
Tools for Using Automated Provers

in Mathematical Theory Exploration

Dissertation

zur Erlangung des akademischen Grades

"Doktor der technischen Wissenschaften"

Eingereicht von

Dipl.-Ing. Florina Mihaela Piroi

Juli 2004

Erster Begutachter : o.Univ.Prof. Dr.Dr.h.c Bruno BUCHBERGER

Zweiter Begutachter : o.A.Univ.Prof .Dr.Josef Küng

Angefertigt am : Forschungsinstitut für symbolisches Rechnen

Technisch Naturwissenschaftliche Fakultät

Johannes Kepler Universität Linz

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen nicht benützt und die den
benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich

gemacht habe.

Linz, Juli 2004

Florina Mihaela Piroi

Tools for Mathematical Theory Exploration

2

Abstract

The thesis is the outcome of the authoress’ work within the Theorema system. Theorema

is designed to provide computer support for all aspects of the mathematical exploration
cycle (including proving, solving, and computing), in the frame of one uniform logic.

The purpose of the thesis was to design and implement advanced tools that assist Theo-

rema users in mathematical theory exploration.

Theorema puts an emphasis on “systematic theory exploration”, rather than “isolated
theorem proving”. Extensive mathematical theory explorations usually involve a large

amount of mathematical knowledge, that needs to be hierarchically structured and stored
such that it can be easily accessed, used and applied at a later time. The tool described
first in this thesis provides facilities to build up and maintain hierarchic structures of

mathematical knowledge. It does this by composite label generation and label manage-
ment. Based on the generated composite labels, the tool can also address, reference, and
select knowledge for later use.

An important phase in mathematical theory exploration is proving. In Theorema, this

is done by automatic applications of inferences and heuristics implemented in the prov-
ers of the system. The tool described next provides means to interact with the Theorema

provers at certain situations in the proof generation process. It allows users to actively

guide the proof search process by, for instance, adding necessary assumptions and
providing solving terms.

In the Theorema system we also underline the attractive presentation of proofs. The
proof presentation tools described in this thesis help the users of the Theorema system to

better understand proofs by providing different presentation styles and a “magic magnify-
ing glass”.

For each of the tools described usage examples are given.

Keywords: Automated theorem proving, mathematical knowledge management, interac-
tive proving, proof simplification, focus windows, Theorema .

Tools for Mathematical Theory Exploration

3

Zusammenfassung

Diese Doktorarbeit ist das Ergebnis der Arbeit der Autorin im Rahmen des Theorema

Systems. Theorema wurde mit dem Ziel entwickelt, dem Benutzer Unterstützung in
allen Phasen des Explorierens mathematischer Theorien im Rahmen einer einheitlichen
Logik zu bieten. Das Ziel dieser Arbeit ist das Entwerfen und Implementieren fortge-

schrittener Werkzeuge, die die Theorema Benutzer beim Explorieren mathematischer
Theorien unterstützen sollen.

Anstelle von Beweisen isolierter Sätze legt Theorema das Hauptaugenmerk auf eine
systematische Exploration von mathematischen Theorien. Aufwändiges Erforschen

erfordert üblicherweise umfangreiches mathematisches Wissen, das hierarchisch strukturi-
ert und so gespeichert wird, dass es zu einem späteren Zeitpunkt leicht zugänglich und
verwendbar ist. Das in dieser Arbeit zuerst beschriebene Werkzeug bietet die Möglich-

keit, die hierarchische Struktur mathematischen Wissens aufzubauen und zu erhalten.
Dies wird erreicht, indem zusammengesetzte Marken erzeugt und verwaltet werden
(“label management”). Basierend auf diesen zusammengesetzten Marken kann das

Werkzeug also Wissen für eine spätere Verwendung adressieren, referenzieren und
auswählen.

Eine wichtige Phase bei der Erforschung mathematischer Theorien ist das Beweisen.
Dieses wird in Theorema durch automatische Anwendungen von Inferenzen und Heuris-

tiken durchgeführt, die in sogenannten Beweisern implementiert sind. Das als nächstes
beschriebene Werkzeug bietet Möglichkeiten zur Interaktion mit den Beweisern in
bestimmten Situationen des Beweisvorgangs. Dieses Werkzeug erlaubt es Benutzern,

den Suchvorgang des Beweises aktiv zu steuern, indem notwendige Annahmen, Lösun-
gen für Existenzaussagen, usw. zur Verfügung gestellt werden.

