zaoayy/ 70y, To = ZaZyy — ZyZay,

Iy = zizyy + zsz — 22,2y 20y, 111 1= ZggZyy — zzy, Ly = 2py/ 2,

Lz = 2y /20, Tia = 2y /2y, D15 :=€7Y/1;; Lig := e,

Ly = 1;/(z,~ te), Lig:= Iy —log(I7), Iy := (Z4s — Azxy)/(zyeA), where
A= f(]14eh4) f analytic at 0 with f(:v)ef(’”) = z (“Lambert wavef.”).

Lo := Lo/ (2213"°), Loy := L/ (22015 —log(I7), s :=1/(I1al1a),
Log == 2,2y + ylo, Iog = (22, +y2y,)/y, s = 22 — y* L1 + 2yls0,
I = (20 0)' ", Dgne = {(& = y)zw + ez} (7).
Iog = (. — Y){(T — Y)2ay2zyy — 2y(222y + mzyy)}/zz,
Ly = (yP2,, — *2 + (2mg + 1)cz — mo(mo + 1)2)/(yz, — cz + mgyz2),
I3o i= 220y — 2yZ0e, A= Y2 1o + 2cyzlsg + c(1 — ¢) 222 + (c2)*24a,
B :=yly + (1 — ¢)zp2y + 224y, I3 := A(cz —yz,)/(yB)?,
mbi=my +mg, m”i=my —mg, m*i=mimg, (m =m(m; +1))%,,
M, :==m (¢ —em™ +m*), My:=m] —m{ —2m ¢,
Iy i= y* ™ 3[Myz + Myyz, +m™y?2,),
Iz = y* “2ppl30 + (2c — & — 1)y 222+ 2(c — 1)y 2,20 — yczgy,
I3y =12 — 2y, I35 := iz — Zyy, I36(v1, v2, F1, Fy) = v1Fy — voF7,
Is7 = Isg(2, 20, W11 (), W) 1 (1)), Tss := Is6(C12, Zay, Y1 (), ¥4 (2)),
I3g := I36(2, 242, V1.1(2), \Illl/l(x)), Ly = 124 — Zay, In(F1, F) =
z B
= det z. F| Fj Ly =1 (Ve 1(x), ¥y 0(x)),
o FF
Lz == I36(2y, 2oy, V1,1(2), U1 (2)), La = iz — 2c12 + 2y,
Lis = 1137 — Lus, Iug = Ir/zy, Lip = Ise(2, 22, ¥1(2), Ui (2)),
Lig := I36(2, 222, V1(2), U (x)), Lig := I;1 (1 (2), ¥o(x)),
Iso := Is6(2y, Zay, V1(2), U1 (7)), 51 := 220y — 222y,
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Isy := 2*(mzz,, — (m — 1)25)/]521, Isz := (a}2 — 240)/Igs,

Isy = alz — 20125 + 2pe, Iss i= (H a;)z — (Z a;) 2z + Zow,

I56 = zle9, I57:= ]9/257 I5s = ]10/(225)7

I5g = Igg(zzyy, Ig, 90,1(56), 90’1(1'),)/22, n 160 note 90’1 = 60’1(1')1
Iy := 136(197 Lo, 93,17 2290,196,1) + I36(ZZ§7 ZZZyw (66,1)27 60,163,1)7

ZZyy Fl F2
161 = 162(60,1(56),90,2(56)), I62(F1,F2) = det Ig Fl/ F2/ s
I, F' F!

Iss := 2y /2, Igs := zyy/2, Ios := Io/(22,), Igs := I5s, note 01 = 6o 1(z):
Iy = I3¢(1o, I11, 9%1, 20110 1) + I36(22yy, 222y, — zg, (6’1,1)2, 01,101 ,),

Ieg = a12 — 24, lgg := Zyy/Zj, Iz := Iegleg, I71 := Isalgy,

Iz = Zny68/I?37 Iz3 = (177)M=1, Iz = Is51g9,

Ing = 2y 155/ 123, It := zyyIsa/ 155, Trr i= aprzy — 2ay, Izs = a1z — 24,
Ing i= w2y, /I, Iso = 2%z, /s, Is1 = a1(1 — a1)z + 1224,

Igy = xlg, Igz:= a1y, Igy = 2%24 + (1 — 2a;) 72, + a3z,

Iy = 222, + (H a;)z+ (1 — Z ;)2 Isg := 12y — T4y,

Ig7 = 2* oy + (1 — 2a)2* %2, + a2®™ 32

D = [[Zv Zxs Zy7 Zrx, Zwy: Zyy]v [17 a;, bi7 a?? aibi> b?]?:l]?
dy:= det([Dm];:’?), where J :=j1,... , jm-

For ipg oL = [[(ljm)m—=m,]j—s]] we define E and e as

E(L) := [[z,zz,zy,zm,zzy,zyy],Pr(z)(ym\IJj,l(:U)ecjzaz)zilj;”;,b_,*mj], where
PT(2)(-) = [ym\I/j,l,ym\I/;,l,mym_lle,l + iy, Y™ ;’J,mym_l\IJ;J +
+ oy m(m = D)y 205, A+ 20my™ G+ Gy ],

es(L) := pp(det([Ei,j];:’}), (2, 2z, 2y, Zaozs Zuys Zyy]), Where J == j1,. .., i

and pp(+, (2, Zz, Zys Zuws Zays Zyy]) denotes the primitive part of a (linear) poly-
nomial in [z, 2z, 2y, Zexs Zays Zyy|-
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4.2.4 Subexpressions for Groups of Type D

Jo = Zy/zz7 Jo,l = zz/zy,

J1 1= 2u2ey — ZyZas, J11 = Jl/zi, Jig = Jl/(zfvzy)7

Jo 1= 2p2yy — ZyZay, Jo1 = J2/ZZ7 Jap = o /(Zazy), Jog = yl2 + 222y,
J3 = Z:%Zyy - Zszx:m J31 1= JS/Z§7 J32 = J3/(Z"”Z?3)’

2 2 N 3
Ju = 22y + 2,200 — 2202y 20y, Jag = Juf 2.

4.3 List of Differential Invariant Bases

Here we list the groups, represented by their Lie algebras as usual, and their
invariants according to the derived series of the Lie algebra. Since derived
series are invariant under point transformations, this listing simplifies the
identification of a given group. Groups with the same derived series are
ordered according to their type, their number and their parameters. The
generator lists are ordered according to the coefficients of 0., 0,, 0.. The
scheme of presentation is

< group identifier > = < generatorlist > : < invariant basis > .

The notation for derived series can be found in Section 2.4 (“Basic Notions
for Lie Algebras”).

4.3.1 Groups with Seven (Generators

Derived Series (7)

ipy[l = 2] = {20y, 0, — YOy, YOy, O, Z(2)0y, 0y, Z(2)0y }:
2, (Z'Gy — 2"G3) /(2 GY3).

ip%,A[S = 3] = {a?h xay + 827 37283; + 2xaz; xgay + 3372827 azv
220, + 3yd, + 20,, %0, + 3xyd, + (2 + 3y)0.}: Hax.

ip3 4[s = 3] = {9y, 20,, 20, 230, 0, 220, + 3y, + 20,
:UZ(?:C + 317y8y + Z(CU + 022)83}: Hgg, H24.

ips 4ls = 2] = {0,, 0y, 20, + 9, 2?0, + 220., 20, — 20,,y0, + 20,
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:UZ(% + 217y8y + QyGZ} ZyyH27/H46-
ipg o[m = (1] = {0,, Y0y, 205, 220y + 2y, + €220, 20,y ' 0,, 2y 0. }: Iy

ipg o[m = 2| = {0, + 9y, 20, + Y0y, 2°0, + y*0, + 2x20;, 20,0, 0., 20, }:
Is.

ipyyclm = 2,1 =1] = {9,,y0,,y°0, + 2(y — 1)20., 20., (¥1(x)y'0.);_, }:
x, Iug.

ipg p = {Y0y, Or, €0y, %0y + Y0y, 0., 20:, 2°0: }: Y2y Ja/ J3 5.

Derived Series (7,6)

ipyy = {0., 0, 0y + 20., 20, + 5220, x0, — Y8y, YO, + 50, €0y + YO, + 220, }:
Ga.

ipyols =n = 0,mp = 1] = {0y, 0y, 200,, 2°0, + £20., 20,, 0., 20, }: Ir.
ip15,C[p = 17 m = [O” = {8w7 ay: yay: y28y + yzazv Zaz: (yiealzaz)%:[)}: 153-
ipy pls = 0] = {0y, 0p, 220, ¥%05, 0., 20,, 2%0. }: Joa.

ip15,D = {8907 ay: yay: y28y7 az: Zazv 2282'}: J1,2-

Derived Series (7,6,5)
ips[m = 0] = {20, 20, — Yy, yd, 0,, 420, + (20; + y3,), By, B, }: GoJGI 1
ip,glh = 0] = {28y, 20, — YOy, Yy, 0., 20., 0y, 0, }: G2/ G,

ipyc[s = 1,mg = n = 0] = {0:, 0y, 0y, 220, + Y0, 220, + xy0dy, 20,0, }:

Il()/Zzy.

ip; o[m = 1] = {0,, 220, + y0,, 2°0, + xydy, 20, 0., i@z, %82}: 12,/ I5s.
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Derived Series (7,6,4, 3)
ip; pls = 1] = {9y, 20y, 0, 20, + cydy, 0., 20,,2°0.}: zy(—Jo1) Ja/J5.

ip3,D[5 =2] = {8@/7 0y, 8x,x81+(2y+x2)8y, 0., 20, z2(92}: Ji1—2log(—J2,1).

Derived Series (7,6,4,0)

ipi ls = 4,t = 1] = {0,,0,, 20, + 0.,3%0, + 220,, %0, + 3220,
x40, + 4230, 20, + cyd, + (¢ — 1)20,}: Hy, Hs.

ip}’A[s =4,t = 2] ={0,,0,,x0,, 20, + 0,, 2%, + 320,
x40, + 6220, x0, + cyd, + (c — 2)20,}: H;.

ipi 4ls = 4,t = 3] = {0, 0, 20,, ¥°0,, *0, + 0., 20, + 420.,
x0y + cyOy, + (¢ — 3)20, }: H;.

ip}’A[s =4,t = 4] = {0, 0,, ©0,, ¥*0y, x30y, x*0y+0,, Op+cydy+(c—4)20, }:
H,, Hs.

ipiA[s =4,t = 5] ={8,,0,, ©0,, ¥*8,, x38,, x*0,, 0, + cyd, + (c — 5)z0. }:
H57 H67 H7’

ipi u[s = 4,t = 1] = {0,, 0y, 20, + 0.,3%0, + 220,, %0, + 3220,
1748y + 41‘383, x@x + yay + Caz}Z Hll: H13.

ipiA[s =4,t = 2] ={0,,0,,x0,, 2?0, + 0,, 2%, + 320,
x40, + 6220, x0, + 2y0, + ¢0,}: Hiy.

ip; 4[s = 4,t = 3] = {0, 0, 20,, ¥°0,, 2°0,+ 0., x*0,+4x0,, £0,+3ydy,+cI. }:
Hiy;.

ip2 s = 4, > 4] = {9, 20, 5°0,,%0,, 510y, 0,20, + tydy + cO.}:
H157 H167 H17’

ipé’A[s =5,t = 1] ={9,, 29, + 9., °0, + 220,, 230, + 3220,, x*0, + 4230, O,,
3783; + (5y + $5)ay + (4Z + 5174)83} HQ, Hog.

ipévA[s =5,t = 2] ={9,,20,, 29, + 0., 239, + 3x0.,x*0, + 6220, 0,,
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z0, + (5y + x°)d, + (32 + 102%)9, }: Has.

ipiA[s =5,t = 3] ={9,,29,,2%9,, 239, + 0., 2*0, + 420., 0,,
z0, + (by + 2°)d, + (22 + 1022)9, }: Hae.

ipé’A[s =5,t = 4] ={9,, 20, ¥*9,, x39,, x*0, + 0., 0.,
x@x + (5y + 565)8y + (Z + 5%)83} HQG, H33.

ipgvA[s = 5] = {9,, ©0,, 2?0y, x30,, 10y, 0r, 20, + (5y + x°)0, + 0, }:
His, Hig, Hi7.

Derived Series (7,6, 3)

ipyyo[m = 0,1 = 3] ={9y,y0,,y°0,, 20., (Vi(x)0,):_]}: =, Is.
ipyg pls = 1] = {0,, 0z, 20;, 2%0,, £0,, ¥1(x)0,, y0,}: =, Jo1.

ipy pls = [2]] = {70y, 270y, 270y, Oy, 0, 20,, 2°0. }: Ja1.

ipy pls € {[1,0,[0,1]}] = {e"*D,, ze™*d,, €27y, Oy, 0., 20;, 2°0; }: Ja1.

(or a; interchanged with ay)

ip2O,D[S = [07 07 O” = {ealwayv eazwayv easwaya awv az: Zaz: 2282'}: J2,1-

Derived Series (7,6,0)

ipig als = 4.t =1,2,3] = {0, 20y, (Vi()0y + [i = tp;(2)0: )iy,
YOy + 20, },—1: T, 2.

ip19,A[S =t=4]= {ayv YO, + 20., 20, (\Iji(x)ay)?:lv \114(x)ay + 0. }:

ipigals = 4,t = 5] = {0,,y0, + 20,, 20y, (Ui(2)0y)iz1 }: T, 2y, 22yy, Hag.
ipyo all + ¢+ Yol si =T = {0, (e (270, + Wi,jaz))g:;&}: Ry Fyy-

Derived Series (7,5)
ipgm = [0]] = {0, 0y, 0, 0y, ©0, + Y0y, v0y — Y0y, Y0, }: G2/Gs.
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Derived Series (7,5, 3)
ipy ols = mo = 0,n = 1] = {8,, 0y, 200,, 2°0,, 20.,y0., 0. }: I.

ipys.c[p = 0,m = [1]] = {9y, 9y, Y9y, y*0,, 20, (¢'"*0. )i }: Io.
ipys.clp = 0,m = [0,0]] = {0, 8,, ¥, y*d, 20., ("*0.)7_ }: L.
ipisoll = m = 0] = {0,,0y, ©0,,y0y,y*0y, 20.,0}: Is/I>.

ipy pls = 0] = {0y, 0y, Y0y, ©0,, 0, 20, 2°0.}: J3/(2yJ1).

ipy pls = 1,s =[] = {9,,20y,y0y,0,, 0., 20., 20, }: J;.

ipy; pls = 0,s = [0]] = {9y,y0y, 0y, 0, 20., 2%0,,€°0, }: Ja1.

