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E-28871-Madrid, Spain
Rafael.Sendra@uah.es

Abstract

An algorithm for computing the topology of a real, algebraic space curve C
implicitly defined as the complete intersection of two surfaces is presented. Given
C, the algorithm generates an space graph which is topologically equivalent to the
real variety on the Euclidean space. The algorithm is based on the computation
of the graph of at most two birational projections of C. For this purpose, we
introduce the notion of space general position for space curves, we show that
any curve in the above conditions can always be linearly transformed to be in
general position, and we present effective methods to check whether space general
position has been reached.

1 Introduction.

The problem of computing the topological graph of algebraic curves plays an impor-
tant role in many applications as plotting (see [11]) or sectioning in computer aided
geometric design (see [2], [10]). Many authors have addressed the problem for the
plane curve case (see [1], [5], [9],[7]) and theoretical complexity analysis and practical
improvements have been presented in several papers (see [8], [7], [12]). In addition, in
[6] the computation of the topological type of a surface has been addressed for the non-
singular case. However, the computation of the topological graph of algebraic space
curves has not been treated so extensively.

One may approach this problem by considering two projections, and therefore re-
ducing the problem to the plane case, to afterwards lift the corresponding plane graphs
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to obtain the space graph. In that case, one needs a theoretical and algorithmic anal-
ysis to ensure that the input curve is in a “sufficiently good” position; more precisely,
we need to ensure that:

(1) The projections of the curve are plane curves whose graphs can be computed by
using well-known methods. In our case, we will use the method presented in [9].

(2) All the significant topological information about the space curve can be recov-
ered from the planar graphs of its projections, i.e. the space graph can be recon-
structed from the planar graphs of the projections.

In this paper, we deal with these difficulties for the case of real, algebraic space
curves implicitly defined as the complete intersection of two surfaces. We introduce the
notion of space general position for denoting that a space curve is in that “sufficiently
good position”, and we prove that for almost all linear transformations the curve is
placed in space general position. Also, we show how to check algorithmically whether
a given curve is already in space general position. Furthermore, in the case that
the space curve is non-reduced, i.e. if it has infinitely many singular points, some
details concerning general position and the computation of the space graph must be
considered. Thus, we present a characterization for reducibility based on resultants.
General position is introduced such that the projections are done over the xy plane
and the xz plane. The first projection, the one over the xy plane, is taken as principal
projection, while the second works auxiliary and it is only necessary under the presence
of points on the first projection with a multiple fiber. For the case of reduced curves,
in order to improve the computation of the critical points of the second projection,
we take advantage of certain properties verified by the points that, when projected,
give rise to critical points. Finally, once that space general position is achieved, the
algorithm for computing the space graph of the curve can be applied.

The paper is structured as follows. In Section 2 we introduce the terminology to be
used throughout the paper and we briefly recall the general strategy for computing the
topology of plane curves. Section 3 is devoted to the notion of space general position,
and to develop algorithmic criteria to check it. In Section 4 we present the algorithm
for computing the topology of the space curve, and a detailed example. In Section 5,
we discuss some aspects of the non-reduced case.

2 Preliminaries

In this section, we fix the terminology and we introduce some notions and results that
will be used later on the paper. More precisely, throughout this paper C is a real,
algebraic space curve implicitly defined as the complete intersection of two surfaces of
equations f, g ∈ R[x, y, z]; i.e. C is the algebraic set V (f, g) defined by f, g. Also, we
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denote by πz the projection πz : C3 → C2 : πz(x, y, z) = (x, y); similarly for πx and πy.
Furthermore, for P ∈ C we denote by Fπz(P ) the fiber of the restriction mapping πz|C
at πz(P ); i.e. Fπz(P ) = {Q ∈ C |πz(Q) = πz(P )}. Similarly, for Fπy(P ) and Fπz(P ).

In addition, we denote by ∇ the gradient operator, and by × the vectorial product.
Moreover, let {~i,~j,~k} be the canonical basis of C3. Let ~T (x, y, z) = ∇f ×∇g and let

U, V, W ∈ R[x, y, z] be the coordinates of ~T (x, y, z) w.r.t. {~i,~j,~k}; i.e. ~T (x, y, z) =

U(x, y, z)~i + V (x, y, z)~j + W (x, y, z)~k. Also, we will denote the partial derivative of a
polynomial g(x, y, z) w.r.t. the variable v ∈ {x, y, z} as gv.

Topology of a Plane Real Curve

The topology of a real plane curve is approached by means of the so-called graph
associated to the curve. This is a concept that has been addressed by several authors,
see for instance [9], [7]. In this subsection, we briefly describe the standard strategy
for computing it, and we also recall some aspects of the algorithm described in [9],
which will be used later. Here, we assume that H is a real plane curve defined by an
square–free polynomial h(x, y) ∈ R[x, y]. In this situation, one introduces the notion
of critical points as follows. P ∈ R2 is a critical point of H if h(P ) = 0, and ∂h

∂y
(P ) = 0.

P is a ramification point of H if it is a non-singular critical point of H. P is a regular
point of H if h(P ) = 0 and it is not critical. Then, the graph associated to H, that we
represent by Graph(H), is essentially introduced as the graph which vertices are the
critical points of H and some additional real simple points on the curve, and where
every edge of the graph corresponds to a branch of H joining two vertices. In fact, this
notion can be extended to algebraic plane curves with multiple components by defining
the graph of such a curve as the graph of its square-free part.

In order to determine Graph(H), one assumes that the curve is in planar general
position; i.e. no component of H is a real vertical line, H has no vertical asymptotes,
and the x–coordinates of the critical points of H are different. To ensure the first two
conditions, one requires that the leading coefficient of h(x, y) w.r.t. y has no real root.
Also, note that almost all affine linear changes of coordinates transform H in general
position. Thus, one may always consider a random affine linear transformation, and
use then the techniques provided in [9] for checking general position. An alternative
approach is to apply the deterministic algorithm described in [3], that leads a plane
curve to planar general position.

The graph of H can be computed by performing the following steps (see [9] for
further details):

(S-1) [Critical Points] Compute the square-free part of the discriminant of h(x, y) w.r.t.
y, and approximate its real roots, α1 < · · · < αr (i.e. the x-coordinates of the
critical points). For each αi, compute the y-coordinates βi,j of the points of H
lying on the line x = αi.
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(S-2) [In Out Edges] For each critical point (αi, βi), compute the number of half-
branches to the right and to the left of (αi, βi). In order to do this, consider two
auxiliary lines x = δi and x = δi+1 verifying that αi−1 < δi < αi < δi+1 < αi+1,
and let V (δi), V (αi), V (δi+1) denote the number of real points of H belonging to
the lines x = δi, x = αi, x = δi+1, respectively. Then, the number of half-branches
to the left of (αi, βi) is V (δi)−V (αi)+1, and the number of half-branches to the
right of (αi, βi) is V (δi+1)− V (αi) + 1.

(S-3) [Graph] Construct Graph(H) by appropriately joining the points obtained in (S-
1); more precisely, note that the way to join the points is uniquely determined
since any incorrect way to join them leads to at least one intersection of two edges
at a point that is not critical.

An alternative to computing the number of half-branches to the right and to the
left of each critical point, is the following: for constructing the part of the graph lying
between x = αi−1 and x = αi, we explicitly compute the points of H belonging to the
line x = δi; then, in order to connect the points in the lines x = αi−1 and x = αi, we
first join the points of x = αi−1 and x = δi, and then we join the points of x = δi and
x = αi. Repeating the same process for all the critical points, the graph is constructed.
Then, the auxiliary points may be kept as vertices of the graph, or they may be cleaned.
This alternative process will be useful when we approach the space case (see section
4). Figure 1 illustrates these ideas.

Figure 1: Construction of the planar graph

3 Generality of the method

The method described above requires that the curve is in planar general position, and
therefore the curve has to be previously prepared under a linear change of coordinates.
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In our algorithm, in order to analyze the topology of an space curve, we also need that
the input curve satisfies certain properties that will lead to the notion of space general
position. In this section, we introduce these properties, we provide computational
techniques to test whether they are fulfilled by C, and we show that almost all linear
changes of coordinates transform C onto general position. Furthermore, as we will see
later, in some steps of our algorithm we need to know whether the space curve we
are working with is reduced, or not. That is, we need to check whether C has, or
not, finitely many singular points. For that purpose, in this section we also present a
result characterizing reduced curves, that allows to algorithmically certify that a curve
is reduced. We begin with the characterization of space reduced curves, and then we
will consider space general position.