Ein weiteres wichtiges Augenmerk legt Theorema auf die attraktive Gestaltung der
Beweispräsentation. Die hierfür entwickelten und in dieser Arbeit beschriebenen beiden

Werkzeuge helfen Benutzern, Beweise besser zu verstehen. Deren Implementierung
basiert auf der Verwendung verschiedener Präsentationsstile und der Idee eines
“magischen Vergrößerungsglases”.

Anschauliche Beispiele sollen die Vorteile einer Nutzung der Werkzeuge

unterstreichen.

Schlagworte: Automatisches Beweisen, mathematisches Wissensmanagement, Interak-
tives Beweisen, Vereinfachen von Beweisen, Fokusfenster, Theorema.

Tools for Mathematical Theory Exploration

4

Acknowledgement

I give my first thanks to my advisor, Bruno Buchberger. I am happy and grateful that I
had the chance to work under the supervision of such an inspiring person. I have greatly
learned from the life lessons, wisdom and experiences he shared with us, students,

during those seemingly endless extra Thinking Speaking Writing sessions. I thank him
for the enthusiasm he puts in continuing the Theorema project, which I embarked soon
after my coming to RISC, for his uplifting words, for the drumming sessions, for the
cherries and for creating and maintaining such a special research environment like

Schloss Hagenberg.

I thank Viorel Negru for offering me the occasion to be an exchange student at the
University of Linz, and for his care towards all of his students that are now abroad. I also

want to thank Tudor Jebelean, who unknowingly influenced me to choose research over
a programmer career in the first place, and then knowingly helped me to start PhD
studies at RISC.

I also give my warm thanks to Josef Küng for his promptitude to be the co–referee of

this thesis.

To my colleagues in the Theorema group (alphabetically: Adi Craciun, Camelia
Kocsis, Koji Nakagawa, Laura Kovacs, Markus Rosenkranz, Mircea Marin, Nikolaj
Popov, Temur Kutsia, Wolfgang Windsteiger): thank you for all the support you gave

me, for answering my sometimes naive questions, and for your friendship. I thank Ibolya
Szilagy for forcing me out of day–dreaming moods and sending me to work (or to sleep
when the case). I greet all those RISC people in the 'R'–club. We should fix a

club–meeting again. Cheers to Cleo, for helping me out with printing the thesis. Prosit!
Carsten, your german is quite good, I must say.

Now it's family turn (I almost can hear that little brother of mine: Finally! You are
done! Now go make some money!). I thank my parents for providing me with the knowl-

edge of the English language, with education, and support in the difficult times I went
through. I greet my friends in Oradea (see you soon!). Last but surely not least, I thank
my room–mate for the huge moral support he gave me.

The work described in this thesis has been supported by the RISC PhD scholarship program of the

government of Upper Austria, and by the Spezialforschungsbereich (SFB) grant F1302, Austrian Science
Foundation (FWF).

Tools for Mathematical Theory Exploration

5

Table of Contents

1. Introduction .. 1
Goal and Structure of the Thesis .. 1
Statement of Originality .. 2
Theorema – A Description .. 3

Proof Situations and Proof Objects ... 3
Theorema and Mathematical Knowledge Management 5

2. Label Management in Mathematical Libraries .. 8
Introduction ... 8

Label Management as Part of Mathematical Knowledge Management 8
The Purpose of Label Management .. 9
Problem Description by an Example .. 11

Description of the Label Management Tools .. 13
Starting Point for the Development of the Tools .. 13
Tool for Systematic Generation of Hierarchical Labels 13
Tool for Including Formal Parts of Notebooks into Other Notebooks 15
Tool for Using Selected Formal Parts of Notebooks .. 16

Conclusions to this Chapter ... 17

3. Interactive Proving in Theorema .. 18
The Problem ... 18
Description of the Tools .. 24

Preliminaries ... 24
Working Notebook Files ... 25
Developer Information and Log Windows .. 25
Menu–palette Windows ... 26