Derived Series (7,5, 3,0)

ipf’A[s =4,t = 4] = {0, 0,, 20y, x*0,, 230y, x*0y, + 0., 0, + 4yd, + 0, }:
Hyy, Hyg.

ipy 4ls = 3,t = 1] = {9,, 20, + 9, %0, + 220.,2°0, + 32°0;,
Oz, YOy + 20,, x0, — 20,}: Ha.

ipy als = 3,t = 2] = {9,, 20y, £°0,+0., 2°0y+3x0,, Oy, YOy + 20, 0, — 220, }:
Hys.

ipy als = 3,t = 3] = {9y, 20y, ¥°0y, 1°0, + 0., O, Y0y + 20, 20, — 320.}: Hig.
ipy als = 3,t = 4] = {9y, 20y, 2°0y, 1°0y, O, yOy + 20., 0, — 420, }: Hig, Hy.
ips o[s = 0,m = [0,2]] = {0,, 20, + 9y, 20,40, 0., 20, *0. }: (I15)i=14.

ips ¢[s = 0,m = [3]] = {0,, 20, + 9y, 20., 0., 20, x°0,, x°0. }: (I16)!={ .
ipiocll = [1,1, 1, 1]} = {8y, Y0y, 20, (v ¥1(2)0. )i}t 2, Luz/ Lus.

ip15,c[U = [[0], [0], [0], [0])] = {0y, 20 + yy, 0., (" y"0.)io }:
]81/178, 13186/]78-
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Derived Series (7,5,2,0)

ip; ols = 0,m = [2]] = {0,,9,, x0, + cyd,, 0., ¥0., x*0., 20, }: I/ I§.

ip; o[s = 0,m = [0,0,0]] = {0,, 9y, 20, + cydy, 0;,y0.,y*0., 20, }: I3/I5.
ip,cls = 1,m = [1]] = {8,,8,, 20y, 20, + cyd,, d.,x0,, 20} L1 /(2217/°).
ip, cls = 2,m = [0]] = {8,,0,,20,,2%9,, 20, + cyd,, D, 20.}: Iy/(221;).
ipsols =1, m = [2]] = {0,,0,, 20, + (y + )0y, 20,0, 20,, 20, }: Is.
ipsols = 2,m = [1]] = {0,,0,, 20y, 20, + (2y + 2*)0y, 20, 0;, 0. }: (I21)i=11-
ip3 ols = 3, m = [0]] = {0,, 0y, 20y, %0y, 20, + (3y + 2*)0,, 20., 0. }: Ix.
ip1ocll = 2,2l = {0, y0y, 20., (y'V1(2)0:) g, (¥ V2(2)0:) i} .

ipiocll = 2,1, 1)] = {9, y0y, 20, (y' V1 (2)0.) 7y, ¥2(2)0. }: .

ip15,c[U = [[1], (1] = {0y, 20: + 40y, 20z, 20z, (¢ In(2)'y7 0:); 50 }:

222y, ) Iss.
ipy5,c[U = [[0,0], [0, 0]]] = {9y, 20, + ydy, 20., (a9 0. )21 }: 222/ Iss.

ip15,c[U = [[1], [0], [0]]] = {9y, 20: + y0y, 20, 2% In(2)0., (x*1y"0; )70 }:
56186/184.

ip15,c[U = [[0,0], [0, [0]]] = {0y, 20, +y0y, 20, (x"y'0.)iq, 0. }: xIs6/Iss.
iplg,c[s =0,j = [0,1]] = {0y, y0,, ©0y, 20., (U9171(x)az)?{)1€,x,y}}: Z.

Derived Series (7,5,1,0)

ip; ¢[s = 0,m = [0,1]] = {0,, 0y, 20, + cy0y, 0., 20, y0., 20 }: Ig.

ip3 s =0,m = [0,0,1]] = {0y, 20, + 0y, 20,y%0.,y0:, 0., x0.}: (I15)i=14-
ipy ofs = 1,m = [0,1]] = {0, 0y 20, + (y + 2)3y, 20,0, 0., w0: }: 2/ 11{".
ipyocll =13, 1)] = {0, 40y, 20., (y"V1(2)0:)ig, (Vi(2)0.)s} .
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ip15,c[U = [[2,0]]] = {0y, 20, + y0y, 20., (2" In(2)0.) g, y2™ 0:}: w2/ Iss.
ip12,0[U = [[1, 0}, [0]]] = {0y, 20 + yOy, 20z, (z* In(2)'y?02) jmg, 20 }:
CCZyy/Igﬁ.

ip12,0[U = [0, 1], [0]]] = {0y, 20 + y0y, 20, (21" 02) =, (22 In(2)' 0z )io }:

CCZyy/Igﬁ.

ip15,c[U = [[0,0,0], [0]] = {0y, 20; + y0, 20:, (20 )2y, y2* 02} w2/ Iss.

Derived Series (7,5,0)
ipyy 4[3+ s+ b+ Y0y 8 =T] = {0, 40y + 20., (20, + m0,:0:)i0,
(€™ (270, + mi0:)1 0" ) 2y
ipS,C[S =0,m= [07 0,0, 0” = {aﬂcv 10, + ay: Zazv ygaz: yzaz: yaz: 82}
(116)§25 3.
ip97C[L = [[5]]] = {9y, 20, (¥1,:(x)e?D,)?_}: x, e/e1q, wheree € {e13,€25}.
ipg (L = [[4, 1]]] = {0, 20-, (V1,:(2)er¥D. )iy, y W11 (x)e¥D. }:
z, (0161,3 - 63,6)/(0161,2 - e3,5)-
ipg c[L = [[3,2]]] = {0, 20:, (V1,i(2)e¥D.)l_y, (yW1i(w)e0, )7, }: @
ipg c[L = [[3, 1, 1]]] = {9y, 20, (y' 011(2)e0, )7, (P1i(2)e0, )], }: .
ipg c[L = [[2,2,1]]] = {9y, 20, (y' ¥11(2)e0, )7, (y' U12(2)eY0, ) o }: .
ipg,C[L = [[27 17 17 1”] = {all? Zaz? (yiqll,l(x)ecwaz)?:[)? \11172(x)661y82}:
z, 61,2,4/61,2,3,5-
ipgc[L = [[1,1, 1, L,1]]] = {9y, 20., (y' U1,1(2)e™0, )iy }:
z, 6/61,27 e c {61,4763,5}'
ipg (L = [[4], [1]]] = {9y, 20., (V14(2)eY0, )iy, Yo (x)e2Y0, }:
T, (0261,3 - 63,6)/(\11/2,161,3 - \112,162,5)-

ip9,C[L = [[3]7 [2”] = {ayv 2827 (\Ill,i(x)eqyaZ)?:lv (\112,i(x)662y82)12:1}: Z.
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ipg,C[L = [[37 1]7 [1”] = {ayv Zazv (\Ijl,i(x)eqyaZ)?:lv (\Ili,l(x)yjeCiyaZ)i:1,2 }: Z.

j=2—i
ipg ¢ [L = [[2,2]], [1]] = {9y, 20., (' V1(2)e¥0.); 275, Vo (w)ev0.}: a.
ipg o[L = [[2,1], 211] = {0y, 20z, (Vi3 (). )7 5oy, y W1 (2)eV0:}: o

ipg oL = [[1, 1], B]]] = {0, 20., (y' U11()e0. )i, (Vai(x)eYD. )]s }: .
ipg oL = [[2,1], [, 1]]] = {9y, 20.. (Wit (2)e¥D. )] 2 5, U p(w)evD. }: a

ipg oL = [[2, L]], [1] = {0y, 20:, (4" W11 (2)er 0z )7g, (Wi (x)e ¥ 0z )iy j=3}:

ip9,C[L = [[17 1, 1]7 [2”] = {8@/7 2837 (yiqll,l(x)eqyaZ)?:O? (\1127i(x)662yaz)12:1}:

ipg,C[L = [[17 17 1]7 [17 1]” = {8117 Zaz: (yiqji,l(x)GCiyaz);"z%)’,i7 y2\111,1(x)601y82}:
x.

ipg oL = [[1, 1,1, 1], [1)]] = {9y, 20, (y' W11 (x)e¥0. )i, Vo, (x)e 0. }:

T, (0261,2 - 63,5)/(\11/2/,161,2 - \11/2,161,4 + \112,162,4)-

ip9,C[L = [[3]7 [1]7 [1”] = {8@/7 2827 (\Ijl,i(x)eqyaZ)?:lv (\Ili71(x)eciyaz)?:2};

ipg c[L = [12], [2], [1]] = {9y, 20:, (Wi (x)e™¥ D)=y 5, Waa()ev0: }: a.

ipg oL = [[2,1], [1], [1)]] = {9y, 20:, (Vs ;(2)ev0.) 121 5, y W11 (x) e,
U3 q(x)ev0,}: x.

ip9,C[L = [[17 1]7 [2]7 [1]” = {8@/7 20, (\Iji,j(x)ecwaz)gz_)li,%yqjl,l(x)ecwam
U3 q(2)e¥0,}: x.

ipg,C[L = [[17 1]7 [17 1]7 [1]” = {8117 Zaz: (yjqji,l(x)eqyaz)gzll,gv \113,1(x)603yaz}:
x.

ip9,C[L = [[17 17 1]7 [1]7 [1]“ = {a?ﬁ 2827 (yi\yl,l(x)eqyaz)?:ov \P?,l (x)eczyazv
U3 q(2)ev0,}: x.
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ipg.c[L = [[2], [1], [1], [1]]} = {0, 20., (Vi1 (2)e¥0, )iy, U1 2(2)e ¥, }: .
ipg,c[L = [[1, 1], [1], [1], [1)]] = {9y, 20:, (Wia(2)e ¥, )iy, y¥ia(x)eV0, }: .
ipg oL = [[1], [1], (1], [1], [1]]] = {0}, 20, (Wi (x)e¥ D)7, }: =

ip1o.cl = [4]] = {0y, Y0y, 20., (Vi(x)0.)i, }: w, L.

ip15,c[U = [[3]]] = {0y, 20, + y9y, 20, (x* log(2)0.){_o}: (1i)i2s0-

ip15,c[U = [[1, 1] = {0y, 20 + y0y, 20, (z% In(2)79.); ;o }: (Ii)Es-
ip12,c[U = [[2,0]]] = {0, 20, + y9y, 20, (v log()0.)7_g, 2720 }: (L)),
ip15,c[U = [[1,0,0]] = {9y, 20: + Y0, 20;, (x40.);_y, 2% log(2)0. }: (L;)Zs,-
ip1g,c[s = 0,j = [3]] = {0y, Y0y, 20y, 20,, (00,i(v)0: )i, }+ =

ipgcls =1, = [2]] = {0y, y9y, 20, U1(2)9y, 20, (00,:()0.)7_1 }+ =

ipyocls = 2,J = [1]] = {9y, y0y, 29y, (Vi(2)0,)_1, 20z, 00,1 (2)0: }: , Iy
ip1o.cls = 3, = [0]] = {9y, 49y, 20y, (Vi(2)9,)i1, 20:}: . (L) iLs6.
Derived Series (7,4,2,0)

ip13c[J = [[2]]] = {0z, 9y, Y0y, 20, (y'e"170. )i o }: Iss.

Derived Series (7,4, 1,0)

ip,cls =0,m = [1]] = {9,,90,, 0, ¥0,, 20, 0., 10, }: Ixn.

ip,c[s = 0,m = [0,0]] = {0,,y0,, O, ¥0,, 20.,0.,Y0.}: I.

ip, o[s = 1,m = [0]] = {0,, ©0,, Y0y, O, 20y, 20, 0. }: 2y T10/13.

ipy3.0[J = [[1,0]]] = {0z, 8y, Y0, 20, (x'e**d. )iy, ye* 0. }: Irg.

ip15.c[J = [[1], [0]]] = {0z, 9y, Y0y, 20, (y'e"170. )iy, €*270. }: Irs.

ip3.0[J = ([0}, [(1]]] = {0, 0y, 40y, 20z, €70, (y'e**02) o }: Irs.
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Derived Series (7,4,0)
ipy oL = [[B]]] = {0:, 0y, 20s, (y'em ™0, ) o} I/dig, I € {dra,dss}-

ip11o[L = [[1,1]]] = {9, 9y, 20., (xy e *+Y0, )}, o }:
(201d1 3 — d16)/(a3dr o — da ).

ipy oL = [[2,0]]] = {0:, 8y, 20., (y'e™ ™ 0190, )7, e #H1¥9, }:
(G%dl,?) - d2,5)/(a%d1,2 - d2,4)-

ipy; o[L = [[1,0,0]]] = {8s,9y, 20, (x'e™ 0199, )2 ye®=+0199, }:
(b%dl,S - d3,6)/(a1d1,3 - d2,5)-

ipll,C[L = [[07 07 07 Om = {8337 ay? 2837 ( a1z+b1y8 ) O} (d2—i75+i/d173)%:[)

ipyy oL = [[1], [1)]] = {0a, 0y, 20, (yles™ 0. ) 12 7 }:
(blb2d1,2,6 - 2d3,5,6)/(a1G2d1,2 - d2,4)-

ipll,C[L — [[2]7 [O]H — {817 8y7 Zaz, (yiemw-‘rblyaz)?:o? eazx-i—bzyaz}:
(blb2d1,2 - d3,5)/(a1a2d1,2 - d2,4).