3.1. Checking Reduced Space Curves

As we will see later, in some steps of our algorithm we need to know whether the space
curve we are working with is reduced, or not. In this context, we say that P ∈ C is a
singular point of C, if ~T (P ) = ~0, and we say that C is a reduced curve, if it has finitely
many singular points; otherwise, we say that C is non-reduced.

In the plane case one may check whether the curve is reduced or not by simply
analyzing whether the defining polynomial is square–free or not. In the space case,
one may check the existence of non–reduced components by means of Gröbner basis
techniques. However, this may be costly. Thus, we show how to reduce the problem
for space curves in complete intersection to the plane case, and therefore to resultant
computations.

In order to do that, we first observe that any component D of C has dimension 1
(see for instance [16] Vol.I, page 74), and that D is non-reduced if and only if ∇f ×∇g
vanishes at infinitely many points of D. Note that, in that case, if D is irreducible,
then ∇f × ∇g vanishes at every point of D. Moreover, an irreducible component D
of C is non-reduced if and only if either one of the gradients ∇f,∇g vanishes at every
point of D, or both gradients ∇f,∇g vanish at finitely many points of D but ∇f and
∇g are parallel at every point of D.

In the following theorem, a characterization for non-reduced curves by means of
resultants is given. For the theorem, we will use the notation fx = f, gx = g if the
leading coefficient of f w.r.t. x is constant and the restriction of πx to any irreducible
component of C is birational, else fx, gx will denote the result of applying an affine
linear transformation to f , g so that the above two conditions are verified (similarly for
f y, f z, gy, gz). Note that almost all affine linear transformations provide the required
conditions.

Theorem 1: Let f, g ∈ C[x, y, z] be square-free polynomials. Then, C is non–reduced
if and only if either Resz(f

z, gz) or Resy(f
y, gy) or Resx(f

x, gx) is not square-free.
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Proof. Let Cx, Cy, Cz be the space curves defined by {fx, gx}, {f y, gy}, {f z, gz},
respectively. Note that the property of being non–reduced is preserved by affine linear
transformations, hence C is non-reduced iff Cx, Cy, Cz are non-reduced. Now, let Kz =
Resz(f

z, gz), Ky = Resy(f
y, gy), and Kx = Resx(f

x, gx). Then, there exist polynomials
Ax, Ay, Az, Bx, By, Bz ∈ C[x, y, z] such that Kv = Avf v + Bvgv with v ∈ {x, y, z}. In
this situation, let D be an irreducible, non-reduced component of C. Then, one of the
following statements is true: (1) ∇f or ∇g vanishes at every point of D; (2) ∇f and
∇g vanish at finitely many points of D but ∇f and ∇g are parallel at every point of
D. We distinguish several cases:

(i) Assume that (1) is true, and that ∇f , ∇g vanish at every point of D. Then, ∇f z

and ∇gz vanish at every point of the corresponding component Dz of Cz. Therefore,
for every point P ∈ Dz, it holds that:

Kz
x(πz(P )) = Az

x(P )f z(P ) + Az(P )f z
x(P ) + Bz

x(P )gz(P ) + +Bz(P )gz
x(P ) = 0,

and similarly Kz
y (πz(P )) = 0. Furthermore, since P ∈ Dz, it holds that πz(P ) is on the

curve defined by Kz (i.e., on πz(Cz)), so πz(P ) is a singularity of πz(Cz). Moreover,
the projection of Cz onto x, y is birational, so πz(Cz) has infinitely many singularities.
Therefore, πz(Cz) has a multiple component, so Kz is not square-free.

(ii) Assume that (1) is true, and that only one of the gradients ∇f , ∇g vanishes at
every point of D. Assume that the vanishing vector is ∇g; similarly for ∇f . Then,
at least one of the partial derivatives of f , say fz, vanishes only at a finite number of
points of Dz; similarly for fx and fy. This implies that ∇gz vanishes at every point
of Dz, and f z

z vanishes only on a finite subset Σz of Dz. Now, for every P ∈ Dz\Σz,
it holds that Kz

v (πz(P )) = Az(P )f z
v (P ), for v ∈ {x, y, z}. Since Kz ∈ C[x, y], we have

that, for every P ∈ Dz\Σz, Kz
z (πz(P )) = 0. Thus, taking into account that f z

z (P ) 6= 0,
it holds that Az(P ) = 0, so Kz

x(πz(P )) = Kz
y (πz(P )) = 0. Reasoning like in case (i)

one concludes that Kz is not square-free.

(iii) Assume that (2) is true. Then, at least one of the partial derivatives of f , say
fz, vanishes only at a finite number of points of D; similarly for fx and fy. Thus,
f z

z vanishes only on a finite subset Σz of Dz. Then, for every P ∈ Dz\Σz, it holds
that f z

y (P )gz
z(P ) − f z

z (P )gz
y(P ) = 0,−f z

x(P )gz
z(P ) + f z

z (P )gz
x(P ) = 0, f z

x(P )gz
y(P ) −

f z
y (P )gz

x(P ) = 0, and that

Kz
x(πz(P )) = Az(P )f z

x(P ) + Bzgz
x(P )

Kz
y (πz(P )) = Az(P )f z

y (P ) + Bzgz
y(P )

Kz
z (πz(P )) = Az(P )f z

z (P ) + Bzgz
z(P ).

Since for every P ∈ Dz\Σz, Kz
z (πz(P )) = 0, and f z

z (P ) 6= 0, from the third equality
one has that:

Az(P ) = −Bz(P )
gz

z(P )

f z
z (P )

.
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Substituting in Kz
x(πz(P )), and Kz

y (πz(P )) and using the equalities above, we get that
Kz is not square-free.

Now we proceed to prove the converse statement. We assume w.l.o.g. that Kz

is not square-free. Then, the plane curve defined by Kz has a multiple component
L and therefore Kz

x, Kz
y vanish at the points of L. In this situation, for every P ∈

π−1
z (L), where πz : C → C2, it holds that Az(P )f z

x(P )+Bz(P )gz
x(P ) = 0, and similarly

Az(P )f z
y (P ) + Bz(P )gz

y(P ) = 0. Furthermore, Az(P )f z
z (P ) + Bz(P )gz

z(P ) = 0. Thus,
for every P ∈ π−1

z (L) we get that:

Az(P )∇f z(P ) = −Bz(P )∇gz(P )

Hence, ∇f z ×∇gz vanishes at π−1
z (L). Since the projection is birational, π−1

z (L) con-
tains infinitely many points of Cz, so its algebraic closure is a non-reduced component
of Cz. Thus, C is non-reduced.

3.2. Space General Position

Now we describe the properties we impose to the curve C in order to be in general
position, and we show that these requirements can always be achieved after a suitable
linear change of coordinates. More precisely, the required properties are the following:

Property P1 : The leading coefficient of either f or g w.r.t. z and the leading
coefficient of either f or g w.r.t. y are constant.

Note that, by well-known properties on resultants, P1 implies that the implicit
equations of the plane curves πz(C) and πy(C) are Resz(f, g) and Resy(f, g), respectively.
Moreover, it also ensures that no component of C is a perpendicular line to the plane
z = 0 or to the plane y = 0.

Property P2 : The set of points P ∈ C such that Fπz(P ) 6= {P} and the set of points
P ∈ C such that Fπy(P ) 6= {P} are either empty or 0-dimensional.

Observe that P2 is equivalent to the fact that the restriction of πz and πy to every
irreducible component of C is birational.

For determining the graph of the space curve C we need, in the worst case, to know
the behavior of two projections (see subsection 4.1). For this reason, in addition to
the above properties we also require that the projected curves are in planar general
position. This motivates the following definition.

Definition 1. We say that C is in space general position if it satisfies P1 and P2, and
πz(C) and πy(C) are in planar general position.

Now, we analyze whether one can assume w.l.o.g. that C is in space general position.
For property P1, we observe that for every a, b, c, d ∈ R such that c 6= d and such that
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(b, d, 1) and (a, c, 1) are not roots of the homogenous forms of maximum degree of
f and g respectively, then the linear change of coordinates {x = x′ + ay′ + bz′, y =
cy′ + dz′, z = y′ + z′} transforms C onto a curve satisfying P1.

On the other hand, since P2 is equivalent to the fact that the restriction of πz and
πy to every irreducible component of C is birational, one has that for almost all affine
linear transformation L the curve L(C) verifies P2. Thus, one may choose a random
linear change to force C to verify P2. Furthermore, since there exist algorithms to check
whether C satisfies P2 (see for instance [13]) one may also proceed deterministically.
However, these algorithms require the use of Gröbner basis. Thus, we present two
results which provide alternative ways to carry out the birationality test. For this
purpose, we assume that P1 is already satisfied.