Using the Environment ... 28
Setting the Action Focus ... 29
Main Operations: Start, Next, Finish, Stop ... 30
Displaying Information (not only) for Developers 32
Adding and Removing Assumptions ... 36
Instantiate Quantified Variables .. 38
Add/Remove Branches, Insert a Goal Formula 40
Change Provers, Set Prover Options ... 42

Tools for Mathematical Theory Exploration

Comments on Implementation .. 42
Further Developments ... 44

Back to the Introductory Example ... 44

4. Proof Simplification ... 52
The Problem ... 52
Simplifying Proofs .. 57

’branch’ Simplification .. 59
’steps’ Simplification ... 62

Option Value ’All’ .. 62
Option Value ’Useful’ .. 62
Option values ’Lifted’ and ’LiftedParallel’ .. 65
Option value ’Combined’ ... 68
Option value ’Essential’ ... 71

5. Focus Windows ... 72
The Problem ... 72
The Main Idea .. 76
Implementation of Focus Windows ... 77
Using Focus Windows .. 78

6. A Literature Survey ... 86
Label Management and MKM Systems ... 86
Interactive Proving Systems ... 87
Proof Simplification .. 88
Focus Windows .. 89

References .. 91

Curriculum Vitae ..100

Tools for Mathematical Theory Exploration

1 1. Introduction

1.1 Goal and Structure of the Thesis

Theorema is a software system that aims at providing, in the frame of one uniform logic, computer

support to all aspects of the mathematical exploration cycle: formalizing and introducing new

notions, conjecturing and proving facts about the introduced notions, extracting algorithms from

proved theorems, using these algorithms for computing and solving, writing (interactive) lecture

notes, publishing. Some of the early papers on the design of the system are [Buchberger:96a,b,c],

[Buchberger:97] and [Buchberger:98a,b]. A progress report on Theorema is given in

[Buchberger&al:00]; more recent papers on the current status of the system can be found on the

website of the project (www.theorema.org).

In the Theorema system great emphasis is put on "systematic theory exploration", rather than

"isolated theorem proving". The systematic theory exploration paradigm was introduced in

[Buchberger:99]. Mathematical theory exploration is explained by the concept of "exploration

situations", concept introduced in [Buchberger:00b]. The paper also introduces the parameters

that characterize an exploration situation, namely: "known notions", "known facts about known

notions", a "new notion", "axioms that relate the new notion with the known notions", and finally,

"a class of goal propositions that completely explore the relation of the new notion with the known

notions". Various approaches to systematic, computer–supported mathematical theory exploration

are presented in [Buchberger:00b].

In this thesis we describe the implementation and usage of several tools that assist humans in

their mathematical theory exploration within the Theorema system.

Extensive mathematical theory explorations usually involve a large amount of (mathematical)

knowledge. The tools described in Chapter 2 emerged from the need to manage the mathematical

knowledge a user develops during a theory exploration session. The tools implement facilities to

preserve the hierarchic structure of mathematical theories by management of composite, hierarchi-

cal labels. Additionally, based on the generated composite labels, the tools give the user means to

address, reference and select mathematical knowledge for later use.

The Theorema system integrates proving, computing and solving within one coherent logical

frame. Normally, a call to solve/prove a conjecture will automatically apply the inferences and

heuristics implemented in the used prover (or the combination of provers). The outcome of this

automated process may not always be satisfactory, and, hence, interaction of the user with the

prover, at certain situations during the proof generation, may be of help. In Chapter 3 we describe

tools that realize user–system interaction in the frame of Theorema.

Most automated theorem provers do not put emphasis on producing proofs that are easy to

read and understand. (A very telling illustration of this is provided by the collection of proofs

produced for the irrationality of
r����

2 by 15 different provers in [Wiedijk:01].) From the outset, in

Theorema we tried to stress the importance of attractive proof presentation. Theorema proofs are

designed to resemble proofs generated by humans, i.e. they contain formulae and explanatory text

in English. However, what makes a presentation of proofs attractive and easy to understand is a

highly subjective matter. The tools described in Chapters 4 and 5 help the users of the Theorema

system to better understand proofs by providing different presentation styles (Chapter 4) and a

"magic magnifying glass" (Chapter 5). While reading proofs using the magic magnifying glass,

called Focus Window in Chapter 5, the user is presented, at each proof step seen through the

glass, with only the formulae relevant for the "magnified" step. The rest of the proof is left in the

background.