ipll,C[L = [[07 0]7 [1]“ = {8967 ay7 Zaz? ( alerblya ) =0 (y eazerbzyaz)ll:O}:
(dy46 — 2a1dy 26 + 2bady 3.4 + 4a1bady 23)/(arasdy 3 — das).

ipy; oL = [[0,0],[0,0]]] = {9y, 8, 20, (e 50, ) 7}
(a1a2dy 34 + 2do 4 5)/(b1bady 3 — ds6).

ipy1,o[L = [[1,0, [0]]] = {0z, 0, 20z, (ve™ ™+, )y (1,44}, €27 T7240, }:
(diae — 2a1d196 + 2b1d1 3.4 + darbidio3)/(aFasdios — doas).

ip11,c[L = [[0,0,0], [0]]] = {0z, By, 20, ('€ ™+0, )2y, e®*+2Y0, }:
(blb2d1,3 - d3,6)/(a1a2d1,3 - d2,5)-

ipy c[L = [[1],[0], [0]]] = {0z, Oy, 20, (y'e™* 0190, )iy, (e**H*¥0, )i, }:
(d1,2,4,6 + 2b1d1,2,3,4)/{(a352 - azb3)d1,2 + (b3 - bz)d2,4/a1 - (a3 - az)d3,5/b1}-

ipyy, oL = [[0, 01, [0], [0]]] = {0z, 8y, 20, (z'e™*+019. )1, (e®*H0%0, )3 o }:
(d1346 +2a1d1236)/(d1345 +2a1d1 235 — bidi234)-
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ipy oL = [[0], [0], [0], [0]]] = {0%, Oy, 20, (e“* %0, )i, }: di2s46/dr 2345
ip13.c[J = [[0,0,0]]] = {0s, 0y, 0y, 20, (x'€170, )7} .

ip13.c[J = [[0,0], [0]]] = {0z, 0y, Y0y, 20z, (x'€**0. )i_y, €*2*0. }: .

ip13.c[J = [[0],10,0]]] = {0z, 0y, Y0y, 20,70, (x'e2*D.)i_o}: I

ipy3 c[J = [[0], [0}, [0]]] = {0%, 0y, Y0, 20., (e™70.)}_, }: Ie.

ipigols = 0,j = [4]] = {9, 29y, 20, (00, (2)0- )i, }: z, I7.

ipiscls = 0,j = [1,1]] = {9y, 20, 20, 00,1 ()0, (v01,1(2)0:) (T, 1 }+ -

Derived Series (7,3)
ipig pls = 2] = {0y, 0, 20;, 2°0., ©0,, V1 ()0, Wa(x)9y }: x, Jo:.

Derived Series (7,3,0)

ipigcls = 1,j = [3]] = {0,, 20, V1 (x)0,, 20., (00i(2)0,)71}: =, I7.
Derived Series (7,2,0)

iplS,C[S =2,j=[2]] = {9,,20,, (\I’i(x)ay)?:lv 20, (90,1‘(35)@)?:1}: z, I7.
Derived Series (7,1,0)

ipigcls = 3,5 = [1]] = {9y, 20y, (¥s(x)dy)}_,, 20, 001(x)0. }: x, Ir, Iso.

Derived Series (7,0)
ipisals = 5.t € {1,2,3,4}] = {0, 20,, (Vs(2)9y + [i > t]ei(2)0: )i by,

Z, Zy, Zyy-
ip18,A[3 =t = 5| ={9,,x0,, (\Ili(@ay)?:l» Us(x) + 0.} @, 2y, 2y, Hao.
iplS,A[S = 57t = 6] = {83/,1‘81/, (qu($)ay)?:1} T, 2y 2ys Zyys H29'

iplS,C[S =4,j=[0]] = {Gy,xﬁy, (\Ili(x)ay)?:b z@z}: Z, (Ii)?iﬁ&
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4.3.2 Groups with Six Generators

Derived series (6)
P6 = {0x, 0y, 0, Y0, — 20y, 20y — Y0, x0, — 205, £0y + Y0y + 20, }:
A/B?*? C/B?, where
A =223 — zzp2y + 2Pray — 222y2yy, B 1= 2 (2 — 2yy)
C =6z, + 32°22 — 822,2) — 2200 — 422 2y + 42°2 20y,
pr = {0y + 20.,y0, + 20, (xy — 2)0y + y*0, + y20., 0y + y0., x0, + 20,
220, + (zvy — 2)0, + £20.}: ACY?/B%? C?D/B?, where
A= —2P 2 + 4220y — Y2y — 2 Zaa — ZaZyy — 2TYZay + 202y Zen
—2X2p 20y — 2YZyZay + 2YZa2yy + 2202y Zay,
B = —z+ a2, +yzy — 2,2y, Ci=2y —2, D = ziy — ZggZyy-
ipyg = {0., 04, 0y + 20, 20, + $220,, ©0, — yd,, YO, + 3y°0.}:
Gs1, G2,1/Gs1.
ipiA[s = 2| = {9, 20,+0,, 220, +2x0,, 0y, 220, +2y0,, x>0, + 22y, +2y0, }:
Hs1, Has.
ip3 4[s = 2] = {9y, 20,, %0, 0,, 220, + 2yd, + 20,
220, + 2xydy, + z(x + ¢2*)0, }: Hag, Hay.
ip3 4 = {0y, 20, + 0., 2%0, + 220,, 0,, 20, + yO, + 0.,

220, + 2xy0y + 2(cx + y)0s }:
2z + clog(zyy) + Hes/ 2y, A/2yy + B, where

A:=2(2z — ¢)z) + 4202y + Zua + 2220y) + 2cHes(2Hss + Hee),
B :=42% + 8czH33 + (22 + 2cHz3) Hee + (4Has + HZ;).

ips 4ls = 1] = {0s, 0y, 20y + 0., 20, — 20, Y0, + 20, £°0p +xy0y + (y — 12)0. }:
H27/(ZyyH§4)1/3: H46/(ZyyH34)2/3-

ip1y 4 = {0s, 0y, 20y, YO, + 20,,2%0,,y*0, + (2yz + ¢2%)0. }:
Hsg /[ (2, Hsr), H59/H§7/2~

ipsz = {0y, 0y, 20y + ¢20.,y0y + 20,, 20, + 2¢x20,,y°0, + 2y20, }:
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HﬁoHégil)ﬂ, He1 Hg,.
ipg o[m = (0] = {0, Y9y, £0s, 2*0; + Y0y + 220, 20.,y°0.}: Izg, Is1.

ipg o[m = 1] = {0, + 9y, x0, + y0,, 2°0, + y*0, + x20., 20, 0., x0. }:
12612(0,74/3) 126[2(0,74/3)

7,x,y,—17 7,9,Y,—2°
ipiyclm = 1,1 = 1] = {0y, Y0y, y*0y + (y — 1)20., 20., (V1 (2)y'0.) ;o }:
x, Iyg.

ip; p = {0k, 220, + Y0y, 2°0, + xy0y, 0., 20,, 2°0.}: yJas/z), y>Jus.
ipg p = {0, + 0y, 20, + Y0, ¥*0y + y?0y, 0., 20, 2°0, }:

{(@ = 9D = 222}/ (2"5"), {(x = )5 = 2zz] + 222)}/ (202)
ip14p = {9y, y0,, y*0y, 0., 20,,2°0.}: x, J1..

Derived series (6, 5)
ips[l = 1] = {20y, 0, — YOy, YOy, 0y + Y0y, 0y, 0y }: 2, Go/Gs.
ip5[m = [OH = {a’m 8y7 az: xay: 0, — yayv yax}: G27 G3-

ip20 = {817 a?ﬁ .’an + 827 xa’f - yay - 22827 yaﬂc - 22827 xaﬂc + yay}:
ChGa/G2, G2Gy/GB.

ipyy = {0y, 0y, 0y, ©0y — YOy, yOu, 20y + Y0y, + 0, }: € Ga, e¥*Gs.

Derived Series (6,5, 3)

ip14,C[m = O7l = 2] = {all? y8y7y28y7 Zazv (\I/l(:v)ﬁz)le]} z, 16'

ip; p[s = 0,¢ # 1] = {0,, 9y, ©0, + cyd,, s, 20, 20 }:
Jg/(l_C)Jll J(g2c_1)/(1_0)=]31-

ip; p[s = 0,c = 1] = {0,, 0y, 0, + Y0y, 0., 20;,2°0.}: Jo, J3/(2zz1).

ips pls = 1] = {0y, 05,20, + (z +y)0,, 0:, 20, 2°0: }1 Joa /e, Ty /e,
ipyg pls = 0] = {0y, 0, 20, 20,, ©0,, Y0, }: x, Ja1.

ipy p[s = [0,0]] = {€"70,, ™%y, O, (2°0:)7_o }: Ja1, ara2y+ Y aiJoy — Ja1.
ipy p[s = [1]] = {70y, 2e*9y, 0y, 0;, 20;,2°0. }: Ja1, ajy + 2a1Jo1 — Ja1.
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Derived Series (6,5, 3,0)

ipi 4ls = 3,t = 1] = {9, 20, + 0., 3%0, + 220,,2°0, + 3220,
Oz, ©Oy + cyOy + (¢ — 1)20,}: Hy, Ho.

ipiA[s = 3,t = 2| ={9,, 20, 2*0, + 0,230, + 320, O,,
x0y + cy0y, + (¢ — 2)20,}: Hy, 25/2_21{10/,2%.

ip},A[S = 37t = 3] = {8?47 :cﬁy, 5628y, xgay + 827 az: xaz + Cy&y + (C - 3)282}
Hy, Hg.

ipi 4ls = 3,t = 4] = {9, 20,, ¥%0,, 2°0,, 0, 10, + cyd, + (c — 4)20.}:
H57 HG: H’?-

ip} a[s = 3,t = 1] = {9,, 20, + 0., 2?0, + 220,, 239, + 3220,
8;,;,%(91 + yﬁy + Caz}l HH, H13.

ip%,A[S = 37t = 2] = {8?47 :cﬁy, C62814 + az? xBay + 31‘82,, a’r? xaz + 2yay + Caz}:
H117 HQO'

ip%,A[S = 3,t > 3] = {8y, xﬁy, 5628y,3:38y, 817 x@x—l—tyay +Caz}l H15, H16, H17.

ipé’A[s =4,t=1] ={9,, 20, + 0,, 220, + 220,, 230, + 32°0,, O,
x@z + (4y + $5)8y + (32 + 4.%'3)82}3 HQ, H26.

ip; 4ls = 4,1 = 2] = {8,, 20, 2°0, + 0., %0, + 310, 0,
3783; + (4y + $5)ay + (22’ + 6172)83} HQ@, H31.

ipé,A[S = 47t = 3] = {ayv any, xzayv xgay + 827 8&07
x(?x + (4y + x5)(9y + (Z + 417)83} HQ@, H30.

ip3 4[s = 4] = {0,, 20,, 2%0,,2°0,, 0,, 20, + (4y + 24)9, + 0. }:
H157 H167 H17’
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Derived Series (6,5,0)

iplg,A[S = 37t = 17 2] = {8?;7 xﬁy, (\Ijl(x)ay + [Z 2 t]@z(x)az)?:h
YOy + 20, }p,=1: T, 2.

ip19,A[3 =t= ] = {8@/7 yay + 20, xay: (\Ili(x)ay)?zl, qu(x)ay + az}:

ipjg als = 3,t = 4] = {0y, Y0, + 20., 20y, (Vi(2)0,)}_}: =, 2, 22yy, Ha.
iPog all +q+ >0, si = 6] = {0, (e"* (270, + Wi,jaz»g:;si}: Zys Zyy-
Derived Series (6,4, 3)

ipy ols = n =mo = 0] = {0,, 0y, 220,, 2%0,, 20,, 0. }: I3, I7.

ipi50[p = 0,m = (0] = {0, 0y, Y0y, y*0y, 20.,e"70,}: I, I3.

ipy3p = {0s, 0y, Y0y, 0:, 20;, 220 }: Ji2, J32.

ipy; pls = 0,8 =[] = {0y, 40y, 0y, 0., 20., 2°0}: Ji2, Jaz.