For the first result we need the following technical lemma which extends Theorem
I.10.9 of [17] to our purposes:

Lemma 1: Let D be a unique factorization domain, and let F, G ∈ D[x1, . . . , xs] be
two homogeneous polynomials whose degrees are m and n, respectively. Assume that
F has the form:

F (x1, . . . , xs) = A0x
m
s + A1(x̄)xm−1

s + · · ·+ Am(x̄)

where A0 is a non-vanishing constant and x̄ = (x1, . . . , xs−1). Then, the resultant R(x̄)
of F and G w.r.t. xs, is either R = 0 or homogeneous of degree m · n.

Proof: We can write G = B0x
n
s + B1(x̄)xn−1

s + · · · + Bn(x̄), where B0 is a constant
that might be 0. If B0 6= 0, the result is Theorem I.10.9 of [17]. Thus, assume that
B0 = 0. Then, there exists k ∈ {1, . . . , n} such that Bk(x̄) is not zero; since we can
similarly reason for any value of k, let us assume that k = 1, i.e. that B1(x̄) is the first
coefficient of G which is not 0. Then, using the Sylvester form of the resultant, R(x̄)
can be expressed as:

R(x̄) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A0 · · · · · · Am

. . . . . .

A0 · · · · · · Am

B1 · · · · · · Bn

. . . . . .

B1 · · · · · · Bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

where, for sake of simplicity, we have written Ai instead of Ai(x̄), and similarly for
the Bj. Let ∆(x̄) = A0 · R(x̄); then, ∆(x̄) can be expressed as a determinant in the
following way:
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∆(x̄) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A0 · · · · · · Am

0 A0 · · · · · · Am
...

. . . . . .

0 · · · · · · A0 · · · · · · Am

0 B1 · · · · · · Bn
...

. . . . . .

0 · · · · · · B1 · · · · · · Bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

In order to prove this identity, note that expanding the determinant above by the
first column yields A0 · R(x̄). Then, applying in this determinant the technique used
for proving Theorem I.10.9 in [17], we get that ∆(x̄) is either 0, or an homogeneous
polynomial of degree m · n. Since A0 6= 0, the same holds for R(x̄).

Now, let f̂ , ĝ denote the homogenizations of f, g, respectively, with respect to a
variable w. Also, let Ĉ = V (f̂ , ĝ), let ĥ = Resz(f̂ , ĝ), and let Ĥ be the curve defined
by ĥ. Note that since f and g define a real space curve, we can assume that f and g
have no common factor, so ĥ 6= 0. Furthermore, if we denote by m, n the degrees of
f̂ , ĝ, respectively, since P1 is satisfied, by Lemma 1 we get that the total degree of ĥ is
r = n ·m. We still need another previous lemma:

Lemma 2. Let ĥ be square-free and let (a : b : c) ∈ Ĥ be regular. Then, there are
finitely many projective lines L? passing through (a : b : c) and verifying at least one
of the following conditions:

i. L? is a component of Ĥ.

ii. L? is a factor of the homogeneous form of maximum degree of f or g.

iii. L? contains at least one singular point of Ĥ.

iv. L? is tangent to Ĥ.

Proof: The number of irreducible components of an algebraic plane curve is finite, so
it is clear that there are finitely many lines satisfying i. Similarly for ii. Furthermore,
since ĥ is square-free, the number of singularities of Ĥ is finite, so there are only finitely
many lines passing through (a : b : c) that also pass through a singularity of Ĥ. For
condition iv. we refer to Lemma VI.3 in [14].

Theorem 2. Let C satisfy P1. If the projection πz is not birational, then the polyno-
mial ĥ = Resz(f̂ , ĝ) is not square-free.

Proof: Let ĥ(x, y, w) be square-free. Then the curve Ĥ has finitely many singular
points. Let (a : b : c) ∈ Ĥ be a simple point whose fiber π−1

z (a : b : c) consists of at
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least two points of Ĉ (note that, since by hypothesis πz is not birational, there exist
infinitely many points verifying this), and let L = (a : b : c)s + t(v0 : v1 : v2) be the
parametric expression of a projective line passing through (a : b : c) and not verifying
any of the conditions i., ii., iii. and iv. of Lemma 2 (note that, by Lemma 2, there
are infinitely many lines L fulfilling this). Then, by Bezout’s Theorem, the number of
intersections of Ĥ and L, is r; in fact, since L does not verify any of the conditions i.,
ii., iii., iv. in Lemma 2, these intersections correspond to r distinct simple points of Ĥ.
Therefore, the polynomial R̂(t, s) = ĥ(as + tv0, bs + tv1, cs + tv2) has r simple distinct
roots (t1 : s1), . . . , (tr : sr) ∈ P(C), and each root (ti : si) corresponds to a point Pi of
Ĥ. Since P1 holds, the fiber of each Pi consists of finitely many points. Thus, for each
(ti : si) there are only finitely many z such that f̂(asi + tiv0, bsi + tiv1, csi + tiv2, z) = 0,
ĝ(asi + tiv0, bsi + tiv1, csi + tiv2, z) = 0. Consequently, we get that the polynomial
system:

f̂(as + tv0, bs + tv1, cs + tv2, z) = 0
ĝ(as + tv0, bs + tv1, cs + tv2, z) = 0

}
(∗1)

has a finite number of solutions in P2(C). More precisely, since L does not verify
condition ii. in Lemma 2, the polynomials defining (∗1) have the same degrees as f̂ , ĝ,
so by Bezout’s Theorem the number of solutions of (∗1), counting multiplicities, is r.
Furthermore, every solution of (∗1) is of the type (ti : si : zi,ki), where i = 1, . . . , r.

Now, since (a : b : c) ∈ Ĥ, it is clear that (0 : 1) is a root of the polynomial
R̂. Assume w.l.o.g. that (t1 : s1) = (0 : 1). Then, since the fiber π−1

z (a : b : c)
consists of at least two points, there exist at least two distinct numbers z0,1, z0,2, such
that (0 : 1 : z0,1) and (0 : 1 : z0,2) are two distinct solutions of (∗1). Since for all
i ∈ {2, . . . , r}, the corresponding (ti : si) has at least an associated zi,ki such that
(ti : si : zi,ki) is a solution of (∗1), it follows that (∗1) has at least r +1 solutions, which
is a contradiction.

Therefore, the curve Ĥ has no simple point whose fiber consists of more than one
point. Therefore, either πz is birational, or Ĥ has infinitely many singular points. Since
by hypothesis πz is not birational, we get that Ĥ has infinitely many singular points,
so it is not square-free.

Remark 1: Using a similar strategy, one might also prove the following result: let C
verify P1, let πz|C be birational, and let πz(C) be square-free; then, if the cardinal of
the fiber of (x0, y0) ∈ πz(C) is greater than 1, (x0, y0) is a singular point of πz(C). In
order to prove it, one assumes that (x0, y0) is non-singular, and argues in a similar way
to Theorem 2 to show a contradiction.

An analogous theorem can be established for the projection πy. Thus, one has the
following corollary:

10



Corollary 1: If C verifies P1 and Resz(f̂ , ĝ) is square-free, then πz is birational.
Similarly for Resy(f̂ , ĝ) and πy.

Note that, by Theorem 1, the converse of Theorem 2 is not true, since the fact that
some resultant is not square-free may also be caused by non-reducibility of the curve.
Hence, Theorem 2 is not a characterization for birationality; nevertheless, it provides a
fast test that allows to certify the birationality of a projection in many cases. In fact,
this result can be adapted to check the birationality of a projection over any plane
different from the coordinate planes by first applying a linear change of coordinates
that transforms the plane into a coordinate plane.

Since in the cases where there exists a resultant with a multiple factor we cannot
decide the birationality of the projection by means of Theorem 2, we need another
result for checking the birationality in those cases. For that purpose, let M be an
irreducible component of πz(C) over C, let m be the polynomial defining M, and let
M̃ denote the irreducible component of C corresponding to M. We denote by C(M)
the field of rational functions of M. Then, we can consider f and g as elements of
C(M)[z], which is an Euclidean domain. Hence, the gcd(f, g) in C(M)[z], that we
represent by Gm(z), can be computed by means of Euclides algorithm. Then, we have
the following result:

Proposition 1. The restriction πz|M̃ is birational ⇔ Gm(z) has only one different
root.

Proof: If πz|M̃ is birational, for almost all (x0, y0) ∈ M, we get that
gcd(f(x0, y0, z), g(x0, y0, z)) has only one different root, so the implication (⇒) follows.
Conversely, if Gm(z) has only one root in C(M), then Gm(z) = (a(x, y)z − b(x, y))s,

where a, b ∈ C(M). Therefore, b(x,y)
a(x,y)

is the inverse of πz|M̃ and thus πz|M̃ is birational.