In Chapter 6 we give an account on the work that has been done up–to–date in the in the areas

of mathematical knowledge management, interactive provers and natural language proof

presentation.

The feasibility of all the tools described in this thesis is proven by their implementation in the

frame of the Theorema system. However, the ideas and techniques behind the tools are also

applicable to other mathematical software systems.

1.2 Statement of Originality

The work presented in this thesis is the outcome of the authoress' work within the Theorema

system. The Theorema system is developed at the Research Institute for Symbolic Computation,

under the leadership of Bruno Buchberger.

The design of the label management tools (Chapter 2) is based on the ideas of Bruno Buch-

berger. The concrete implementation for Theorema is done by the authoress.

A first prototype of an interactive proving environment within Theorema was implemented by

Tudor Jebelean [Buchberger&al:98]. Further developments are described in [Nakagawa&-

Kossak:99] and [Kossak:99]. The contribution of the authoress is the migration from the prototype

status of the interactive environment to a stable component of the Theorema system. This necessi-

tated a complete re–implementation of the interactive environment. Additional functionality of the

environment, like displaying debug and proof information, selecting nodes in the proof–tree,

selecting provers, variable instantiation, are also contributed by the authoress.

Tools for Mathematical Theory Exploration

2

The need for proof transformation tools has been posed and discussed within the Theorema

group and during the project seminars already in the second half of 1999. Tudor Jebelean began a

first implementation of proof simplification routines (a first version of branch simplification and

retaining useful proof steps, see Chapter 4). The remaining proof simplification routines discussed

in Chapter 4, as well as upgrades of the earlier implementations done by Tudor Jebelean, are the

contribution of the authoress.

Finally, the original idea of the focus windows is presented in [Buchberger:00a], the design

and implementation of this presentation technique was done by the authoress under the guidance

of Bruno Buchberger.

1.3 Theorema – A Description

In this section we describe features of the Theorema system that are relevant to the content of this

thesis. The interested reader should consult the Theorema papers cited in this document as well as

the list of papers on the system’s website (www.theorema.org).

The Theorema system is implemented on top of the computer algebra system Mathematica

[Wolfram:03] which has a document centered front–end and offers unique facilities for the input

and output of logical expressions (including complex graphics), for programming by rewrite rules,

and for interactivity.

The Theorema system contains various provers for general and specific domains: a proposi-

tional and a predicate logic prover [Buchberger&al:00], the Prove–Compute–Solve (PCS) prover

for predicate logic with equality [Vasaru–Dupré:00], induction provers over natural numbers and

over lists [Buchberger&Vasaru:97], a set–theory prover [Windsteiger:01], a Groebner Bases

based prover for boolean combinations of polynomial equalities and inequalities, etc. The provers

of Theorema follow a natural style approach: the inferences resemble the natural steps used by

human provers, and the rendering of the proofs is done in natural language. This approach has

been pioneered by Buchberger, (see e.g. [Buchberger:96c]) who designed and implemented the

first versions of the predicate logic prover. In a simplified and abridged view, the provers are

collections of inference rules. One proof step in a Theorema proof corresponds to one inference

rule application.

1.3.1 Proof Situations and Proof Objects

Tools described in this thesis operate on and modify proof situations and proof objects. For this

reason we give a brief description of the Theorema proof situations and proof objects. Both

concepts were defined and formalized in detail in [Tomuta:98]. We encourage the interested

reader to consult this work, the description bellow summarizes the one done by Tomuta.

Tools for Mathematical Theory Exploration

3

A proof situation is generally defined as a pair consisting of a goal formula and a possible

empty list of assumption formulae. At the implementation level, the Theorema system uses a triple

for a proof situation, namely, the goal formula, the list of assumptions and an additional list that

caries information specific to the provers of the system. From now on, whenever we use this

concept we refer to the proof situations as triples, in the Theorema implementation. The infer-

ences of the Theorema provers take as input a proof situation and return a possible empty list of

proof situations.