Derived Series (6,4,2,0)

ipiA[s = 3,t = 3] = {9,, 20y, *0,, 230, + ,, Oy, x0y + 3y0, + 0. }: Hi1, Hig.

ipyals =2,t = 1] = {9,, 20, + 0, 120y + 220,, 0y, yOy + 20,, 20, — 20, }:
Hy, Hyz + Hya.

ip4,A[S = 27t = 2] = {ayv :v(?y, lzay + 827 aﬂc: yay + Zazv xaﬂ? - 2282'}
Hyg, Hyo + 2Hy;.

ip4,A[S = 2,t = 3] = {83;7 xﬁy, CC28y, &B,yay + zaz,xﬁz — 3282}: ng, H41.
ip370[8 = 07 m = [2]] - {aﬂc? xaz + ay7 ZaZ7 az: 37827 37282}: (116)?::67,7-
iplO,C[l = [17 17 1“ = {ay7 yay? Zaz? (qujl(x)az)gzo} Z, 147/148‘

ipyy,[U = [[0], [0], [0])] = {8y, 20, + Y0y, 20, (x*1y'D.)7_o}: xlss/Izs, Is1/Irs.
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Derived Series (6,4, 1,0)

: P =2y pe/(e=2)
ip, ¢[s = 0,m = [1]] = {0,, 0y, 20, + cy0y, 0., 20, 20 }: I; Is, I 1.
ipyc[s = 0,m = [0,0] = {0,,0,, 20, + cydy, 0, y0.,20.}: I3/I5, I,/ 13"

ip; c[s = 1,m = [0]] = {0, 0y, x0y, 20, + cydy, 0., 20, }:
Lo/(2217/), I 1) 22,

ips o[s = 0,m = [0, 1]] = {0,, 20, + 9y, 20., Y0, 0., x0.}: (I16)i5 13-

ip;cls =1,m = [1]] = {0,, 0,20, + (y + 1)0,, 20, 0.,20.}: s, L.

ips ¢[s = 2,m = [0]] = {0, 0y, 20y, 20, + (2y + 2°)9y, 20, 0. }: Iz, (I21)i=10-
1ol = [2,1]] = {8, 40, 20, (5 U (2)0) g, Ua(2)0-}: 2, 24yTao) Ty

ip12,c(U = [[1], [01l] = {0y, 20x + y0y, 20, (2™ In(2)'y0.); j—o }:

13186/184, xZZyy/I84-
ip12,C[U = [[0,0], [0]]] = {ay: 20, + Y0y, 20., (xalyi@)zl:()v 120, }:
13186/185, x22yy/185-
Derived Series (6,4,0)
ip3o[s = 0,m = [0,0,0]] = {0y, 20, + 0y, 20:,4y0-, Y0z, 0. }: (116){=5 5.
ipg oL = [[4]]] = {9y, 20., (Uy4(z)ed,)i }: z,e/ers, wheree € {e13, €95}

ipg oL = [[3, 1]]] = {9y, 20, (¥1,(x)eY0.)_,, y¥11(2)e . }:

z, 61,2,3,4,5/61,2,3,4,6-
ipg o [L = [[2,2]]] = {9y, 20, (y'¥1;(2)e™¥.) 213} @, e1p34/€1236.
ipg,C[L = [[27 17 1“] = {8?47 Zaz? (yi\Ile (x)ecwaz)?:m @1,2(37)6011/82}:

z, 61,2,3,4/61,2,3,5~

ip9,C[L = [[17 17 17 1“] = {ay7 Zaz? (yiqjl,l(x)eqyaz)?:[)}:

T, efeis, e € {61,4763,5}-
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ipg,C[L = [[3]7 [1”] = {ayv 2827 (\Ill,i(x)eqyaZ)?:lv qj?,l(x)GCZyaZ}:

z, 61,2,3,4,5/61,2,3,4,6-

ip o[L = [[2], [21]] = {9y, 0., (¥i(x)e¥0. )15}

z, 61,2,3,4,5/61,2,3,4,6-

ipg o [L = [[2, 1], [1]] = {0, 20:, (W1(x)ev0. )2y, (Vi1 (2)ylev0.) =52, }:
xz, 61,2,3,4,5/61,2,3,4,6-

ipg,C[L = [[17 1]7 [2”] = {ayv 2827 (yiqll,l(x)ecwaZ)zl:O? (\1127i(x)662y83)12:1}:

z, 61,2,3,5/61,2,3,4,6~

ipg oL = [[1, 1, 1], [1]]] = {0}, 20, (" ¥r1(2)er0.) i, Yo (x)eD. }:

z, 61,2,3,4,6/61,2,3,5,6-

ipg,C[L = [[17 1]7 [17 1”] = {ayvzam (yj\lli,l( ) “vo, )i 1122

z, 61,2,3,4,5/61,2,3,5,6~

ipg oL = [[2], [1], [1]]] = {9y, 20:, (Wi (2)e¥0: )iy, Uip(2)er O }:

z, 61,2,3,4,5/61,2,3,4,6-

ipg oL = [[1, 1], [1], [U]] = {8, 20, (Vi ()€Y D, )ivs, y W11 (2)e™ ¥, }:

T, €12345/€1,2346-
ipg oL = [[1], [1], [1], 1]]] = {9y, 20., (Wi (x)e“¥.){1 }: @, e12345/€12346:
ip1o,cl = [Bl] = {9y, y0y, 20., (i(2)0.)1, }: x, I.
ip1o.c[U = [[2]]] = {9y, 20, + y0y, 20z, (x° log()'0. )i }: (1) sy
ip1o.c[U = [[1,0]]] = {9y, 20, + y0y, 20z, (x°* log(x)'0.)i_g, 220 }: (L)
ip12,c[U = [[0,0,0]]] = {0y, 20, + Y0, 20, (%0, )}_1 }: (1),
ipygcls = 0,j = [2]] = {9y, 90y, £0y, 20., (00,:(x)0.)7_, }: =, le1/z].

iplg,C[S = lvj = [1” = {all?yay:xa@h\Ill(x)ayvzazaeﬂ,l(x)az}: xz, 159~
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Derived Series (6, 3)

ipig pls = 1] = {8y, 29y, V1 ()9, 0., 20,, 2°0.}: x, Jo1.

Derived Series (6,3, 1,0)

ipy3c[J = [[1]]] = {0%, 0y, y0y, 20, (y'e0.)i_o}: Iss, Ira.

Derived Series (6,3,0)

ip4,C[S = 07 m = [OH = {all?yay: 8:571’8:5, Zamaz}: 111127 112]13'

ipyyo[L = [[2]]] = {0s, 0y, 20., (y' e 0¥0.)7 o }: I/dyg, I € {dya,dss}.

ipll,C[L = [[1,0]]] = {awv Oy, 20, (Uealx—i_blyGZ)vE{l,x,y}}:
(B3dy; — d3,it3)/(aidia — daa)is.

ipn,C[L = [[0,0,0]]] = {0, Oy, 20, (xiealx+b1yaz)?:0}3 (d271,5+i/d1,3>%=0'

ipy1,c[L = [[1], [0]]] = {0s, 3y, 20, (y'e™*T*19d,)_,, e®2*F2¥0, }:
I/dyoa, I € {bibodi o — d35,d126 — 2b1d123}.

ipy; o[L = [[0,0], [0]]] = {0s, 9y, 20, (x'e®*01¥9,)|_, e™2*172¥9, }:
I/(2a1d1 23+ di34), I € {araadi 3 — dos,b1bady 3 — dsg}.

ipy; oL = [[0], 0], [0]]] = {8z, By, 20, (e** %0, )2_, }: (d12,3:/d12,34)0s-
ip13.c[J = [[0,0]]] = {0%, 0y, Y0y, 20, (x'e**D.)io}: Is, In.

ipy3.c[J = [[0], [0]]] = {0, By, YDy, 20, (%02 )iy }+ I, Ira.

ipiscls = 0,j = [3]] = {0y, 20, 20;, (00,(x)0:)i1 }: , Ir.

i cls = 0, = [0, 1]] = {9y, 20y, 20, (011 (2)0)5, L, Ion/ 22,
ip1gcls = 2,j = [0]] = {0, y0y, 20, (Vi(2)0,)7_1, 20.}: @, (I})Ls6.

Derived Series (6,2,0)
iplS,C[S = 17j = [2“ = {a?ﬁxay?@l(x)ayvzam (60,1'(37)82)12:1}: z, I7'

81



Derived Series (6, 1,0)
iplS,C[S = 27j = [1“ = {ayvaja% (\Iji(aj)ay)zz:b 2827 90,1(56)82}: T, 177 Isg.

Derived Series (6,0)
iplS,A[S = 47t € {17 27 3}] = {8@/7 xa@p (\Ill(x)ay + [Z Z t]@i($)82>?:1}¢t:1:

x, Zy, Zyy'
ipigals =t = 4] = {0y, 20y, (Vi(x)0,)i_,, Va(x) + 0.}: @, 2, 2y, Hao.
ipigals = 4,t = 5] = {9y, 20,, (V;(x)dy)i1 }: x, 2, 2y, 2y, Hoo.
ipis cls = 3, = [0]] = {9y, 20, (Vi(2)9,)iy, 20:}: @, (1i)iZgs.
4.3.3 Groups with Five Generators

Derived Series (5)
ipy[l = 1] = {20y, 0, — Y0y, Y0y, Or, 0y }: 2z, Ga, GS.

ipi3 = {0s, 0y, 0, + 0., 20, — YO, — 220,,y0, — 2°0,}:
G3/G3, G4/GY?, G5/GY*.

ip;A[s = 1] ={98,, 20, + ., Oy, 220, +y0, — 20,, >0, + Ty, + (—x2 +y)0. }:
Hyy, Hp, H34/Zyy'

ipg’A[s = 1] = {9,, 20y, Or, 220, + yI, + 20,, 220, + xyd, + z(x + ¢2?)d, }:
Hyz, Hyy, Hos.

Derived Series (5,4)
ip;sclp > 0,m =[] = {0:, 0y, Y0y, y*0y + pyz0., 20.}: 22/%, 2ax/%, Is2.

Derived Series (5,4, 3)
ip}&A = {0y, 0y, 0y, Y0, + 20,,y?0y + (2yz + ¢2?)d, }:
H56H517/2/2’37 H58/(Z:BH57)1/27 H59/H§7/2~

ipf&A = {0y, 0y, 20y + ¢20,,y0y + 20,,y*0y, + 2y20,}: 22, *24s, Heo, He1.
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ip?G,A = {8237 81/7 x(?x + 2827 ya@p y2ay}: Ryy ZRzx) szy/zy-
iP?,c[m = 0] = {0, 220, + yay,:ﬁ@x + 2ydy, 20, 0.}: yly, y3f10/237 y123/25‘
ip8,C[m = 0] = {823 + ay: xaﬂ? + ya@p 17282; + y28y7 Zazv az}

—3/2,1/2 —1/2,—1/2 1/2,—-3/2
]2(7,2:,/w,2/ )7 ]2(7,23{3170 / )7 ]2(7,/y,y,—/2 )

ipycm=0,0l=1] = {8y, 90y, y*d,, 20., V1(2)0,}: x, I, Ius

ips pls = 0] = {0y, 0y, ©0, + (x + y)0,, 05, 20, 220, }: Jo/e¥, Jiq, Ja1 /€.
ipyg.p = {9y, y0y, 0., 20.,2°0.}: x, Jia, J32.

ipyyp = {0y, 0y + Y0y, 0., 20.,2°0 }: Jo, xJi1, 31

ipy p[s = (0] = {€*70y, 0y, 0, 20, 20, }: ary+Joy, Jo,1, afy+2a1Jo 1 — Ja 1.

Derived Series (5,4,2,0)

ipiA[S =2,t= 1] = {ayv xay + 8z:xzay + 2xamax:$ax + yay + Caz}:
Hyy, His, Hio + Hig.

ipi als = 2,t = 2] = {9, 20,, %0, + 0., 0y, ¥, + cyd, + (c — 2)20.}:
Hl: Hg, 25/2_4(2232 + Hg)

ipiA[s = 2,t = 3] ={9,, 20y, z°0,, Oy, 0y + cyd, + (c — 3)z0.}: Hs, Hg, Hy.

ipiA[s =2,t =1] ={9,,20, + 8,,2*0, + 2x0,, 0, x0; + Y0, + I }:
Hyy, Hyz, Hip + Hyy.

ipiA[S = 2,t > 2] = {8y7$8y7$28y,8$,378$ + tyay + C&Z}Z H15, H16, H17.

ipé’A[s =3,t =1] ={9,,20, + 8,0z, 20, + 3y + 2*)0, + (22 + 32%)0,,
x28y + 21‘82}1 Hg, Hgﬁ, Rxly + ZZ; + H18 + 6H33.

ip} 4ls = 3,t = 2] = {0, 20y, 20, + 0., 0, 20, + (3y + 2%)9, + (2 + 32)0. }:
H267 H307 H32-

ipg,A[S =3] = {8y7$8y7$28y78x,$8x + (3y + mg)ay + Caz}: Hs, Hig, Hyy.
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Derived Series (5,4,0)

iplg,A[S =2t=1]= {a?n YOy, + 20,, 20, \Ijl(x)ay + 9., @2(55)83/ + o(2)0. }:
x, Zy: H63-

ip19,A[5 =2,t=3|= {ay7yay + 20;, 20y, \Ijl(x)ﬁyv \IJZ(x)ay}3

T, 2y, 22yy, Hag.
Derived Series (5, 3)
ip;sclp=0,m =[] = {0:,0,,y0y,y?0y, 20.}: 2:/2, 2ea/%, Is.
ipll,D = {az78y78z728z7228z}1 Jo, Ji1, J31-
ipls,D[S =0] = {8y7338y78Z7zaZ7223z}3 x, Jo1, Jaa.

Derived Series (5,3,1,0)

ipi 4[s = 2,t = 2] = {9, 20,, ¥°0, + 0., 0y, 20, + 2yd,, + c0.}:
HH, ng, 2z + Hg/Zg + CH33.

ipy als = 1,t = 1] = {0y, 20y + 0, Op, Y0y + 20,, 20, — 20, }:
H27 H437 H44-

ip4’A[S = ]_,t = 2] = {ay, l‘ay, Gw,yﬁy + z(?z, :an — 22’83} ng, [’1417 H42.
ip; c[s = 0,m = [1]] = {8,, 20, + 9y, 20:, 0., 20. }: (I16)i= 6 7-
iplo,c[l =[1,1]] = {Gy,yay, 20, (yi\lll(@az)zl:o}‘ T, Iy7/1ss, Zyyf47/]520-

ipyo,c[U = [[0], [0]]] = {8y, 20» +y0y, 20., (x*y'0.)io }: Iso, v1s6/Izs, Is1/ I1s-
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Derived Series (5, 3,0)
ip, ¢[s = 0,m = [0]] = {0,,0,, 20, + cy0,, 0., 20 }:
Ill/(cfl)Iz7 If/(0*1)137 1520*1)/(0*1)14'

ip3ofs = 0,m = [0,0]] = {0, 20, + 9, 20., Y0, 0.} (116);?::5’,3’4.
ip3,C[8 =1lm= [O]] = {a’B? 8?;7 r0; + (y + x)ayv 20, az}: (117);'1::77,9,10'
ipg o[L = [[3]]] = {9y, 20., (Uy,(2)erv9,)3 1 }: z,e/e1q, wheree € {e1 3,625}

ipg oL = [[2, 1]]] = {9y, 20, (y' W11 (2)e¥0) g, ¥12(x)e¥0 }:

x, (61,2,3,i/€1,2,4)?:5-

ipy oL = [[1, 1, 1]]] = {0, 20., (y' W11 (2)e¥d.)7_, }:
z, /ey 2, where e € {e14,€35}.