Proposition 1 requires the previous computation of the factors of Resz(f, g) over
the complex. In order to do that, we can use the algorithm provided in [4], where the
factors of Resz(f, g) can be obtained without a previous computation of Resz(f, g) (in
fact, using this algorithm, Resz(f, g) may be computed a fortiori by multiplying its
factors).

To finish our analysis of generality it only remains to study when πz(C) and πy(C)
are in planar general position. For this purpose, let us assume that C already satisfies
P1 and P2. First, we observe that when C is reduced, the implicit equations of πz(C)
and πy(C) are square–free (see Theorem 1); this is not the case when C is non-reduced,
but in that case we can consider their square-free part. As we mentioned in section
1, there are deterministic algorithms for computing a change of coordinates that leads
the curve to general planar position; however, since for almost all linear changes in
x, y, the projection πz(C) is placed in general planar position, it is cheaper to choose a
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random linear change, and then check whether πz(C) is in general planar position, or
not. Furthermore, leaving the z-coordinate invariant we get a linear change in x, y, z
such that πz(C) is in general planar position. Similarly for πy(C). In order to check
whether general planar position for πz(C) has been achieved, we first check that the
leading coefficient w.r.t. y of h(x, y) = Resz(f, g) does not have real roots (similarly
for Resy(f, g)); if this condition is not fulfilled, it is easy to prove that almost all linear
changes in x, y make that the leading coefficient of πz(C) w.r.t. y is constant; then,
one has to check that different critical points have different x-coordinates; this can be
done using the technique in [9].

Summarizing, we can conclude with the following result.

Theorem 3. For almost all linear affine transformations L the curve L(C) is in space
general position. Furthermore, algorithms for checking space general position are avail-
able.

3.3. Examples

In the following we illustrate the previous ideas by two examples. In Example 1 we
consider a curve not verifying P1. After a linear change of coordinates, the transformed
curve satisfies both P1 and P2, though it is non-reduced. In Example 2, we consider
a curve whose projection over XY is not birational. After applying a linear change of
coordinates, we get that the transformed curve is reduced, and verifies both P1 and
P2.

Example 1. Let C = V (f, g), where f = 18z2y + 32z + 126xyz − 80z2 − 194xz2 and
g = 18z2xy+32xz+5y4 +8z2y2 +63zyx2−80xz2−97z2x2. The leading coefficient of f
w.r.t. the variable z is constant; however, the leading coefficient of g w.r.t. the variable
y is 18y − 80− 194x, so P1 is not fulfilled. Thus, we apply the change x = x− y + z,
y = y−z, z = y+z , where for sake of simplicity we use the same notation x, y, z also for
the new variables; we also use the same notation f, g for the transformed polynomials.
Hence, we get:

f = −920zy2−1384z2y−658z3 +32y +32z−514xyz−320xz2−80y2−160zy−80z2−
194xy2 − 194y3

g = 32xy + 32xz + 96zy − 97x2y2 − 1742z3y − 658z3x − 80xz2 − 320zy2 − 400z2y −
160z2x2−1640z2y2−80xy2−663zy3−194xy3−257zyx2−160xyz−1384z2xy−920zy2x+
64z2 − 160z3 − 80y3 + 32y2 − 663z4 − 97y4

Now, the leading coefficients of f , g w.r.t. the variables z and y are −658 and −97,
respectively; therefore, the transformed C verifies P1. In order to check P2, we compute
the resultant Resz(f, g); it has two factors, m1 and m2, that define two components
M1 and M2, corresponding to two space components M̃1 and M̃2. More precisely,
m1(x, y) = y4, which is not square-free, while m2(x, y) is a square-free polynomial of
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degree 8. Therefore, we cannot decide the birationality of the projection by means of
Theorem 2, so we have to compute Gm1(z), Gm2(z). In order to do this, we apply
Euclidean algorithm; we need 4 iterations of the algorithm, to finally get that:

Gm1(z) = ((216482(4279500800x + 2893987840x2 − 163840000x3 + 885145600x4 +
1746571264))/((−64000x + 345760x2 + 4482192)2)) · z
Gm2(z) = (216482(4279500800x − 6205276160y − 8186446592xy + 2965386976x2y2 +
2198658560x3y− 2520481920yx2 + 3481765120xy2 + 3335679872xy3 + 2893987840x2−
163840000x3 − 11866514560y3 + 9621182208y2 + 885145600x4 + 13270363216y4 −
2027544120x3y2−871315200x4y−2845839120x2y3−269982512x3y3 +118852839x4y2 +
172739967xy5 − 401957135x2y4 − 5656028880y5 + 137867476y6 − 5352103480xy4 +
1746571264))/((942799xy− 64000x− 3198320y + 345760x2 + 1934004y2 + 4482192)2) ·
z + (216482y(4279500800x − 6205276160y − 8186446592xy + 2965386976x2y2 +
2198658560x3y− 2520481920yx2 + 3481765120xy2 + 4116607872xy3 + 2893987840x2−
163840000x3 − 10282597760y3 + 9621182208y2 + 885145600x4 + 8985124656y4 −
2027544120x3y2 − 871315200x4y − 2827887120x2y3 + 6625488x3y3 + 118852839x4y2 +
565084267xy5 + 66241300x2y4 − 3258652280y5 + 386615616y6 − 4920853480xy4 +
1746571264)/((942799xy − 64000x− 3198320y + 345760x2 + 1934004y2 + 4482192)2))

Since the expressions above are linear in z, by Proposition 1 we conclude that the πz

projections of M̃1 and M̃2 are birational. Similar computations for Resy(f, g) provide
two factors, one of them not square-free. In both cases the corresponding gcd are linear
w.r.t. y, so we get that C satisfies P2, though it is non-reduced.

Example 2. Let C = V (f, g), where f = x4 +yx2−zx2 +x2y2 +y3−zy2 +z2x2 +z2y−
z3−x2−y+z and g = x3−2yx2+4zx2−5x2+xy2−2y3+4zy2−5y2−xz2+2z2y−4z3+5z2.
The leading coefficient of f w.r.t. z and of g w.r.t. y are −1, −2, respectively, so P1 is
fulfilled. The resultant of f and g w.r.t. the variable z is:

Resz(f, g) = −x2(x+2y−5+4x2)(2y−1+x2)(20y2 +20y+9−4xy−10x+17x2)(2x2 +
2y2 − 1)2

that is not square-free. Consider m5 = 2x2 + 2y2 − 1. The first iteration of Euclides
algorithm for the computation of Gm5(z), gives

(1/2y+1/4x+x2−5/4)z2 +(−2x2−2y2 +1)z−1/4x3 +3/2yx2−y+1/4x2−1/4xy2 +
3/2y3 + 5/4y2 + x2y2 + x4

and the second iteration yields a polynomial that is equal to 0 mod 〈2x2+2y2−1〉. Thus,
Gm5(z) is the above polynomial, whose degree in z is 2; furthermore, we check that it
is square-free, so by Proposition 1 the projection of the corresponding component is
not birational. Therefore, we need to apply a linear change of coordinates; we use the
following transformation: x = x, y = y − z, z = y + z. The resulting f and g are:
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f = x4 − 2zx2 − yx2 + 2z2x2 − 4z3 − 6z2y + x2y2 + 2zyx2 − 4zy2 − y3 − x2 + y + 2z
g = x4 − 2yx2 − zx2 + 2x2y2 + 2zyx2 + z2x2 − 4y3 − 6zy2 − 4z2y − z3 − x2 + 2y + z

The leading coefficients of f , g w.r.t. z and y respectively, are −1, −1. We homogenize
them to obtain f̂ , ĝ, and then we compute the resultants of f̂ and ĝ w.r.t. the variable
z and w.r.t. the variable y, respectively; thus, we get:

Resz(f̂ , ĝ) = −w(−3yw2−x2+2wx2)(5w4y2−4w6+2yx2w2+4x2w4+x4)(5y4+6x2y2−
4x2w2+4w4−4w6+2x2w4−8w2y2+w8+2w4y2+x4)(5w2y2−w6−6yx2w+x2w2+2x4)

Resy(f̂ , ĝ) = −w(3zw2 − 2x2 + wx2)(5z2w4 + 2x4 − 6x2zw2 + x2w4 −w6)(x4 + 6x2z2 +
2x2w2−4x2w4−8z2w4+5z4+4w8+w4−4w6+2w2z2)(5w2z2+x4+2x2zw+4x2w2−4w6)

Both of them are square-free, so applying Theorem 2 we get that the corresponding C
verifies P1 and P2.