A proof–object is used to represent stages in the proof of a conjecture. The Theorema data

structure used for representing proof–objects is the deduction tree. The nodes in a deduction tree

can either be open, processed or terminal nodes. An open node contains a proof situation. The

content of a processed node represents one step in the proof, which transformed a proof situation

into one or more proof situations. A terminal node represents a final step in a proof, i.e. the proof

step did not produce any proof situations. Terminal and processed nodes have the following

components:

• the trace of the performed proof step: It is used for generating the natural language

representation of the Theorema proofs. It stores the name of the inference rule used by

the proof step, the labels of the formulae used and a list of generated formulae. Some

proof steps may store extra information in their trace;

• the proof situation on which the proof step has performed;

• a list of successor nodes: When a step in the proof is performed, zero, one or more

proof situations may be obtained. These situations are the contents of the (open) succes-

sor nodes. If the list of successors is empty, the node is a terminal one.

• a proof value, which is computed from the proof values of the successors. The possible

proof values are "Proved" (the conjecture is true under the given assumptions), "Dis-

proved" (the conjecture is not true under the given assumptions), "Failed" (the prover

cannot find a proof under given assumptions) and "Pending" (the proving process is not

finished yet);

In this thesis, deduction trees are also called proof–trees.

Tools for Mathematical Theory Exploration

4

1.3.2 Theorema and Mathematical Knowledge Management

Mathematical Knowledge Management (MKM) is a new research area at the intersection of

mathematics and computer science. The "Call for Papers" of the First International Workshop on

Mathematical Knowledge Management (held in September 2001 at Research Institute for Sym-

bolic Computation, University of Linz, Austria) recognized the need for efficient, new techniques

– based on sophisticated formal mathematics and software technology – for taking fruit of the

enormous knowledge available in current mathematical sources and for organizing mathematical

knowledge in a new way [CfPMkm:01]. Furthermore, in [Buchberger:01b] are identified three

main problems of the mathematical knowledge management area, namely:

• retrieving mathematical knowledge;

• building up mathematical knowledge bases; and

• educating mathematicians to work efficiently with and improve the existing knowledge bases.

In the same paper it is described how each of the three activities can be performed within

Theorema.

We give, now, a view of the MKM research area and its subareas. Roughly, this view was

expressed by Bruno Buchberger in the preface of the first conference on MKM and the subse-

quent special issue of the journal AMAI, see [Buchberger&Caprotti:01] and [Buchberger&al:03].

Other, alternative, views of MKM can be found in the introductions of recent papers on MKM, in

particular the ones in [Buchberger&Caprotti:01], [Asperti&al:03] and [Buchberger&al:03].

In Buchberger's view, the aim of MKM is the computer–support (partialy or fully automated)

of all phases of the mathematical theories exploration:

• invention of mathematical concepts,

• invention and verification (proof) of mathematical propositions,

• invention of problems,

• invention and verification (correctness proofs) of algorithms that solve problems,

and the structured storage of concepts, propositions, problems, and algorithms in such a way that

they can be easily accessed, used and applied at a later time.

MKM in this broad sense is, essentially, a logical activity: All formulae (axioms, definitions of

concepts, propositions, problems, and algorithms) must be available in the coherent frame of a

logical system, e.g. some version of predicate logic, and the main operation of MKM on these

formulae is essentially formal reasoning (in particular formal proving), i.e. reasoning guided by

explicit algorithmic rules.

The Theorema system is one of the systems whose emphasis is on this logic aspect of MKM,

which we think is the fundamental aspect of future MKM. Some papers on the logical aspects of

Tools for Mathematical Theory Exploration

5

MKM within Theorema are [Buchberger&al:00, Buchberger:01a]. The question of

computer–supported invention of mathematical knowledge within Theorema is treated in

[Buchberger:04], the question of computer-supported algorithm synthesis within Theorema is

treated in [Buchberger:03a], [Buchberger:04] and [Buchberger&Craciun:03]. The formal

(computer–supported) reasoning aspect of MKM is not subject of this work.

On the surface of MKM we are faced also with many additional organizational problems,

which are important for the practical success of MKM:

a. The translation of the vast amount of mathematical knowledge which is available only

in printed form (in textbooks, journals etc.) and which has to be brought into a form (e.g.