ipg o[L = [[2], [1]]] = {0y, 20., (V1 (x)e¥D, )7, ¥y o(x)eY. }:

z, (61,2,3,1/61,2,3,4)55:5-

ipg oL = [[1, 1], [1]I] = {0y, 20:, (Wi (2)e¥0.)i,, Wra(2)ye? 0. }:

z, (e1231/€1234)i5-
ipg c[L = [[1], [1], [1]]] = {0y, 20, (Via(2)e“¥0.)i 1 }: @, (€123:/€1,23,4)i=5.6-
ipyo o[l = 2] = {0y, ¥9y, 20:, (Vi(x)0.)i_, }+ @, Is, Laslao-
ip12,c[U = [[1]] = {0y, 20, + Y0y, 20, (v log(2)0. )i }: (Ii)Es2s Isa/(2y)-
ip1o.c[U = [[0,0]]] = {9y, 20, + y0y, 20, (x4 0.)i }: (1) Esy, Tss/(22y).
ipyg s = 0,j = [1]] = {8y, yd,, 0, 20.,001(x)0.}: x, Isg, zyyleo/7,-

iplg,C[S = 17j = [O” = {Gy,yﬁy,xﬁy,\lll(x)ay,zaz}: Z, (Il)?iEG
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Derived Series (5,2,0)

ipy1,c[L = [[0,0]]] = {9, 8y, 20, (x'e*01¥9,)}_o }:
]/d1,37 Ie {d1,6>d2,57a%d1,2 — d2,4}-

ipy; o[L = [[0], [0]] = {0z, 8y, 20, (e™*¥¥0,)7_1 }: (di/d123)0y-

ip11c[L = [[1]]] = {0k, 9y, 20., (y'e™*01¥0.) 1, }:
I/dyo, I € {d1,47d3,57b%d1,3 —dse}-

ip13’C[J = [[0]]] = {852783;73/81;728276(119682}: Is, Is3, Irg.

ipsc[s = 0,j = [2]] = {9y, 70,, 20., (0o,i(2)02)71}: , In, Tor/(2y2yy)-

Derived Series (5,1,0)
ipl&C’[S = lvj = [1” = {all?xay?\lll(x)ay: 28279071($)8z}: xz, I77 159-

Derived Series (5,0)
ipigols = 2,5 = [0]] = {0y, 20,, (Vi(2)0,)7s, 20:}: @, (1)265.

ipigals =3, € {1,2}] = {0, 20y, (Wi(2)y + [i = t]p;(2)0:)11 Fo, =10

T, 2y, Zyy-
ipigals =t =3] ={9,,20,, (Wi(x)0y)7=y, Ys(x) 4 0.}: 1, 2y, 24y, Hao.

ipl&A[S =3,t = 4] = {0y, 20y, (Vi(2)0y)i_, }: «, 2, 2y, 24y, Hao.

4.3.4 Groups with Four Generators
Derived Series (4)
ip67A[a = 0] = {8z, yﬁy, x@z, 1‘28z + xyﬁy}: Z, H49, [{507 Hg/(H49H52)2.

ipg 4la = 1] = {0,, Y0y, 20, — 20;,3%0, + xYyd, — 2220, }:
Hag/z, Hso/%, y(2220y + Hs) /(2*Hss), (y*Ho + Hsa) /(27 Hzy).

ipjyclm >0,l=0] = {0y, y0,,y%0, + m(y — 1)20., 20, }: x, 22/2, 24/, Isa.
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Derived Series (4, 3)
ipj a[s = 0] = {9y, 0, 220, — 220,, 20, — 2220.}:

Zy/Z, Zyy/Z, (szx - szy)/'zg? (QZZWC - 323%)/24

ipi5 4 = {00, 0y, Y0y + 20:, 420, + (2yz + c2%)0. }:
Hse/(22:), (2/2:)? Hsr, 2Hss /23, (2/22)* Hso.

ipir,’A = {0s, 0y, YOy, V?Oy }: 2, 2z, Zuw, Zy/Zay-

ipyclm =1=0] = {0,,y0,,y°0y, 20.}: x, 22/%, %aa/%, I
ipg p = {0y, 0., 20;,2°0.}: x, Jo, J11, Ja1.

ipyo pls = [I] = {0s, 0:, 20, 2%0.}: x, Jo, Jia, Ja1.

Derived Series (4,3,1,0)

ip},A[S = lvt = 1] = {ayv l‘ay + az: awvxaw + Cyay + (C - l)zaz}
H17 H27 H37 H4-

ip; 4ls = 1,t = 2] = {9, 28y, 0, x0, + cyd, + (c — 2)20.}:
Hs, Hg, Hy, 2479/(<"D Hy /22,

ip%,A[S =1,t > 1] = {0y, 0y, O, £0, + ty0y + 0. }:
Hs, Hyg, Hyr, Hg(H51)a:2/z§.

ipé,A[S = 2,t - 1] = {8?47 CCay + az: 8:]07378:10 + (2y + 372)(9y + (Z + 23:)82}
Hy, Hyg, Hog, 2H33 — H18/Zy'

ipg,A[S =2] = {8y,x8y, Op, 10, + (2y + 332)(9@; +¢0.}: His, Hig, Hi7, Hss.

Derived Series (4, 3,0)
ipjg als =t =1] = {0,,y0, + 20.,20,,V1(x)0, + 0. }: =, 2,, Hag, 2y, Hes.

ipjg als = 1,t = 2] = {0y, Y0, + 20.,20,, V1(7)0,}: T, z,, 224y, Hog.
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Derived Series (4,2,0)

ipgals =0,t = 1] = {0y, 0, y0, + 20,,x0, — 20.}:
22y ) 2z, 22an] 72, ZP2ny) 22, 2324/ 22

ipiA[S = 1,t = 1] = {8y, xﬁy + (92, 8x,568x + yay + Caz}l HH, ng, H13, H14.
ipS,C[S = 07 m = [O]] = {8237 x@x + ay7 Zaz? 82’} (‘[15)i:17 (*[16)?::23,3,4’

ipg o[L = [[2]]] = {9, 20., (¥1,4(x)e¥D.)i, }:
z, e/e1 3, where e € {e1, €25, €136}

ipg o[L = [[1, 1]]] = {9y, 20, (y' ¥1,1(x)e D)o }:
x, e/e1 s, where e € {e14, €35, €123}

ipg c[L = [[1], [1]]] = {0y, 20, (Wi (2)e¥0. )1}t , (e12:/€123)i=a56-
ipw’c[l = [1]] = {0y, y0y, 20,, V1 (x)0, }: x, Ig, Lsels7, 147/ ss.

ip1y o[U = [[0]]] = {0y, 20, +40,, 20., 0. }: x2,/Izs, Iso, 2°20y/Izs, Is1/ Is.
ip1gc[s = 0,j = [0]] = {0y, Y0y, 20y, 20, }: x, (I}) 56

Derived Series (4,1,0)

ip;; o[L = [[0]]] = {0:, 8, 20., e *¥0199, }: (di/d12)s.

ipiscd = Il = {0, 0y, Y0y, 20 }: 22/2, 202/%, L6, Ise-

ip;gols = 0,j = [1]] = {0y, 20y, 20,001 (x)0.}: , I7, I, 160/23.

Derived Series (4,0)

iplS,A[S =2t=1]= {8117 20y, ¥1(2)0y + 0., ¥a(z)0, + ©q(2)0. }:
T, 2y, Zyy, He3.

ipigals =t = 2] = {0y, 20,, ¥1(2)0,, Yao(2)0, + 0.}: x, 2y, 2y, Hag.
ipl&A[s =2,t = 3] = {0y, x0y, V1(x)0,, Ya(x)0, }: =, 2, 2y, 2yy, Hao.
iplS,C[S = 17j = [O” = {8@/7458@/7‘1’1(45)8% ZaZ} z, (11)16263
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4.3.5 Groups with Three Generators
Derived Series (3)

ip; 4 = {0, 200, + y0,, 20, + xyd, + y?0. }:
22 —yzy, 22 — Yy, 22— YP2 — Y22y, 227 — Y2z, — YPPruy — YR 22y,

22% — 222z, — 2922, — Yt 2pe — 203220, — Y2272y,

ipg 4 = {0, + 0y, 20, + y0,, 20, + y*0, + c(y — )0, }:
A2Zzy, (C‘i‘AZz)(Hg,l)a:,l, (c+Azy)(H51)a:1, (C‘i‘BZmz +2AZ{B)(H51)QZ,2,
(¢ — Bzy, + 2Az2,)(Hs1)a=1, where A :=z —y, B:=y? — 2yz + a°.

ip}47A = {08y, y0, + 20, y*0, + (2yz + x2*)0, }:
x, 22(1 + 22)/HE;, Hse/(2Hss), {27 — 2(2202y — 2209)}/ HE;,
L2202y — 2222)) + 22 (2P2yy — 6202y) — 20(22, + 22,) — 22}/ Hy;.

ipf47A = {8y, y0, + 20, y*0, + (2yz + c2%)0. }:
z, H56/(Zzz)7 (Z/Zz)2H577 ZH58/Z;%7 (Z/Zx)3H59-

Derived Series (3,2,0)

ip%,A[S = 07t = 1] = {8347 a’m xaz + Cyﬁy + (C — 1)282}3
2(2_0)/(0_1)217 Zl/(c_l)2y7 Z(S_C)/(C_l)zz:B? Z2/<C_1)Zzy7 Z(c""l)/(c_l)zyy.

ipt 4[s = 0,t = 1] = {9, 0, 20, + YO, + 0. }:
Z:B(H51)(l:17 Zy(Hf)l)a:l; ZCBCB(H51)(1=27 Z:py(H51)a:27 Zyy(H51)a=2-

ip3 als = 1] = {0y, 0y, 20, + (y + x)0y + c0:}: His, Hie, Hir, Hss, Har.
ipg als = 0] = {0,,y0, + 20.,20,}: x, z,, 22yy, Ho/z, Hay.

Derived Series (3,1,0)

ipi34 = {020y, Y0y + 0.} 2oy Zaa, €72y, €24y, €72y,

ipg oL = [[1]]] = {0, 20., W11 (x)evD. }: @, (e13/€1,2)i=3456-

ipycll =[] = {0y, ¥0,,20.}: ©, 2:/2, 2aa/%, 1, 21s6.
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Derived Series (3,0)
iplS,A[S = 17t = 1] = {a?hx&y?\ljl(x)ay + 82}: z, Zy7 Zyya H297 H64-

ipigals = 1,t = 2] = {0y, 20, V1(x)0,}: z, 2, 2y, 2y, Hao.
iplS,C[S = 07j = [OH = {a%xay?'zaZ}: T, (11)16263
4.3.6 Groups with Two Generators

Derived Series (2,1,0)

ip1g 4 = {02, Y0y + 0.}: @, 20, Zaa, €72y, €24y, €72y,

ip1g 4 = {00, 20 + Y0, + c0:}: 2 — clog(y), Yz, Y2y, Y Zaw: Y Zay, Y2y
Derived Series (2,0)

iP1 a4 =1{0: 0y} 2, 22, 25 Zews Zays Zyy-

ipjgals = 0] =1{0,,20,}: z, z, 2, 24y, Ho, Hag.

ipg oL = [[0]]] = {0y, 20.}: @, z/2, 2/ 2, 22w/ 2, Zay/ % 2yy/ %

4.3.7 Groups with One Generator
Derived Series (1,0)

ipga = {0y} @, 2, 22y 2y, Zaw, Zays Zyy-

4.3.8 Groups whose Invariants were not found

Derived Series (6)
Ps = {9z, 0y, 0z, (u0y = V0u) (w0)=(e.0),(22), () }-

Derived Series (n,n — 1,0)

ipyal3 <14+q+> 7, s <5 2, 2,, remaining invariants huge.

ipy A3 <3+h+s+ S s < 6]: z,, remaining invariants huge.
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Chapter 5

Lower Invariants

In this chapter, we deal with groups with more than seven parameters. In-
cluded are all types of space groups, except Amaldis groups of type B. We
usually indicate the lower invariants; in those exceptional cases, where the
coefficient matrix of the determining system has rank less than eight, we
indicate the invariant basis.

The invariants in this chapter are listed lexicographically according to
the derived series of their corresponding groups. To this end, the structure
of any derived series is represented as a function of the unknown group size,
which is always denoted by n.

Example: ip,g[h = 1] has the derived series (9,8). Its lower invariants are
found in Section 5.2 (“Lie’s Imprimitive Space Groups”) in the list “Derived
Series (n,n —1)”.

The groups themselves are indicated by the names defined in Chapter
3 (“The Space Point Groups”). For example, the p; appearing in the lower
invariant list for Lie’s primitive space groups are defined in Section 3.3 (“The
Primitive Space Groups”).

As usual, [-] denotes the truth value function [z] = 1, if z is true, [z] =0
otherwise. If x is not a truth value formula, the symbols ‘[, |’ simply denote
square brackets.

5.1 Lie’s Primitive Space Groups

The expressions F; can be found in Subsection 4.2.1.
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5.1.1 Lower Invariants

Derived Series (n)
P1, P2, P3: [3.

Pa: Io, F3+ F,
F = 2,.(2% + 222,) + 224 (Ty — T2, + y2y) + 24y (Y2 — 2y22).

Ps: F17 F32 + 2(F2 + Zgy)Fl + F’7
F=22,(1+222) + 25,(1 + 222) — 4202y 20y (200 + 2yy)-

5.2 Lie’s Imprimitive Space Groups

The expressions G; can be found in Subsection 4.2.1.

5.2.1 Lower Invariants

Derived Series (n)

ipglh = 1], ips,[h = 1]: Go.

ipy;[m = 1], ipyp[m = 1]: Ga, Gs.

ip1o(= ips3), iPyi[m # 1], ipyy[m > 1]: Gs.

ipy;[h > 1], ipgo[h > 1], ipgy[h > 1]: none.

ips;: 2, Go.

Derived Series (n,n — 1)

ipy, ips[m ¢ {[0], [1], [0, 0]}, ipyp[m = O](= ipys), ipsge[h = 0]: G
ipyg[h = 1], ipys[h = 1]: Go.

ipyg[h > 1], ipys[h > 1]: none.
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Derived Series (n,n — 1,1 — 2)
ip;, ipg[m > 1], ipgy[h = 0]: Gs.
ipg[m = 1]: Go, Gs.