4 Topology of a Reduced Space Curve

In this section, we finally deal with the problem of computing the topology of an space
curve C that is reduced.Furthermore, in the sequel we assume that C is in space general
position. Hence, our aim is to compute an “space graph” Graph(C) from where one can
derive the shape of C, the number of singular points of it, the local behavior of C around
its singular points, the number of connected components of C, and which of them are
bounded. More precisely, we consider a graph verifying the following properties:

(1) In case that πz(C) has no critical points, the only vertices of Graph(C) are the
points of C obtained by intersecting it with two distinct planes of equations x = l1,
x = l2. In this case, the obtained points are terminal vertices of Graph(C) (i.e.,
vertices that belong only to one edge of the graph). Note that since πz(C) is
in planar general position, the planes x = l1 and x = l2 do not contain any
component of C.

(2) In case that πz(C) has at least one critical point, the non-terminal vertices of
Graph(C) are the points of C whose projections onto the XY plane are critical
points of πz(C). The terminal vertices of Graph(C) are points of C which lie on
two planes of equations x = k1, x = k2, such that the intersection of each of
these two planes with the XY plane is a vertical line placed at the left of the
leftmost critical point, and at the right of the rightmost critical point of πz(C),
respectively.

(3) Every edge of Graph(C) corresponds to a branch of C connecting the points of C
associated to the vertices of Graph(C).
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In order to compute Graph(C) we may also introduce some additional vertices of
Graph(C) that may be kept in the final graph, or that may be cleaned once the com-
putation has finished. Also, note that every terminal vertex of Graph(C) corresponds
to a non-bounded branch of C.

The main ideas of the strategy for the computation of Graph(C) are exposed in the
next subsection, where we show that in general it is necessary to compute two projec-
tions of the curve. Then, we will examine the relationship between the critical points
of the projections over both planes; and finally, we will present the whole algorithm for
computing the space graph. The section ends with a complete example that illustrates
the algorithm. Furthermore, along this section, we assume that C is a real, reduced,
algebraic space curve defined as complete intersection of two surfaces f, g ∈ R[x, y, z],
and that it is placed in space general position.

4.1. The strategy

In order to compute Graph(C) we will use at most two projections. Let us see that, in
general, only one projection is not enough (see Figure 2).

Figure 2: Only one projection is not enough

Figure 2 shows that two different space graphs may give rise to the same planar
graph over the XY plane. In that case, since we derive the spacial graph from the
planar graph, we cannot decide how the space graph looks like (for example, in Figure
2, we cannot decide how to connect P , Q and R, S). Note that this happens when
two points of the curve are projected over the same point of the XY plane (the points
R and S in Figure 2), i.e. when there exists any line L̃, parallel to the oz axe, which
intersects C in more than one point. In fact, in that case we cannot construct the
edges of Graph(C) which enter or leave the intersection points of L̃ and C. However,
the problem disappears if, in addition, one looks also at the projection of C over the
XZ plane, since the points of L̃

⋂ C obviously have different z-coordinates, and so their
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projections over the XZ plane are different. More precisely, in that case, we join the
space points according to the way their projections over XZ are connected.

Remark 2: It may happen that there are also points of C with same projection onto
the XZ plane of some points of L̃

⋂ C. However, a random affine transformation will
avoid that problem in almost all cases.

The most complicated part in the computation of Graph(C) is the determination of
the non-terminal vertices. For this purpose, the strategy is the following: we compute
the projection πz(C), and we determine its critical points. If there is no critical point
of the projection, all the vertices of Graph(C) are terminal, and they can be easily
determined. Otherwise, let P1, . . . , Pr be the critical points of πz(C), where Pi = (xi, yi).

For each Pi, the fiber FPi
consists of the points P

(ij)
i = (xi, yi, z

(ij)
i ), where the z

(ij)
i are

the real roots of gcd(f(xi, yi, z), g(xi, yi, z)). Note that {P (ij)
i } are the non-terminal

vertices of Graph(C). We distinguish two types of critical points of the projection,
equivalently two types of vertices of Graph(πz(C)):

• A-type: if the corresponding fiber consists of only one point.

• B-type: if the corresponding fiber consists of more than one point.

It is clear that if the vertices of an edge of the graph associated to πz(C) are A-type,
the edge can be “lifted” to an space edge of Graph(C) whose vertices are the elements
of their simple fibers. Now, let us consider an edge e of Graph(πz(C)) whose vertices
correspond to the points Pa = (xa, ya) and Pb = (xb, yb), where at least one of them,
say Pb, is B-type. The projections over the XZ plane of the points in FPb

are distinct
points that lie on the line x = xb, and similarly for FPa ; taking into account Remark
2, we can assume that the projections over XZ of the fibers of Pa and Pb are A-type.
Then, once we know how those projected points are connected in the planar graph
of πy(C), we join in the same way the corresponding points of FPa and FPb

. More
precisely, we have the following cases:

• In the case that both lines x = xa, x = xb contain critical points of πy(C), the
computation of Graph(πy(C)) shows how to join the points of πy(C) belonging to
them.

• In the case that one of the lines, say x = xb, does not contain any critical point
of πy(C), we force xb to play the role of δi (see section 2), i.e. we use x = xb as
an auxiliary line that helps to construct Graph(πy(C)).

• If none of the lines x = xa, x = xb contain any critical point of πy(C), we apply
the preceding consideration to both lines. Furthermore, if both lines lie in the
same cylinder between two critical points, or they both are placed to the right
of the rightmost critical point, or to the left of the leftmost critical point, we
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include the points of πy(C) belonging to both lines as vertices of Graph(πy(C))
(i.e., we use not one, but two lines of intermediate points for the construction of
the corresponding part of the graph, what does not affect to the correctness of
the results).

Note that once the graph of a projection has been constructed, the edges, defined
by their vertices, can be stored; therefore, we have a method to decide how to connect
the points of the fibers of Pa and Pb, that can be automatically performed.

Once the vertices of Graph(C) have been computed, we proceed to determine the
edges. For this purpose, let us prove that the edges of Graph(πz(C)) are in one-to-one
correspondence with the edges of the space graph. We need first the following lemma:

Lemma 3: Let P = (xp, yp, zp) be an isolated point of C. Then, πz(P ) is a singular
point of πz(C), and similarly for πy.

Proof: We will proof the result for the projection πz. Similar ideas can be applied
for the projection πy. Now, if πz(P ) is an isolated point of πz(C), then it is a singular
point of πz(C) and the statement is true. So let us assume that πz(P ) is not an isolated
point of πz(C). Then, there are only two possibilities:

i. There exists a non-isolated point P ′ ∈ C such that πz(P ) = πz(P
′).

ii. The case i. does not occur and the space line Lp defined by the intersection of
the planes x− xp = 0 and y − yp = 0 is an asymptote of C.

Note that since all the components of C are 1-dimensional over C (see subsection
3.1), through every point of C there exists at least one (real or complex) branch of C
passing through it. In particular, there exists a complex branch of C passing through
P . Furthermore, since P1 is fulfilled, the projection of any branch of C passing through
a point Q of C is a branch of πz(C) that passes through πz(Q). Thus, in the case i.,
the projections of the branches of C passing through P and P ′ respectively are both
branches of πz(C) passing through πz(P ). Furthermore, since P2 is satisfied, branches
of πz(C) are distinct. Since there are at least two different branches of πz(C) passing
through πz(P ), we get that πz(P ) is a singular point of πz(C).

In the case ii., we also have two different branches of πz(C) passing through πz(P ),
which are the projections of the branch of C passing through P , and of the branches
of C that has the line Lp as an asymptote, respectively. By the birationality of πz|C,
the projections over XY of these two branches of C are different. Therefore, reasoning
like in the previous case, we get that πz(P ) is a singular point of πz(C).

Now, we can prove the result about the edges of Graph(πz(C)).