LATEX), in which it can be processed by computers: This is the problem of "digitizing"

mathematical knowledge, see e.g. [Rockey:04] for a survey on the existing projects in this

area or [ChanYeung:00]. The Theorema project is not engaged in this area of MKM.

b. The translation of digitized mathematical knowledge, for example in the form of LATEX

files, into the form of formulae within some logical system, e.g. predicate logic, so that

afterwards they can be processed by reasoning algorithms (in particular theorem proving

assistants): Many current projects are addressing this question, see e.g. MathML, Open-

Math [Caprotti&Carlisle:99]. The Theorema project is not engaged in this area of MKM

either. In fact, we think that most of the mathematical papers, even if their formulae are

typed in LATEX, are logically not sufficiently consistent and explicit for automated

extraction of their logical content. Therefore, in our own experiments on formalization of

mathematical theories, we prefer to build-up mathematical theories by radical reformaliza-

tion from scratch. Such reformalizations may well follow the general flow of presentation

in an existing paper or textbook but the actual formulation of the formulae has to be done

"by hand" or by formal reasoning tools.

c. The organization of big collections of formulae, which are already completely formal-

ized within a logic system (e.g. predicate logic) in "hierarchies of theories": At the

moment, the largest such collection is Mizar [Miz]. Among other existing ones we men-

tion MBase [Kohlhase&Franke:01], the Formal Digital Library project [Allen&al:02], the

NIST Digital Library of Mathematical Functions [Lozier:01], Hypertextual Electronic

Library of Mathematics [Helm], the libraries of the theorem provers Isabelle [Paulson:94],

PVS [Owre&al:98], IMPS [Farmer&al:96], Coq [CoQ].

Subproblem c., again, has two sub–aspects:

c1. The organization of formalized mathematical knowledge by means of mathemati-

cal / logical structuring mechanisms like domains, functors, and categories. Theo-

rema puts a particular emphasis on this aspect, see for example, [Buchberger:03b].

c2. The additional assignment of various kinds of labels to formulae and collections

of formulae so that blocks of mathematical knowledge can be identified and combined

in various ways without actually going into the "semantics" of the formulae. The set

of tools described in Chapter 2 are designed to exclusively treat this subproblem.

Tools for Mathematical Theory Exploration

6

2 2. Label Management in Mathematical Libraries

2.1 Introduction

2.1.1 Label Management as Part of Mathematical Knowledge Management

In traditional mathematical texts, labels are used very often but a systematic management of labels

is, normally, not considered to be important nor is it feasible. In contrast, in the build–up of

completely formal (i.e. algorithm–processable) mathematical knowledge bases, the systematic

design and processing of structured labels (i.e. individual labels like "(1)", "(2)" or

"(associativity)" etc., hierarchical section headings, key words like "definition" and "theorem",

names of files etc.) becomes vital for the automated structuring and re–structuring of collections

of formulae as input to formal reasoning tools like provers, simplifiers, algorithm verifiers, model

checkers, etc. Consequently, we need algorithmic tools that handle all types of labels and allow us

to partition and combine, structure and re–structure mathematical knowledge bases according to

the structural information provided by the hierarchical labels.

In order to avoid misunderstandings, let us emphasize that, in our view, labels do not intend to

have any logical meaning or functionality. This is in contrast to the goal of "annotations", etc. as,

for example, in [Caprotti&Carlisle:99] and [Kohlhase:00], which convey at least part of the

semantics. In our view, the semantics of formulae (in particular predicate logic formulae) is

exclusively defined by their inclusion into the context of collection of other formulae

(mathematical knowledge bases). In other words, formulae obtain their meaning relative to each

other in the context of the knowledge base in which they occur and in the context of the logic used

for reasoning about the formulae, and labels only help in addressing, referencing, selecting

individual formulae in knowledge bases and in partitioning and re–combining (small and big)

collections of formulae. Summarizing, in the view of this chapter, the functionality of labels is

purely organizational and not logical. (For an introduction on the logical aspects of labels see the

description of "Labelled Deduction Systems" in [Gabbay:90].)