Derived Series (n,n — 2)
ipg[m = [1]]: G2, Gs.

ipgim = [0,0]]: G5, G2 + X\2Gs.
ipg[m ¢ {[0], [1], [0, O[}]: G
ipys[m = 1]: Gb.

ipys[m > 1]: none.

Derived Series (n,n —2,n — 3)

ipg[m € {0, 1}|(= ipgs[h = 0]): Ga, Gs.

ipg[m > 1]: Gs.

5.2.2 Rank Seven

Derived Series (n)

ip, (= ipyg), ipy[l > 2]: 2.

ipylh = 1]: Go.

ipy;: A?/B3, where A and B are defined at the end of the chapter.
ipyg: ¥ (Gy — 2G3/3).

Derived Series (n,n — 1)

ips[l > 1]: 2.

ips[m = [1]]: Go/Gy”

ips[m = [0,0]]: (Ga + \2G3)/G3>.
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5.3 Amaldis Groups Of Type A

The expressions H; can be found in Subsection 4.2.2.

5.3.1 Lower Invariants
Derived Series (n)

ips als > 2]t 2y, Ha.

Derived Series (n,n —2,n —4,0)

ipyals > 3,1 <t <sl: 2y, 2.

5.3.2 Rank Seven

Derived Series (n)

ip;A[S > 3] H21.

Derived Series (n,n — 1,n — 3,0)
ipiA[s >4,1<t<s|: H.

ip?,A[S > 4, 1<t S]Z Hy;.

ip5 ls > 5,1 <t <s—1]: Ha.
Derived Series (n,n — 1,0)

ipy AB+h+s+ E?:l si > T): 2.
Derived Series (n,n —2,n —4,0)
ip47A[S > 3,t = 1} HQ.

ip47A[S >3, t= S]Z Hiyg.

Derived Series (n,n — 2,0)

ipy A[3+s5+h+ S s > T): 2,
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5.3.3 Rank Six

Derived Series (n)

ip3 4[s > 3]: Has, Hos.

Derived Series (n,n —1,n — 3,0)
ip 4ls > 4,t =1]: Hy, Hs.

ip%’A[s > 4.t =s|: Hy, Hs.

ip} a[s > 4,t =1]: Hi1, Ha.

ipj 4ls > 5,t = 1]: Hy, Hos.

ip5 4ls > 5,t = s — 1]: Hag, Ha.
Derived Series (n,n — 1,0)
ipygals >4,t=1,.,s5—-1]: z, z,.
iPogall +q+ D20 8 > Tt 2y, 2y
Derived Series (n,n —2,n —4,0)
ipi 4[s > 4,t = s]: Hy1, Ho.
ipyals > 3,t =s+1]: Hig, Hy.
5.3.4 Rank Five

Derived Series (n,n —1,n — 3,0)

ip}’A[S > 4,t > S]I H5, H@, H;.
ipiA[S > 4,t > S]l H15, H16, H17.

ip;A[S > 5] [’1157 Hlﬁ, Hi;.
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Derived Series (n,n — 1,0)

ipig als > 4,t = s|: z, 2, Ha.

Derived Series (n,0)

ipl&A[S > 57t = ].7 , 8 — 1] T, 2y, Zyy-

5.3.5 Rank Four

Derived Series (n,0)

ipl&A[s > 5t =s|: x, 2y, 24y, Ho.

Derived Series (n,n —1,0)

ipigals >4,t =s+1]: z, 2, 22y, Ha.

5.3.6 Rank Three

Derived Series (n,0)

ipigals >5,t =s+1]: , 2, 2, 2y, Ha.

5.4 Amaldis Groups Of Type C

The expressions [; can be found in Subsection 4.2.3.

5.4.1 Group Parameter Related Numbers

In this section, some of the derived series in the headings contain parameters
like d, e, etc.

Example: “Derived Series (n,n — 2,k,0)” indicates that the groups listed
below that heading have a derived series of the form (n,n — 2, k,0) for some
kEwith0<k<n-—2.

These parameters are actually linked to the parameters of a corresponding
group, a complete list of these correspondences is given below.
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For ip; o(s, m = [my, ... ,my],m ;1 > m; + s) we define

d:=Y [mi —m; > s|, and

e:=[s#0] ~max(0,z_:mi + (s —=1)({ = [mo =0]) + ; [Miy1 —m; = s)).

=0 )

N

Il
o

For ip3 ¢ (s, m = [my, ... ,my],m 11 > m; + s) we define

f == max(0, Zmi + (s —2)(l — [mg = 0])).

=0

For ipyq o[l = [lo, - . . , lm]] We define

i=1
For ip12,c[i = [i1,,1m), U = [[(uu)i’ﬁl]?io]]] we define

k= Z(Zl + Zum).
1=1 i
For ipy5 o[ = [[(Jm,i)iZ)5n=1]] we define
Jji=s+ Z Tm-

For iplQ,C[Shj = [jov s 7]m]] we define

h = ijsk,
k=0

where (si)r>o is the unique solution of the initial value difference sequence
problem
i 2
A(()O) =89 :=0, (A(()) = (S+ ))f;rll, AGT2) =1,
i

Remark: Note that a derived series of the form (n,n —2,n — 5 —d,e,0)
may contain cases like (n,n —2,n — 5 —d,0,0) = (n,n — 2,n — 5 — d,0),
and (n,n —2,0,0,0) = (n,n — 2,0), too. This implies that there might be
alternative possibilities to look after a group with derived series (n,n — 2, 2).
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5.4.2 Lower Invariants
Derived Series (n)

ipycls =1,mg=0,1 =1]: 2y, I

ipy s > 0,mo > max(0,2 — s),1 = 0]: 2y, 2.
ipy s > 0,mo > max(0,2 — s),1 = 1]: z,.
ipy c[s > 0,mg > 0,1 > 1]: none.

ipscls =1,mg=0,1 =1]: 2y, I

ipscls =1,mo=1,1 =0]: z, 2, I

ip5 (s > 0,mo > max(0,2 — s),1 = 0]: 2y, 2.
ip5 c[s > 0,mo > max(0,2 — s),1 = 1]: z,.
ip;5 c[s > 0,mo > 0,1 > 1]: none.

ipgc[m = [0,1]]: y, I, I33.

ipscll =1,m # [0,1]]: y, Is.

ipgcll > 1]: .

ip1770[m =0,n>0]: 2, [n = 1]zy,.

ip1770[m > 0,n=0]: 2, [m = 1]z4.

ip1770[m, n > 0] [m = 1]z, [n=1]2,.
Derived Series (n,n — 1)

ipycls =0,mo =1 =1]: 244, 2y

ipycls =0,mo > 1,1 =1 z,.

ipycls =0,mo=1,1>1]: 2.
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ip, ¢[s = 0, min(my, l) > 1]: none.

ipisclp > 0,m = [1]}: e, [p = 1]zyy, L.
ipi5clp > 0,m = [m],m > 1]: e*, [p = 1]z,,.
ip15,c[p > 0,m = [0,0]]: e*®, [p = 1]z, Iss.

ip15,c[p >0,k >1,m # [0,0]]: €%, [p= 1]z,

Derived Series (n,n —1,n — 2)
ipycls > 1,mog =1=0]: 2, 2.
ipscls =0,mo = 1,1 = 0]: 2y, 2ue, 2yy-
ipscls =0,mo = 1,1 = 1]: 2e, 2y

ipscls =0,mo=1,1>1]: 2.

ipscl(s=0,mo > 1,1 =0)V (s > 1,mg =1 =0)]:

ipscls =0,mo > 1,1 =1]: z,.

ip5 c[s = 0,mo > 1,1 > 1]: none.

ip5’c[s =1,mo=1=0]: zy, 2y, L10.

ip; c[m > 1]: y.

ipigoll =1,m=0]: [m = 0]z, [m < 124, 2y

ipigoll > 1,m=0]: [m = 0]z, [m < 1]2g,.

Derived Series (n,n —2,n —4,3)
ipscls =mo = 0,1 =1]: 2, 2oy, 2yy-
ips cls =mo = 0,1 > 1] 2, 24y
ipigoll =0,m=1]: 2y, Zea, Zay-

ipigoll =0,m > 1]: 2, 24y
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Derived Series (n,n — 2, k,0)

iprpclm > 0,Ug # 0], (m =1V Up = [1]) = Uy £ [0, it + X > 4]
at, [m = 1]zyy, [Ur = [0]]1s6, [Uo = Uy = [1]] L7

Derived Series (n,n —2,n—4 —s—1,0)

ip3 o[s € {0,1}, m = [mg, m1],mg > —s,mg +my > 2 — s|: z,.
ipscls =0,1>1,m_1 =1,m = 1]: 2.

ipscls =0,0>1,m_1=0,m > 1] 2.

ip; c[s € {0,1},1 > 1,my_1 > 0,m; > 1]: none.

Derived Series (n,n—2,n—5—1, f,0)

ip;c[s > 1,m = [m],m > max(0,3 — s)]: 2, z,.

ip37C[s > 1,0 =1]: zy,.

ip; ¢[s > 1,1 > 1]: none.

Derived Series (n,n —2,n—5—d,e,0)

ip;cls =0,m = [0,m],m > 1]: 2y, 2y,

ip cls =0,m = [1,1]]: zue, 24y

ipcl(s=0,l=1,mp>0,m; >1)V(s>0,l=1m#I[0,1])]: z,.
ip ols=0,1>1,m_1 =0,m = 1]: 2z, 2y

ip s =0,1>1,m_1=0,m >1]: 2.
ipols=0,1>1,m_1 =m =1]: 2.

ip,cl(s=0,01>1,m_y >0,m >1)V (s>0,l>1)]: none.
ip; c[s > 0,m = [m],m > max(3 — s, 1)]]: 2, zyy.

ipl,C[S = lvm = [07 1” Ryys Ill'
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Derived Series (n,n —3,n—4 — j,0)

ipi3ols = 1,410 > 0,40+ > g1 > 2, {ji:} # {0}):
e, (10 = 1zyy, (i1 = 1154, (11 = 0]L73.

iP13c[((8 =2, 0m + > Jmo > 1) V (s > 2)), {jmi} # {0}]:
e, [{Jm,i}t € 10,1} zyy, [s = 2,41 = ig = 0] s,
BIM < jaro = a > 0, {jmi}rio? = {0} rr.

Derived Series (n,n —3,n—6 —d,e,0)

ip,cls =0,m = [m],m > 1]: 2, 2y, 2y

ipycls =0,m = [0,m],m > 1]: 2y, 2y,

ip4’c[s =0,m = [1,1]]: z4a, 2yy-

ipycls >0,l=1,5s=0=m>0m# [1,1],s =1 = m # [0,1]]: 2,
ip4’c[s =1,m = [1]]: 2y, 2y, I11.

ip,cls > 0,m = [m],m > max(0,2 — s)]: 2, z,.
ip4’c[s =1,m=[0,1]]: 2z, L11.

ip,cls > 1,m = [0]]: 2, 2, .

ipycls =0,1>1,m =0 22, Zew, Zay-

ipycls =0,1>1,m_1=0,m = 1] 2us, Zay-
ipycls =0,0>1,m_1=0,m > 1]: 2.

ipycls =0,1>1,m_1=1,m = 1] 2.

ip,cl(s=0,01>1,m_y >0,m >1)V(s>0,l>1)]: none.
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Derived Series (n,n — 3,0)

ipll,C[p = 1, kl = 1, 11’0 > 1, ll,l > O] ea:ﬁ»by? 2a1d1,2 — d1,4.

ipn,c[p =1,k > 1,0+ 11 >1]:
ea:p+by7 [ZLO = 1](2b1d173 — d1,6)7 [ll,l = 0](@%(]1,3 — d275)‘

ipll,C[L = [[ll,[)v 0]7 [0”7 ll,O > 1] eaerby? a’%a2d1,273 - d2,475'
ipyy o[L = [[1,1], [0]]]: €™, dy 46 — 2a1dy1 26 + 2b1dy 34 + darbidy 2 3.
ipy; o[k = 10,0, 110,120 > 0,110 + l20 > 2]: e ayagdy o — da g

ipyy ok = [k, 0], k1 > 1,5 g > 1l = 0]
eaw-&-by? D Ly = 1](b§bgd1,2,3 — d3,5,6)-

ip11 oL = [[1,0], L], 1 € {[1],[0,0], [1,0]}]:
eax+by7 2(b1 + bz)(albz - a2b1)d1,2,3 - (b2 - bl)d1,4,6 + 2(a2 - al)d1,5,6~

ipn’c[k = []fl, 0], ]€1, lg,[) > 0, ]€1 + l270 > 2, Z ll,k = 0] ea:p+by7 a1a2d1,3 — d2,5.
ipll’C[k = []fl, ]fg], ]{31]{32(1{31 + ]€2) > 2, Z li,k = 0] eaz+by7 blbgdl,g — d376.

ipy, ok = [£1,0,0),ky > 1,5 i = 0]:
eax+by7 [az(b1 + b3) — as(b + bg)]d17273 — (b3 — bg)d1,275 + (ag — a2)d172,6.

ipll,C[L = [[11,0]7 [0]7 [OH7 ll,O > 1]
eaw—&-by? a1 (CL3 — a2)d1,2,3 + (bg — bg)d1’2,4 + (CL3 — ag)dl,g’g,.

ipy; oL = [[1], [1], [0]]): (a3 — az2)(as — a1)[(a2 — a1)d1 236 — 2(ba — b1)d1 23,5]
+ Z;i§{1,2,3}\l7i>j(_1)l(ai o a])(blg o 2b3bl)d1,273,4’ e(l"Eery.

ipyy oL = [[1,0], (0], [0]]]:
(b2 - bl)(b3 - bl)d1,2,3,4 + (a2 - al)(a3 - al)d1,2,3,6
—[(CLQ — al)(bg — bl) + (CL3 — al)(bg — bl)]d1,27375, eaerby.

ipyy,¢[L = [[0, 0], [1], [0]]}:
et (ag — ag)(bs — by){ (b — b1)d1 234 + (a2 — a1)?d1 236} —
[a%(bg — b2)2 +a2(a2 — 2&1)(b3 — bl)(bl +b3 — 2b2) +CL3(G,3 — 2&1) (bg — bl)Z]d172,375.
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ipy; oL = [[0,0], [0, 0L, [0]]]: (b3 —b1)(b3—b2)[(b2—b1)d1,2,34—2(a2—a1)d1,2,35]
+[(az — az)?by — (az — a1)?by — (a2 — a1)(a1 + az — 2a3)bs)dy 2,36, €.

ipyy L = [[1], [0], (0], [0]]): (20 (= 1) (0f —2b10) TT 5L gy (@i 5) ) 23,05

~Ilica(a — ) Z;’gg{;:if}\l,bj(_1)1(% —aj)bidi2346, €.

ipy; o[L = [[0, 0, [0], [0], [O]}]:
(s (=D} = 2a1a) [T La (b — b)) d 2,35~

=TT (h = b) SoZG i (<) (b = bj)ands 206, .
ipyy,o[L = [[0], [0, [0], [0], [O]]]: e****, d1 23456

ip;; ¢[rank 8; L other than above]: e***%.