Theorem 4. The edges of Graph(πz(C)) correspond to the projection of the real
branches of C.
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Proof: Let (t0, t1) be any point on an edge e of Graph(πz(C)) that is not a vertex,
and let (x0, y0) be the associated point to (t0, t1) on the corresponding real branch of
πz(C). Then, (x0, y0) is not a critical point of πz(C) so, in particular, it is not B-type.
Therefore, since P2 is satisfied, there exists only one point on C that projects on (x0, y0).
Thus, the square–free part of gcd(f(x0, y0, z), g(x0, y0, z)) is linear, and since gcds do
not extend the ground field, it is real. Hence, if z0 is its root, then (x0, y0, z0) ∈ R3 is
the point on C that is projected as (x0, y0). Repeating this process for all the points
on the edge that are not vertices, we obtain an infinite number of real space points.
Let us see that all of them belong to a same branch of C. For that purpose, note
that, since the projection πz is birational over every irreducible component of C, π−1

z

is a rational real function and therefore it is continuous at almost all points of the
corresponding component of πz(C). Now, let A be the (open in the usual Euclidean
topology induced over πz(C)) set formed by all the points of πz(C) that correspond to
the points of the edge e, except for the vertices. Then, we have that A can be expressed
as A = A1

⋃{Q1}⋃ · · ·⋃{Qp−1}⋃
Ap, where the Qj = (xQj

, yQj
) are points of A where

π−1
z is not defined, and the Aj are connected subsets of A. Since π−1

z is continuous
over each Aj, and Aj is connected, then for all j we have that π−1

z (Aj) is connected.
Therefore, for all j, π−1

z (Aj) corresponds to a real branch of C. Furthermore, since C is
an algebraic curve, no Qj is B-type, and there is only one branch of C passing through
π−1

z (Qj) (otherwise Qj would have been a vertex), for each pair π−1
z (Aj), π−1

z (Aj+1)
with j = 1, . . . , p − 1, we only have two possibilities: (a) π−1

z (Aj) and π−1
z (Aj+1)

correspond to a same real branch of C; (b) the line defined as the intersection of the
planes x− xQj

= 0, y − yQj
= 0 is an asymptote of C. However, let us see that in our

case (b) cannot happen. Indeed, assume that case (b) occurs, and let Q?
j ∈ C be the

real point such that πz(Q
?
j) = Qj. Then, Q?

j has to be an isolated point of C, since
otherwise reasoning like in Lemma 3 we would get that there are two branches of πz(C)
passing through Qj, so Qj would be a singular point of πz(C). Nevertheless, if Q?

j is
an isolated point of C, by Lemma 3 we also conclude that Qj is a singular point of
πz(C), and this is a contradiction because Qj is not a vertex of the graph associated
to πz(C). Therefore, the case (b) cannot happen and hence we get that the π−1

z (Aj)
all correspond to the same real branch of C. Furthermore, since C is an algebraic
curve, we deduce that the Q?

j also belong to this branch, and therefore all the points
corresponding to the edge e belong to the same real branch of C.

From this theorem one deduces the following corollary.

Corollary 2. C is real if and only if πz(C) is real.

Observe that Corollary 2 provides a criterion for checking the reality of the space
curve C. In order to do that one needs to check the reality of a plane algebraic curve;
this can be done, for instance, applying results in [15].

Note that in the proof of Theorem 4 we have not used whether C is reduced or not;
in fact, it is also valid for non-reduced curves. Note also that Theorem 4 is not true in

18



the case that C does not verify P2. For example, consider the following curve:

D ≡
{

x2 + y2 + z2 + 5 = 0
2x2 + 2y2 + z2 + 1 = 0

It is easy to check that D consists of two circles contained in the complex planes
z = 3i, z = −3i, so D is not real. Nevertheless, its projection onto x, y is the curve
(x2 + y2 − 4)2 = 0, which is a real curve.

Furthermore, observe that in the proof of Theorem 4 the point to be lifted (x0, y0)
belongs to an edge of the graph of πz(C), so it is not an isolated singularity of πz(C);
in fact, an isolated vertex of the graph associated to πz(C) is not necessarily lifted to
a real vertex of Graph(C) (see the example in section 4.4).

4.2. Relationship between the critical points of the projections

Since in the case that πz(C) has some vertex whose fiber is multiple we need to compute
the planar graphs of both πz(C) and πy(C), and since the computation of the critical
points is essential for the construction of the corresponding graphs, our aim now is
to find some relationships between the critical points of both projections. In general,
we may not relate all the critical points of both projections; in fact, in the preceding
subsection we have seen that the space points which give rise to B-type critical points
of πz(C) usually give rise to regular points of πy(C). Nevertheless, the results of this
subsection make easier the computation of the critical points of πy(C) once the critical
points of πz(C) have been computed.

Along this subsection, we will denote by h the resultant Resz(f, g). We start with
the following lemma:

Lemma 4. Let P = (x0, y0, z0) ∈ C be a non-singular point. If U(P ), V (P ) do not

simultaneously vanish, then πz(~T (P )) is a non–zero tangent vector to πz(C) at (x0, y0).

Proof: Since P is non-singular, ~T (P ) is a non–zero tangent vector to C at P . Let
us assume that U(P ) 6= 0 (similarly for V (P )). By the Implicit Function Theorem, y
and z are defined as differentiable functions of x around P . Therefore, there exists a
local parameterization C(x) = (x + x0, y(x), z(x)) of C around P , where C(0) = P ,

and ∇C(0) = ~T (P ). Furthermore, since there exist M, N ∈ R[x, y, z] such that h =
Mf +Ng, we get that πz(C(x)) is also a local parameterization of πz(C) around πz(P ).

Thus, πz(C
′(0)) = πz(~T (P )) is tangent to πz(C) at πz(C(0)) = (x0, y0). Furthermore,

since C ′(x) = (1, y′(x), z′(x)), we get that πz(C
′(0)) = (1, y′(0)) 6= ~0.

Substituting V by W in Lemma 4, we can also prove a similar result for πy(C);
abusing language, we will refer to this result as Lemma 4, too.
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Lemma 5. Let P ∈ C be such that U(P ) = 0 and V (P ) = 0, and assume that fz, gz

do not simultaneously vanish at P . Then, the projection πz(P ) is a singular point of
πz(C).

Proof: We have that U = fygz − gyfz, and V = −fxgz + gxfz. Thus, if U(P ) = 0 and
V (P ) = 0, making easy calculations we get that

(fx(P ), fy(P )) · gz(P ) = (gx(P ), gy(P )) · fz(P ) (∗2)

Let M, N ∈ R[x, y, z] such that h = Mf + Ng. Then, differentiating h w.r.t. the
variables x, y, z respectively, and evaluating the derivatives in P , we get that:

hx(P ) = M(P )fx(P ) + N(P )gx(P )
hy(P ) = M(P )fy(P ) + N(P )gy(P )
hz(P ) = M(P )fz(P ) + N(P )gz(P )

Note that, since h does not depend on z, it holds that hz = 0. Therefore,
M(P )fz(P ) = −N(P )gz(P ). Now, assume w.l.o.g. that gz(P ) 6= 0 (similarly for
fz), and multiply by M(P ) the expression (∗2); then, using the last equality, we get
that

[(fx(P ), fy(P )) ·M(P ) + (gx(P ), gy(P )) ·N(P )] · gz(P ) = 0

Since gz(P ) 6= 0, we conclude that (fx(P ), fy(P )) ·M(P ) + (gx(P ), gy(P )) ·N(P ) = 0,
and consequently hx(P ) = 0, hy(P ) = 0. Since h does not depend on the variable
z, hx(P ) = hx(πz(P )) and similarly for hy. Thus, hx, hy vanish at πz(P ), so it is a
singular point of πz(C).

In the same way, we can prove that if U(P ) = 0, W (P ) = 0 and fy, gy do not
simultaneously vanish at P , then πy(P ) is a singular point of πy(C); abusing language,
we will refer to this result as Lemma 5, too. Now, we are ready to relate the critical
points of both projections. In order to do this, consider the critical points P(z) of πz(C)
that verify one of the following conditions:

I. P(z) is a ramification point, and there exists P ∈ FP(z)
satisfying one of the

following properties:

a. W (P ) 6= 0

b. W (P ) = 0 and fy, gy do not simultaneously vanish at P

II. P(z) is a singular point, and there exists P ∈ FP(z)
satisfying one of the following

properties:

a. U(P ) = 0, W (P ) 6= 0

b. U(P ) = 0, W (P ) = 0 and fy, gy do not simultaneously vanish at P
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III. P(z) is a singular point and there are at least two different branches of C passing
through a point P ∈ FP(z)

.

IV. P(z) is a singular point and there exists P ∈ FP(z)
such that P is an isolated point

of C.

If P(z) verifies one of the above conditions, we will refer to the corresponding point
P ∈ FP(z)

as an associated space point to P(z).

Theorem 5: Let P(z) be a critical point of πz(C) satisfying one of the conditions I, II,
III, IV. Then, the projection over the XZ plane of an associated space point to P(z) is
a critical point of πy(C).