Also, the concept of labels in this organizational view has to be distinguished from the concept

of "comments". Comments have neither a logical meaning nor do they contribute to the organiza-

tion of mathematical knowledge bases. Rather, comments are only meant as meta–level guides for

human readers of mathematical knowledge bases. Comments are actually skipped in the algorith-

Tools for Mathematical Theory Exploration

7

mic (logical and organizational) processing of knowledge bases. Hence, from the point of view of

Mathematical Knowledge Management (MKM), comments are trivial and we do not say anything

about them here. In fact, within the Theorema system, there is ample possibility for comments:

Since Theorema uses the front–end of Mathematica, in Theorema files comments can be put

everywhere into Mathematica "text cells" and are just overread in any processing of the files.

2.1.2 The Purpose of Label Management

Now let us describe the scenario that specifies the purpose and the functionality of the tools we

designed and implemented, and which we present here, for handling hierarchical labels in the

Theorema system. This scenario will also make it clear how our tools can be used for any other

MKM system that relies on predicate logic.

We start from the assumption that we treat collections of formulae in pure (higher order or

first order) predicate logic in the internal form of nested expressions in prefix notation. For

example,

™ForAll#•range#•var#f', •var#B'', True, ™Iff#is–bounded#•var#f', •var#B'',
™ForAll#•range#•var#x'', True, ™LessEqual#™BracketingBar#•var#f'#•var#x''', •var#B'''''

is such a formula. Collections of such formulae can either be input by a user "by hand" in the

external syntax (see below), or they can be the result of some of the Theorema reasoning tools like

provers, simplifiers, algorithm synthesizers, etc., or they can be the result of translating knowledge

bases from any other mathematical knowledge management system (as long as these systems work

in the frame of predicate logic).

Since the Theorema system is mainly meant as a practical tool for helping the working mathe-

matician with exploring mathematical theories and presenting the trace and the result of theory

explorations in an easy–to–read and easy–to–write style, we also provide an external form of

predicate logic formulae. For example, the above formula, in the current standard external syntax

of Theorema is as follows:

�
f,B

-is–bounded#f , B' y�
x

�f#x'� � B1 .

Tools for Mathematical Theory Exploration

8

This external syntax was carefully designed in order to come as close as possible to the "usual"

syntax of mathematical formulae (including algorithms) in textbooks and articles. However, since

"usual" syntax is a matter of endless dispute and heavily influenced by individual taste and

practice, Theorema offers an extra tool which allows to program, within certain limitations, one’s

own external, two–dimensional syntax. Thus, if the user of Theorema does not like the external

syntax provided as a default, she is welcome to design and implement a different one using the

syntax programming tools of Theorema, which are actually provided by the underlying Mathemat-

ica system and by which formulae in the external syntax can be turned into the above internal

standard syntax. (Flexible syntax programming was, in fact, one of the reasons why Theorema is

implemented within Mathematica, see MakeExpression in [Wolfram:03, Section 2.9.17]).

Of course, it is also possible to type the variables appearing in the above example:

�
f:
�����

,B �
� -is–bounded#f , B' y �

x �
� �f#x'� � B1.

However, all this does not extend the class of predicate logic formulae and all these details of the

logic language are not relevant in this chapter’s context.

We start now from the standard situation, in which we have a (small or big) collection of

predicate logic formulae in the above Theorema syntax, contained in the input cells of a couple of

Theorema files, which in fact are just ordinary Mathematica notebooks files. Such files have

various kinds of "cells" (see [Wolfram:03, Section 1.3.5): Input cells, that contain formulae (in

our case predicate logic formulae in Theorema syntax), text cells for comments (which have no

relevance for the purposes presented here), and a whole hierarchy of cells for "section headings"

which, in this paper, we will use heavily for structuring collections of formulae: We consider

headings as a kind of labels for whole blocks of formulae. For the purposes of Theorema, we

added the possibility that formulae in input cells can have additional individual labels and, also,

that formulae in input cells can be "wrapped" by additional key words like "definition",

"theorem", "axiom", "algorithm", "lemma", "fact", etc. Note that these key words, again, are

nothing else than a kind of labels: They do not at all add any logical meaning to the formulae they

wrap and, actually, there is no way to decide whether a formula is a "definition" or a "theorem",

etc., except by analyzing its role in the context of an entire theory exploration activity. In fact, a

given formula may be a definition in one exploration situation and a theorem or an algorithm in

some other exploration. The assignment of keywords like "definition" etc. is, hence, not some-

thing which is inherent in the formulae but is, rather, something that may change according to the

view of the user who organizes collections of formulae and, therefore, is part of our labelling

system and the tools we provide for managing labels.