5.4.3 Rank Seven

Derived Series (n)

ipyols =mo = 1,1 =0]: L1 /(zy17)°
ipgc[m = [m],m > 1]: Iy.

ipg o[m > 2]: .

ipyyclm >0,0>1]: =

Derived Series (n,n — 1)

ipycls =0,mo > 1,1 =0]: Ir.
ipj5clp>1,m = [0]): Iss.
Derived Series (n,n —2,n —5,0)
ip, c[s =0,m = [m],m > 2|: I;/I§.
ip,c[s =0,m=0;,n > 3|: I3/5.
ipy ols > 2,m = [0]]: Io/(221;/°).
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ip;c[s = 0,m = [0,m],m > 2]: (I15)i=14-

ip;cfs = 1,m = [m],m > 2|: L.

ip; (s > 3,m = [0]]: .

ipjyclm >2,Up = [1], Uy = [0]]: xlgs/ 184
ipipclm > 1,00 = 2,41 = 1, {w, } = {0}]: wlse/Iss.

Derived Series (n,n — 2, g,0)

ipioclm > 0,00 > 1,370 l; > 4]: .

Derived Series (n,n — 2, h,0)
ipols >0,0>0,s=0=j#I0,1]): z.

Derived Series (n,n — 2,3)

ipycls =me=0,1>1]: L.

ipisclp=0,[m|, +k > 2J: I.

Derived Series (n,n —2,1,0)

ipscls =0,0>2,m_1=0,m = 1]: ([15)i=12.
ipjgclm =1,U1 = [0],d0 + > uoy > 3|: 22,/ g6
Derived Series (n,n — 2,0)

ipy ¢ [size> 7, rank 7]: z.

ipigcls > 0,j=[j],j > max(1,3 — s)]: z.
Derived Series (n,n —3,n —5,0)

ip13,C[S = 17i1 = 07j1,0 > 2] 153.

104



Derived Series (n,n —3,n —7,0)
ip4,C[S = 07 m = [07 1“ 122-

Derived Series (n,n —3 — s,0)

ipl&C’[S Z O7l > 073 =0 :>j g_ﬁ {[07 1]7 [17 1]}] Z.

Derived Series (n,n — 3,0)

ipolp =1,k =115p>2111=0] (aldis—dys)/(aldi 2 — daa).

ipll,C[p =1,k >2,l10=1,l11 =0]: (b3dy3— d34)/(ald1 3 — das).

ipolp =2k =k =0,l10> 2,150 =0]: (bibad12 — d35)/(ara2d1> — day).

ipyolp=2k >2,k =0, 11, =0,l30=0]:
(blbgdl’g — d3,6)/(a1a2d1,3 — d2’5).

ipi3ols > 1,8+ im > 3, {jmi} = {0}]: L.

5.4.4 Rank Six

Derived Series (n)

ipyclm>2,0=1]: z, Ls.

Derived Series (n,n — 1,3)

ipyyclm=0,1>3]: z, I.

Derived Series (n,n —2,n —4)

ipS,C[S = 07 m = [m]v m > 3] (116)?::(’57,7'

Derived Series (n,n —2,n —4,0)

iplzc[m > 3,U0 = [OH 181/1787 56186/178.

Derived Series (n,n —2,m —1,0)

ipjgclm > 4,0y =1]: z, Iyy/Ius.
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Derived Series (n,n —2,0)

ip3 s =0,1>3,m; = 0]: (I16){=5s-

ipg oL = [[[,1]],1 > 4]: z, (cfers —e36)/(cle12 — e35).

ipgols =1,m1 >3,l10=2,l11 =1]: x, e1235/€124.

ipg oL = [[I], 1]}, 1 > 4]: =, (coe13 — €36)/ (V5 €13 — Wan€a5).

ipg o[m = [m,0],m > 3,;; = 1]:

z, (6261,2 - 63,5)/(‘11/2/,161,2 - @5,161,4 + ‘1/2,162,4)-
ipyclm =0,lp > 4]: z, .
ip1y,clm = 0,0 + 3 uo; > 4]t (1) s
ipygcls > 2,j = [1]]: =, Is.
Derived Series (n,n — 3,0)
ipllvc[p =1,k =0,l10>3]: I/di2, I €{dy4,d35}.
ipjclp=1k >3,l10=0] (do—isri/di3)lo-

Derived Series (n,n — 3 — s,0)

iplS,C[S Z O7j = []]7.7 > max(1,4 - S)]: xz, ]7'

5.4.5 Rank Five

Derived Series (n,n —2,0)

ipg oL = [[l]],1 > 5]: z, e/e16, where e € {e13, €25}
ipgofs =1,mo > 4,010 =1]]: z, e/e19, e € {e1a,e35}.
ip19,c[3 >3,j=1[0]]: z, (I;) 5.

Derived Series (n,1,0)

ipigcls > 3,5 =[1]]: z, Ir, Iso.
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5.4.6 Rank Four

Derived Series (n,0)

ipls,c[s > 4,5 =[0]]: x, (I;)%2s-

5.5 Amaldis Groups Of Type D

The expressions J; can be found in Subsection 4.2.4.

5.5.1 Lower Invariants

Derived Series (n)

ip2,D[5 = 1], ip5,D[S =1]: 2y, Ju.
ipy pls > 1], ips ps > 1]: 2.
ip177D: 2y, 2y

Derived Series (n,n —1,n — 2)
ips pls = 0]: 2, 2y, J2.

iPiept 22, 2y, J1-

Derived Series (n,n —1,n — 3,3)
ip; pls > 1], ip3 p[s > 2]: 2, Jo.
Derived Series (n,n —2,n —4,3)
ip,pls = 1] z,, Jo, Js.

ip, p[s > 1]: z,, Jo.

5.5.2 Rank Seven

Derived Series (n,n — 1,3)
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Derived Series (n,n —2,3)

5.5.3 Rank Six
Derived Series (n,n — 1, 3)

ipig pls > 1]: =, Jo .

Derived Series (n, 3)

5.6 Missing Definitions

The differential polynomial A in the invariant basis A2B~3 of ip,; is defined
as
223 4 62°22 (2ey — 20)+
322y (42, + 422, + ZeaZyy — 220 2oy — S2u2yZyy)+
223(—42f + 423, — 92222, + 62222, — 62,20y + 302,252y,
327 Zaw Zyy + 6200 Zay Zyy — 30202y Zyy Zay )+
322(102) zag + 102] 200 2ay + 2002y — 4222y Zeayy — 32202 Zay — 8222)
— 182224y 2yy + 422020, + 4622222y, — 82,2422, )+
2(12202y Zpa Zay + 602020 200 — 24222, — 156222 20y + 144232, 2,
— 1827 200 2yy — 362222, + 622,20y + 122227,)+

122,222, + 54252y — 1822200 20y — 12232y 20y — 82320 + 30222] 200 + 25,
and B is defined as

2420, + 2 (Azey 2y — 4202+

224z + 422, + 422 20y + 22002y — 162022y )+

2(8222) + 82 250 — 12222y + 4200 20y — 8202yZay)+

2 2.2 2
2w+ 4zwzy + 82y 2y gy — 122524y,
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Chapter 6

Examples and Conclusion

In this final chapter, we first show how to find the symmetry groups of given
PDEs in our list of space groups. We demonstrate this on two classical PDEs,
the Burgers equation and the Korteweg de Vries equation, in Section 6.1
(“Some Classical Equations”). In Section 6.2 (“Higher Invariants: Invariant
Differentiation”) we indicate the extension of Lie’s higher invariants formula
4.1 to PDEs. Finally, in Section 6.3 (“Conclusion”), we explain what is left
and how to proceed to complete group classification for second order PDEs
in one dependent and two independent variables.

6.1 Some Classical Equations

In the following subsections we identify two classical PDEs with one depen-
dent and two independent variables within the list of space groups: Burgers
equation and the Korteweg de Vries equation.

The main difficulty originates from the fact that in general they will
not be in canonical form, i.e. a suitable variable transformation has to be
determined from the actual variables in which the equation is given, to the
canonical variables corresponding to its symmetry type. The details of this
procedure are described in Subsection 2.4 (“Basic Notions for Lie Algebras”).
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6.1.1 Symmetries of Burgers Equation

In order to find out where the symmetry group of the so called Burgers
equation

2z + 22y + 2y =0

is contained in our space group list, we start with the following set of gener-
ators that was directly computed from the equation:

{0y, 0,, 20, — 220, — yd,, 20, + 0., (vz — y)9. — 2°0, — Yo, }. (BE)

It is a five parameter group, so we will try to find it in the list given in
Subsection 4.3.3 (“Groups with Five Generators”) which contains all five
parameter groups, except Amaldis groups of type B. In order to find a group
similar to (BE), we consider its derived series, which is invariant under point
transformations. For (BE) the dimension of its derived algebra is five, as can
be seen by the table of commutators:

0 0 -2X; X, X3

0 0 X 0 —Xy
2X1 X2 0 —X4 —2X5
—-X 0 Xy 0 0
-X; X4 2X5 0 0

Only the following four groups out of the list given in Subsection 4.3.3 have
a derived algebra of dimension five:

ip,[l = 1] = {20,, 0, — y0,, YOy, Or, Oy }:

0 —2X1 X2 —X5 0
2X, 0 —2X;3 —Xy X5
—Xs 2X; 0 0 —-X4
X5 X4 0 0 0

0 — X5 Xy 0 0

Y

ipy3 = {0s, 0y, 0, + 0., 20, — y0, — 220,,yd, — 2°0,}:

0 0 Xy X 0

0 0 0 X2 X
—Xo 0 0 —-2X3 X4
-X1 Xy 2Xj 0 —2X5

0 X7 —Xy 2X; 0

Y
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iPé,A[S =1 =
{8y, 20, + 0., 0y, 220, + y0, — 20,,x%0, + xyd, + (—xz + y)d, }:

0 0 0 X X
0 0 -X, -Xo 0
0 X, 0 2X; X, |,
~X: X, —2X; 0 2X;
~X, 0 —-X4; —2X5; O

ip5 4[s = 1] = {9y, 20y, 0y, 230, + y0, + 20, ¥*0, + Y0, + 2(x + c2?)0. }:

0 0 0 X5 Xs

0 0o -X5 X5 0

0 X 0 2Xs Xy
X1 Xo —2X3 0 2X5
X, 0 =Xy -2X5 O

Actually, we see that the third of these groups, ip;’ 4[s = 1], is generated by
the same set of generators, up to sign, as (BE).

6.1.2 Symmetries of the Korteweg de Vries Equation
The Korteweg de Vries equation

Zy = 22y + Zyyy

was considered the first time in the context of soliton solutions. Its symmetry
group is generated by

{0,,0,,30, — 8., 330, + y0, — 220,}. (KdV)

The dimension of its derived algebra is three, as can be seen by its table of
commutators:

0 0 Xy 33Xy
0 0 0 Xs
- Xy 0 0 —-2Xj3
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The twice derived algebra is of dimension one, which can be seen by the
commutator table of { X7, X5, X3}:

0 0 X
0O 0 0
-Xo 0 0

Considering those the four parameter groups of Subsection 4.3.4 (“Groups
with Four Generators”) with the same derived series (4, 3, 1,0), we find that
ipi 4ls = 1,t = 1] = {9,,20, + 9., 0y, 0, + cydy, + (c — 1)20.} is similar to
(KdV). First of all we reorder ipy 4[s = 1,t = 1] to

{0z, 0y, 20y + 0,, 20, + cy0, + (¢ — 1)20,},
then we multiply the last generator by 3 and choose ¢ = %, leading to
{0., 0,30, + 0,320, + yo, — 220, }, (IP1AY’)

which has the same commutator table as (KdV) and hence is isomorphic to
it. In order to show that (IP1A1’) is also similar to (KdV), we have to find
a coordinate change T = z(x,y, 2), ¥ = y(x,y, 2), Z = z(z,y, 2) such that the
generators X; = &;;0, + 50, + €30, and X; = £;10, + £;50, + &30, of (KAV)
and (IP1A1’), respectively, are related by

§1 Ty Ty T, £
§io | =Y Uy Y. | | &2 |, t=1...,4
Ei3 773 Ey EZ §i3
The coordinate change 7 = =, ¥ = y, Z = —z achieves this, since
§in i
§i2 - €i2 y 1= ]_, . 74
&is —Si3
leads to
{857 8177 38@ - a?: 3$a§ + yagj + 2283}7
i.e. to



which is just (KdV) in the new coordinates T, 7, Z.