Proof: Assume that P(z) verifies I and let P ∈ FP(z)
be associated to P(z). Since P(z)

is a ramification point, the tangent L to πz(C) at P(z), is vertical. We distinguish two
situations: if V (P ) 6= 0, since L is vertical, by Lemma 4 we have that U(P ) = 0.
Therefore, in the case I.a., since W (P ) 6= 0, by Lemma 4 we get that πy(P ) is a
ramification point of πy(C) and hence it is critical. In the case I.b., since W (P ) = 0
and fy, gy do not simultaneously vanish, by Lemma 5 we get that πy(P ) is a singular
point of πy(C) and hence it is critical. On the other hand, if V (P ) = 0, we distinguish
two cases depending on whether P is regular or not. If it is regular, then U(P ) = 0,
since by Lemma 4 the fact that U(P ) 6= 0 implies that the vector (U(P ), 0) is tangent
to πz(C) at P(z), and so the tangent to πz(C) at P(z) would not be vertical. Then, if
P is regular we apply the corresponding reasoning that we have done before. If P is
singular, then U(P ) = V (P ) = W (P ) = 0 and the only case that may arise is I.b; in
that case, we also reason as before.

In the cases II.a and II.b, the result follows from Lemma 4, and Lemma 5, respec-
tively. In the case III, since πy|C is birational, every branch of C through P is projected
as a different branch of πy(C) through πy(P ). Hence, the number of branches of C
passing through P and the number of branches of πy(C) passing through πy(P ), are
the same. Hence, there are at least two branches of πy(C) passing through πy(P ), and
πy(P ) is singular. In the case IV, the result follows from Lemma 3.

In order to algorithmically analyze the conditions I,II, III and IV, we may proceed
as follows. The points verifying the cases I.a, I.b, II.a and II.b can be found by directly
checking the conditions over the points belonging to the fibers of the critical points of
πz(C). In order to detect III and IV, let P(z) be a critical point of πz(C) verifying III
or IV, let r? denote the number of real branches of πz(C) passing through P(z), and
let q1, q2 denote the number of regular and singular points of C in FP(z)

respectively.
Hence, q1 + q2 is the cardinal of FP(z)

. Now, note the following:

(1) If P(z) verifies III or IV, there must be at least one singular point P ∈ FP(z)
. In

fact, if FP(z)
contains only one singular point, then P(z) verifies III if and only if r?

is greater than q1 + q2, and P(z) verifies IV if and only if r? is equal to q1 + q2− 1.
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(2) If q2 > 1 and r? − q1 > q2, then P(z) satisfies III. The converse is not necessarily
true since there may be isolated singular points among the singular points of
FP(z)

.

(3) If q2 > 1 and r? < q1 + q2, then P(z) satisfies IV. In fact, in this case there may
be several isolated points belonging to FP(z)

.

Remark 3: If q2 > 1, there may be singular points in FP(z)
that are not associated

to P(z). These non-associated singular points are difficult to distinguish from the as-
sociated ones. Thus, in this case, instead of determining the associated points to P(z)

and then projecting them over XZ, we directly compute the critical points of πy(C)
belonging to the vertical line L(z) of the XZ plane defined by the x-coordinate of P(z).
Note that if there are several critical points of πy(C) belonging to L(z), then πy(C) is
not in general planar position, so it is necessary to apply a linear transformation to the
curve C. An alternative approach would be to apply a linear transformation in order
to avoid that two singular points of C are projected over the same point of πz(C).

We can take advantage of Theorem 5 for efficiently computing the critical points of
πy(C). In order to do this, we first compute the critical points P1, . . . , Ps, Ps+1, . . . , Pr

of πz(C), with Pi = (αi, βi), where the s first points verify some of the conditions I,
II, III, IV; then, we compute their fibers. For each Pi with 1 ≤ i ≤ s, we decide the
points whose projections over the XZ plane are critical points of πy(C) and then we
compute the projections of those points over the XZ plane, or we apply Remark 3. Of
course there may be some critical points of πy(C) that we do not obtain this way. In
order to compute them, we first study whether there are other points of πy(C) with
the same x-coordinates than the critical points of πy(C) previously determined. If we
find some points of this kind, then πy(C) is not in general planar position, and a linear
transformation must be applied. Then, we compute the square-free part m(x) of the
discriminant of j(x, z) = Resy(f, g), and we approach the roots of

m̃(x) =
m(x)

(x− α1) · · · (x− αs)

Once the roots of m̃(x) have been computed, we can determine the corresponding z-
coordinates. Finally, we check whether πy(C) is in general planar position, or not. If it
is not, a random affine transformation will lead it to general planar position in almost
all cases.

4.3. the algorithm

Putting together the preceding results and ideas, we present the algorithm for the
computation of Graph(C) in the reduced case:

Algorithm: redtopspace

Input: C = V (f, g), with f, g ∈ R[x, y, z]. Output: Graph(C)
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(1) Check P1; if it is not fulfilled, apply an appropriate linear change of coordinates,
and start again.

(2) Compute h(x, y) = Resz(f, g); if it is square-free, by Theorem 2 we get that
πz|C is birational; then, go to (3). Otherwise, check the birationality of πz|C by
means of Proposition 1. If it is not birational, then apply a random linear affine
transformation, and start again; if it is birational, then the curve is non-reduced,
and we refer to section 5.

(3) Check whether πz(C) is in general planar position; if it is not, apply an appropriate
linear transformation, and start again.

(4) Compute Graph(πz(C)). By using Corollary 2 one may check the reality of C.

(5) Compute the fibers of the vertices of Graph(πz(C)); if all of them are simple, then
join the points of their fibers according to the way the vertices of Graph(πz(C))
are connected, and the algorithm finishes; otherwise, there are some points of
πz(C) with multiple fiber, i.e. B-type, that we denote as R1, . . . , Ru, where Rk =
(αk, βk).

(6) Compute j(x, y) = Resy(f, g). If it is square-free, then P2 is fulfilled; if it is not,
use Proposition 1 to check if it is due to non-birationality of the corresponding
projection, or to the fact that C is non-reduced. If the projection πy|C is not
birational, apply a random linear transformation, and start again. In case that
C is non-reduced, we refer to section 5.

(7) Examine the critical points of πz(C) to identify those ones that fulfill some of
the conditions I, II, III, IV; for those points, determine the corresponding critical
points of πy(C). If we find two critical points of πy(C) with the same x-coordinate,
then πy(C) is not in general planar position, so apply an appropriate linear trans-
formation, and start again.

(8) Determine the square-free part of the discriminant m of j w.r.t. the variable z;
compute the polynomial m̃ in section 4.2, and approach its roots. Then, check
if πy(C) is in general planar position; if it is not, apply an appropriate linear
transformation, and start again.

(9) Compute Graph(πy(C)); in order to do this, if the line x = αk, where αk is the
x-coordinate of one of the Rk, does not contain any critical point of πy(C), then
use it as an auxiliary line for constructing Graph(πy(C)).

(10) Lift the planar graphs. In order to do this, do the following:

(10.1) Edges of πz(C) whose vertices are A-type: they can be directly lifted by
connecting the points in the fibers of the vertices according to the way their
projections are joined in Graph(πz(C)).
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(10.2) Edges of πz(C) with at least a B-type vertex: we connect the points belong-
ing to the fibers of the vertices according to the way their projections are
connected in Graph(πy(C)).

4.4. A detailed example

Let C be the space curve defined by the polynomials f and g, where

f(x, y, z) = 16z − 10xz + 2zy − 3x2 + xy − 8z2

g(x, y, z) = −12x2y2− 192z3y− 1024z3x− 34x3y− 484x3z− 704xz2 + 40zy2− 64z2y−
132yx2−1048z2x2−40z2y2−808zx2−24xy2 +4zy3 +2xy3 +4y3−44zy2x−320z2xy−
160x + 32y − 128xy − 392x2 − 288xyz + 384z − 296x3 + 8y2 − 256− 128z2 − 128z3 −
85x4 − 384z4 + y4 − 448xz + 128zy − 180zyx2.

Now, we will show how the different steps of redtopspace work in this example.

(1) The leading coefficient of f w.r.t. z is −8, and the leading coefficient of g w.r.t. y
is 1, so P1 holds.

(2) The computation of Resz(f, g) is:

Resz(f, g) = −939524096x + 4294967296y + 5695864832xy + 1146093568x2y2 +
1615855616x3y + 4555014144yx2 + 4951375872xy2 + 1710227456xy3 + 5813305344x2 +
2388656128x3 − 301989888y3 + 486539264y2 − 353370112x4 − 167772160y4 +
427032576x3y2 − 172097536x4y + 325189632xy4 + 60030976x2y3 + 52953088x3y3 −
27885568x4y2 +36962304xy5− 15368192x2y4 +2359296x5y +16384x4y4− 49152x5y3−
1916928x2y5 − 1490944x4y3 − 40960x2y6 + 2736128x3y4 + 16384x3y5 + 40960x6y2 −
245760x5y2 − 16384x7y + 409600x6y + 2277376xy6 + 11141120x5 − 47316992y5 +
49152xy7+819200x6−49152x7−7897088y6−671744y7+4096x8−20480y8+7516192768

Since its degree is 8, which is the product of the degrees of f and g, and it is square-free,
we get that Resz(f̂ , ĝ) must also be square-free. Therefore, the projection of C over the
XY plane is birational.