Suppose we were given a group similar to (KdV), e. g.
{717 727 737 74}7 (Kdv7)

where X1 = —70y + 0z, Xo = T, X3 = log(5)T0 — 9z, X4 = Tlog(T)ds —
3y log(%)&j—l— [5 log(%) — 27]0z, and would like to proof its similarity. First we
note that (KdV’) has the same commutator table as (KdV), hence it satisfies
a necessary condition for similarity. Let us denote the generators of (KdV)
by X1 = 0, Xo = 0y, X3 =30, — 0., X4 = 320, + y0, — 220.. We note that
X1, X5 and X3 are unconnected, whereas

Xy =3zX, + (y — 222) Xo + 22 X5. (Rel KdV)

We also note that the generators X, X, and X5 of (KdV’) are unconnected,
whereas

— 1 = 1 j P j
X4 = 310g(§)X1 + [log(T) — 2210g(§) + 2log(§)2]X2 + 2z — 2log(§)]X3.

(Rel KdV")
Now, (Rel KdV) and (Rel KdV’) lead to the following equations

1
3z = 3log(=),
(y)

1 1
y — 2xz = log(T) — 2710g(§) + 21Og(§)2,
1

2z = 2Z — 2log(—).
(y)

Solving them with respect to T, ¥ and Z gives

T=¢6Y, y=e" Z=2z+uz,

a change of variables that establishes the similarity of (KdV) and (KdV’).

6.1.3 The Heat Equation
The heat equation

Zpw — 2y =0 (Heat)
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is an example of a second order PDE whose symmetry group is not contained
in our list of space groups. Instead, we use it to demonstrate the computa-
tion of symmetry generators and their use in finding invariant solutions. A
necessary and sufficient condition for an infinitesimal generator

X = &(2,9,2)0 + &(2,y,2)0y +1(2,y, 2)0: (5G)
to be admitted by (Heat) is
X (20 — 2,) = 0 when (Heat). (D)
Hereby X @ is the second order prolongation of X

— 610, + £,0, +n0. + 010, + 30, + 0V, + 1Yo, +n%)o

Zyy?

where ngl), 17;1)7 77§1), 7752)77752) are defined at the end of Subsection 2.2.1 (“Ex-
tended Infinitesimal Transformations”). Since the determining equation (D)
is polynomial in 2z, 2y, 2z, Zzy, Zyy, and since &, §y,n only depend on z,y, z,
we may equate the coefficients of z,, zy, 244, 24y, 2y (and their powers) in
(D) to zero. The result is an overdetermined system of linear homogeneous
equations in &;,&,,n and their partial derivatives up to order two, called
determining system.
In our case, the determining equation (D) is

nﬁ) 17(1) =0 when z,, = z,. (DE)

In the sequel we treat (DE) as nﬁ) — ng) = 0, where every occurrence of z,,

is replaced by z,. The coefficient of z,, in (DE) is

—2(&2)z — 22:(82)--
Hence we know (§,), = (&), =0, i.e.
€2 = &(v). (K1)
Noting this, the coefficient of z, in (DE) is
—22,(&1): + (€2)y — 2(&1)a-

From this, we conclude

& =&(2,y), (K2)



By (K1), the second equation is equivalent to

6= (€} + Aly). (3)

Considering (K1, K2, K3), we can view (DE) now as polynomial in z, of
degree two:

1
nzzzi + {5(62)?4?! + Ay + 277:pz}sz + {nx:p - ny} (DE?)

Considering the coefficient of 22, we have n,, = 0, i.e.

n=f(z,y)z+9(xy) (K4)
Considering the coefficient of 2 in (DE’), we have 7,, = 7,, i.e.
fzz == fy7 Gzx = Gy- (K5)

Finally, by considering the coefficient of 2. in (DE’), we have
1
5(52)?43/35 + Ay +2f. = 0. (K6)

Summarizing, by (K1, K2, K3, K4, K5, K6) we now deal with the following
system:

glzgl(xvy)7 62262(3/)7 U:f(%y)z‘i‘g(%y): El

1
§ = {5(52)31}55 + A(y),
frz = fya Gzaz = Gy,
(€l + Ay + 2. =0,

E2

(E1)
(E2)
(E3)
(E4)

We note that g, a solution of the original homogeneous equation (Heat),
corresponds to the trivial infinite-parameter Lie group

T=x, Y=y, 2:z+€g(x,y), where Gez = Gy,

that is admitted by every linear PDE. Nontrivial symmetries arise from the
remaining equations. From (E4) we conclude that f,., =0, i.e.

f(z,y) = Ci(y)z® + Cay)z + Cs(y).
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By this and (E3) we conclude
2C1(y) = Ci(y)a” + Co(y)z + Cy(y),
and hence we have
f(z,y) = ax® + oz + 2c1y + cs. (E5)
By this and (E4) we have

1
§(fz)yy +4c1 =0,

Ay + 2¢y = O,
and hence
&(y) = —4dery® + by + bs, (E6)
A(y) = —202y +a. (E?)

Summarizing, by (E1, E2, E5, E6, E7) the final result is

1
&1 (z,y) = —deyzy + Eblx — 2coy + a,
&o(y) = —4ery® + byy + b,

n(z,y,z) = {clx2 + cox + 2¢1y + c3}2.

The infinitesimal generator

X = fl(xv y)ax + 52(y)8y + 77(177 Y, Z)az

hence represents a six-parameter group in the parameters a, by, bo, c1, o, c3.

The same Lie algebra is spanned by the following six generators, each of

which corresponds to a one-parameter group:

X1 =0,, Xo =0, X3=10,+2yd,, X4=4xyd, +4y*0, — (z* + 2y)z0.,
X5 =290, — x20,, X¢ = 20,.

The commutator table corresponding to L = { X7, X5, X3, Xy, X5, Xg} is

0 0 X4 2X5 —X6 0

0 0 2Xy 4X5-2Xg 2X; O

-Xi —2X5 0 2Xy X5 0
—2X5 —4X3+2Xs —2X4 0 0O 0|’

X6 —2X; — X5 0 0 0

0 0 0 0 0 0
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its derived series is (6).
Let us consider the infinitesimal generator Xy, which corresponds to the
parameter c;. The one-parameter Lie group of transformations

j('CC7 y? Z? 6)7 :U(CC7 y? Z? 6)7 2($7 y? Z? 6) (LT)

corresponding to X, = 4zyd, + 4y*d, — (z* + 2y)z0, is obtained by solving
the initial value problem

(7,9, 2)[e = 0] = (2,9, 2) (IVP)

for the following first order system of ODEs:

I
d—f = 47y, (ODEx)
dy _ . o
— =4 ODE
= =4 (ODEy)
Iz
d—z = (2% +2p)z. (ODEz)
The solution of (ODEy) is § = w1, and by (IVP) we obtain
y = . L
.y, 2,€) = 1= ™y (SOLy)
By this and (ODEx) we get Z = ﬁ, and by (IVP) we obtain
T2,y 2 6) = — (SOLx)
7317 ) - 1 o 4€y

Similarly, by (SOLx, SOLy, ODEz) and (IVP) we obtain

2

Z(x,y, z,€) = zy/1 — dey exp(—1 ix4ey)' (SOLz)

Every invariant solution z = ®(x,y) of (Heat) corresponding to X, satisfies
X4(z — ®(z,y)) = 0 when z — &(z,y),

i.e.

0d 00,
dxy e + 4y 9y (x* 4 2y)P. (IC)
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We solve (IC) by solving the corresponding characteristic equation

dr  dy dz
4oy A2 —(22 4+ 2y)z

which has the two invariants

E, and z\/ge"”Q/‘ly.
Y
The solution of (Heat) is now defined by the invariant form
22 T
Z\/ge /M = ¢(§)7
or, in explicit form,

1 2
z=®(x,y) = —e = H((), ES
(z,y) 7 (€) (ES)
where ¢ = £ is the similarity variable. Substitution of (ES) into (Heat) leads

to ¢"(¢) = 0. Hence, invariant solutions of (Heat) resulting from X, are of
the form
1
2= B(x,y) = —e =0y + =}
Y

VY

For any solution z = ®(x,y) of (Heat), that is not invariant under Xy, we
find a one-parameter family of solutions z = ¢(z, y, €) generated by X4: Let

=3y, ne) = T
r*=z(r,y,2,€) =
7y7 ) 1 _ 4Ey7
* = €T Z g
Y =19(z,y,72,€) ——
2F = 0(2,7).
By z(-,-, -, —€) we denote the third component of the inverse transformation

corresponding to Xy. Then z = ¢(z,y,€) = z(x*, y*, 2%, —€) =

ex?

1 —4dey

T y )
1—4dey’ 1— 4ey

o( ( )-

|
VT —dey P
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6.2 Higher Invariants: Invariant Differentia-
tion

In this section, we use the convention that we sum over multiply occurring
indices in an expression. For ordinary differential equations, Lie showed
that all invariants of order 2,3,... can be found merely by differentiation,
provided that the invariants u, v of order 0 and 1, respectively, are known.

Theorem (Invariant Differentiation): Let G be a one-parameter point trans-
formation group in the plane with the generator X. Let u(x,y) and v(zx,y,y’)
be an invariant and a first order differential invariant of G. Then

Cdv v+ Yvy+y'vy  Dy(v)
Cdu o up Yy, "~ Dy(u)

w (6.1)

is a second-order differential invariant of the group G.

Since X®@ F(z,y,1',y") = 0 has precisely three independent solutions, all
differential invariants F', ord(F') < 2, are given by F' = ®(u, v, w). We now
rewrite (6.1) in the form w = D(v) with the operator D defined by

D = \D,, where A = (6.2)

Dy(u)’
Definition: The operator D in (6.2), where u(z,y) is any invariant of G, is
called an invariant differentiation for the group G.

The significance of this definition is disclosed by the following statement.

Theorem (Invariant Basis): The invariant differentiation D converts any
differential invariant F' of the group G into a differential invariant D(F') of
G. Furthermore, any differential invariant F', ord(F') = s+1, can be expressed
as a function of u(z,y), v(x,y,y’) and successive invariant derivatives of the
first-order differential invariant v:

F = ®(u,v,D(v),D*(v),...,D(v)).

Similar results hold also in the case of many variables and multi-parameter
groups [13]. To formulate this generalization, we first note that the coefficient
A =1/D,(u) of the invariant differentiation (6.2) satisfies the equation

XD(N) = AD,(€). (6.3)

119



Indeed, one can verify by straightforward computation that the following
operator identity holds for the infinite-times extended generator X:

XD; — D;X = —D;(¢')D; (6.4)
where D; is the operator of total differentiation w.r.t. x;

Di:(?zi—i—u?@ua—l—u‘fau%jtu?‘ 0, +..., i=1,...,n.

R 511,82 UG i
We now consider the one-dimensional case and apply (6.4), written in the
form XD, = D, X —D,(§)D,, to A(z,y,y’) = 1/D,(u). Invoking that u(z, y)
is an invariant, i.e. X (u) = 0, we arrive at (6.3) as follows:
X(Do(w) _ D.X(u) = Dy()Dalu) _ Dy(€)
(Da(u))? (Da(u))? Dy (u)
The generalization to the higher-dimensional case is given by the following

invariant derivations. Let G, be any r-parameter group of point transforma-
tions with infinitesimal generators

XO0) = - = AD,(§).

~ 0 0
X, = &(:U,u)% + nﬁ(w,u)%, v=1,...,r,
where * = xq,...,2,, u = u',... ,u™. Then there exist n independent
invariant derivations
D =\D;,

where A (z,u,u™,u®,...) are differential functions determined from equa-
tions similar to (6.3):

X,(\)=XND;(&), i=1,...,n; wv=1,...,m

6.3 Conclusion

We repeat the goal of any group classification problem: it aims to obtain a
complete survey of all possible symmetry groups for a class of given DEs, in
our case second order PDEs in one dependent and two independent variables.
The starting point of this approach was the listing of space groups given in
Chapter 3 (“The Space Point Groups”), whose differential invariants deter-
mine the general form of a PDE that may be invariant under the respective
group. The whole strategy to tackle the classification problem, as given in
Chapter 1 (“Introduction”), was as follows:
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1) List all finite continuous transformation groups of the three dimensional
space in coordinates x, y, and z.

2) Find all differential invariants of the groups given in 1) where z depends
on x and y.

3) Determine the group types, i.e. by using each invariant from 2), find
criterions that allow to identify the symmetry group for a given DE
from our class.

In Chapter 3 (“The Space Point Groups”), we solved point 1) of the above
strategy by providing a listing of all point transformation groups of the three
dimensional space which is based on work by S. Lie [7, 8] and U. Amaldi
[1]. This listing is claimed to be complete, but not necessarily disjoint. In
Chapter 4 (“Differential Invariants of Order Two”) and Chapter 5 (“Lower
Invariants”), we solved a large part of point 2) of the above strategy by
presenting a list of computed differential and lower invariants of order two
of many space groups listed in Chapter 3. The exceptions are the groups
given in Subsection 4.3.8 (“Groups whose Invariants were not found”) and
the Amaldi groups of type B. Those are, due to the huge number of space
groups, not handled within the frame of this thesis. Consequently the same
holds for point 3) of the above strategy.

As a result, further work on the solution of this problem should focus on

1*) the calculation of all differential invariants of order two of Amaldis
groups of type B,

2*) point 3) of the main strategy.

This last step would be accomplished by first computing the Janet base
of the determining system of all differential invariants, then by applying a
general point transformation to it. Since that in general destroys the Janet
base property, one has to reestablish it by applying the algorithm Janet base
again. Thereby, a classification of Janet bases for determining systems of
DEs from the indicated class would be achieved. We also remark that the
identification of multiple occurrences of group types in our space group list
is the natural by-product of this last step.

Two other problems for which this work may be the starting point should
be mentioned: the implicit description of the differential invariants in one
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dependent and two independent variables of order higher than two may be
accomplished by providing the invariant differentiations indicated in Section
6.1 (“Higher Invariants: Invariant Differentiation”). Finally, the classifica-
tion problem for systems of ODEs in two dependent and one independent
variable y(z), z(z) might be accomplished by starting with the groups of the
space listed in this work, using the prolongation formulas for two dependent
and one independent variable, instead.
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