(3) The leading coefficient of Resz(f, g) is 4096, so in particular it has no real root.
The real roots of the discriminant w.r.t. y of Resz(f, g) are:

−24.6054617087,−9.54866281743,−7.68837448497,−4.81632514469,−4.56947500307,
−2.47285430121, 0.0949595194882, 1.06094450089, 1.55593088693, 4.33782933304

Each of these values defines a vertical line of the type x = αi; we check
that in all those lines there is only one critical point of πz(C), so it is in
general planar position. More precisely, the coordinates of the critical points
are: A = (−24.6054617087,−14.63311299), B = (−9.54866281743,−5.939052811),
C = (−7.68837448497,−7.668006658), D = (−4.81632514469,−5.748894895),
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E = (−4.56947500307,−10.79103826), F = (−2.47285430121,−0.9586190410),
G = (0.0949595194882,−5.437764938), H = (1.06094450089,−5.430312902), I =
(1.55593088693,−3.037881273; ), J = (4.33782933304,−3.215005470).

(4) In order to compute Graph(πz(C)), we determine the real points of πz(C) belonging
to the vertical lines of the type x = αi, where the αi are the x-coordinates of the critical
points; for example, the real points belonging to the vertical line defined by C, are

c1 = (−7.68837448497,−13.29062946), c2 = C, c3 = (−7.68837448497,−5.609966815)

and the corresponding points for D are

d1 = (−4.81632514469,−11.02430721), d2 = (−4.81632514469,−10.52457564), d3 = D

Finally, we use auxiliary lines to compute the graph, that is shown in Figure 3. Here,
we see that the points H, I, J are isolated singular points of πz(C). Furthermore, by
Corollary 2 we know that C is real.

A

B

C

D

F

G

E

H

I

J
c

3

c
1

d
2

d
1

Figure 3: Graph of πz(C)

(5) Now, we proceed to compute the fibers of the vertices of Graph(πz(C)). For example,
for the point C, the real roots of

gcd(f(−7.68837448497,−7.668006658, z), g(−7.68837448497,−7.668006658, z))

are 1.898263633 and 7.795202813, so C is a B-type vertex of Graph(πz(C) whose fiber
consists of the points C1 = (−7.68837448497,−7.668006658, 1.898263633), and C2 =
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(−7.68837448497,−7.668006658, 7.795202813); in the same way, we get:

Fc1 = {(−7.68837448497,−13.290629466.932848797)}
Fc3 = {(−7.68837448497,−5.609966815, 8.149554250}
Fd1 = {(−4.81632514469,−11.02430721, 4.838179808)}
Fd2 = {(−4.81632514469,−10.52457564, 0.4814006820)}
FD = {(−4.81632514469,−5.748894895, 5.657341036)}

and the fibers of the rest of the points defining edges of Graph(πz(C)); the points B
and E are also B-type, and for the points H, I, J we find fibers consisting of two points
whose z-coordinates are conjugate complex numbers. Hence, these points are not real,
and consequently they do not appear in Graph(C), and their projections over XZ do
not appear in so in Graph(πy(C)).

(6) We compute Resy(f, g), which is a square-free polynomial of degree 8, so the pro-
jection over the XZ plane is birational, and P2 is fulfilled.

(7) We examine the non-isolated critical points of πz(C). Their fibers consist of
points where W does not vanish, so all of them give rise to ramification points
of πy(C). More precisely, these points are Az = (−24.6054617087, 19.99467799),
Dz = (−4.81632514469, 5.65734103), Fz = (−2.47285430121, 0.45409812), Gz =
(0.0949595194882, 0.24840511), that correspond to the projections over the XZ plane
of the points in the fibers of A, D, F and G, respectively. Furthermore, we check that
there are no other critical points of πy(C) over the vertical lines of XZ defined by Az,
Dz, Fz and Gz, respectively.

(8) In order to determine the rest of the critical points of πy(C) we need to approximate
the roots of

m̃ =
m

(x− xA)(x− xD)(x− xF )(x− xG)

where xA, xD, xF , xG are the x-coordinates of A, D, F , G respectively; in order to get
good results, we need to compute these numbers with a bigger precision, in this case
30 digits. The resulting m̃ has only one real root, which is 0.

The leading coefficient of Resy(f, g) is constant, and we check that on every vertical
line there exists only one critical point of πy(C), so πy(C) is in general planar position;
the critical points of πy(C) are Az, Dz, Fz, Gz, and K = (0, 0), which is a B-type
point of πy(C).

(9) In order to compute Graph(πy(C)), note that the x-coordinates of B and C, that
are -9.54866281743, -7.68837448497 respectively, lie between the x-coordinates of Az
and Dz; thus, we use both lines x = −9.54866281743, x = −7.68837448497 as auxiliary
lines for constructing the graph between Az and Dz; furthermore, the x-coordinate of
E, that is equal to −4.56947500307, lies between the x-coordinates of Dz and Fz, so
the line x = −4.56947500307 is used as an auxiliary line to construct that part of the
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graph. Now, we can compute Graph(πy(C)) (see Figure 4). There, we can locate the
points Bz1, Bz2, which are the projections over XZ of the points in the fiber of B, and
similarly for the points C and E.

Figure 4: Graph of πy(C)

(10) The edges of Graph(πz(C)) whose vertices are A-type can be directly lifted by
connecting the points in their fibers; for example, the edge of vertices F and G is lifted
to an edge connecting the space points (−2.47285430121,−0.9586190410, 0.45409812)
and (0.0949595194882,−5.437764938, 0.2484051100). For the edges of Graph(πz(C))
with at least one B-type vertex, we use Graph(πy(C)); for example, consider the edge
defined by C and D; the fiber of C consists of two points C1, C2, so from Graph(πz(C))
we do not know which of them must be connected to the point D1 in the fiber of D; then,
we look at Graph(πy(C)), where we find an edge whose vertices are the projections of
C2 and D1 over the XZ plane, so C2 and D1 must be connected, while C1 is connected
to the point in the fiber of d2. Similarly for the rest of the edges.

Finally, Graph(C) is computed (see Figure 5). Thus, we get that C consists of 3
connected components, 2 of which are non-bounded (one of them a line).

5 Remarks on the non-reduced case

Now, we will consider some aspects that must be taken into account for the non-reduced
case. First of all, note that in the case when C is non-reduced but both Resz(f, g),
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Figure 5: Graph of C

Resy(f, g) are square-free, the algorithm redtopspace also works. Indeed, in that
case, by Theorem 1 we would get that Resx(f, g) is not square-free, but Resx(f, g) is
not used in the algorithm redtopspace.

Thus, assume that any of the resultants Resz(f, g), Resy(f, g) is not square-free.
In that case, any of the curves πz(C), πy(C) has multiple components. Then, since
the graph of an algebraic plane curve is equal to the graph of its square-free part (see
section 2), we compute the square-free part of Resz(f, g) (resp. Resy(f, g)), and we
force the corresponding plane curve to play the role of πz(C) (resp. πy(C)).

On the other hand, note that the results of Theorem 5, that are used in the steps (7)
and (8) of redtopspace for the computation of the critical points of πy(C), are only
useful over the components of C whose projections over XY and XZ have finitely many
critical points, i.e. both projections are square-free. Hence, in order to use Theorem
5 in the non-reduced case, we need to previously determine this kind of components
of C. In order to do this, we can proceed as follows: in each square-free component of
πz(C), we take a point Q that is not critical, and such that πy(Q

?), where Q? is the
point in the fiber of Q, is not a B-type point of πy(C). Note that since Q is not a
critical point of πz(C), there is only one real branch of πz(C) passing through it, and
so there is also only one branch of C passing through Q?; then, since πy(Q

?) is not a
B-type point of πy(C), there exists only one component of πy(C) that contains πy(Q

?).
Finally, we check if this component of πy(C) is multiple, or not. If it is not, then we
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can use Theorem 5 over the corresponding component of C. In order to determine the
critical points of πy(C) that cannot be computed this way, we proceed as in subsection
4.2. An alternative approach to the use of Theorem 5 for the non-reduced case, is to
compute the critical points of the square-free part of πy(C) by directly approximating
the roots of the square-free part of the discriminant of Resy(f, g), i.e. to proceed as in
the computation of the critical points of the square-free part of πz(C).

Thus, bearing in mind the above considerations, and the ideas applied in the con-
struction of the algorithm redtopspace, an algorithm that also works for the non-
reduced case might be derived.
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