In the following sections we will describe the tools we designed and implemented for manag-

ing hierarchic labels and the corresponding management of hierarchic collections of predicate

formulae (in Theorema syntax). Typical users of these tools are "working mathematicians" who

want to build up and explore mathematical theories within the Theorema system. However, by

translators to and from other systems that process collections of predicate logic formulae, the tools

Tools for Mathematical Theory Exploration

9

we describe can also be used from within other systems. Currently, translators to and from Theo-

rema collections of formulae are implemented for several deduction systems ([Kutsia&-

Nakagawa:01]). More such translators are under way and will be added to the system depending

on the available man power and user request. In particular, we plan to have a translator between

Theorema and MathML. Alternatively, one could design and implement similar labeling manage-

ment tools directly in other systems.

2.1.3 Problem Description by an Example

Let us take a look at the screenshots in Figures 2.1. and 2.2. They present part of the contents of

two Mathematica notebooks storing text and formulae. The formulae are in predicate logic, in the

Theorema external syntax. The formulae and the text in these files are grouped under certain

headings in sections, subsections, etc. Such files can either be the result of an automated process,

or can be created by a human user, via Mathematica’s and Theorema’s front–end environments.

Typing the documents is done in a WYSIWYG style: Both Mathematica and Theorema provide

several tools and toolbars for creating documents and typing mathematical formulae in a

user–friendly way.

Figure 2.1. Figure 2.2.

The contents of the first file (Figure 2.1.) describe the basic notions of the tuple theory. It gives

the definitions of the tuple concept, the definitions of operations that can be performed on tuples

(reversion, concatenation, etc), and propositions involving the defined concepts. The second file

Tools for Mathematical Theory Exploration

10

(Figure 2.2.) stores axioms and definitions in the domain of natural numbers, where the natural

numbers are expressed by the Peano axioms.

Note that this is only a small example. In practice we may have dozens of files, each with

hundreds of formulae. Case studies that involve files with a large number of formulae are, for

example, the algorithm synthesis [Buchberger&Craciun:03] and the Groebner rings case studies

[Buchberger:03b]. We are also working on a large case study in the frame of the CreaComp

didactic project that aims at the use of Theorema in math teaching.

Let us now assume that we want to investigate some of the properties of the length of tuples.

For such a case study we need to use basic knowledge about tuples and natural numbers. Since the

two files already contain the formalization of this knowledge, we would like to use this knowl-

edge, combine it, extend it, and produce a third file containing the new knowledge (Figure 2.3.).

Furthermore, let us assume that we want to select some of the knowledge contained in some of the

files and give it as an input to one of the automated reasoning tools of Theorema.

Figure 2.3.

For doing this, we need means to access the desired knowledge within the given files. The most

natural way to access formulae and groups of formulae is access by position in files, by section

and subsection headings, keywords or labels. Since this is not yet possible in the current native

Mathematica notebooks, we need tools for transforming hierarchical section headings, keywords

and individual labels of formulae into unique composite labels, which is one of the main objec-

tives of this chapter.

Tools for Mathematical Theory Exploration

11

2.2 Description of the Label Management Tools

2.2.1 Starting Point for the Development of the Tools

The tools for label management described here, take as input Mathematica notebooks which

contain comments in text cells and predicate logic formulae in input cells. The formulae are given

in Theorema external syntax. Also, in these notebooks, labels of various kinds (section heading,

key words like "definition", "theorem" etc., and individual labels) can be attached to formulae and

groups of formulae. For this, we developed a particular Mathematica stylesheet. A Mathematica

stylesheet is a special kind of notebook that defines the styles to be used in other notebooks

[Wolfram:03, Section 2.10]. By our stylesheet, keywords like "definition", "theorem", "property",

etc. can be attached to entire sections, subsections, etc. Formulae that occur under these headings

will have attached the keyword given by the style of the headings. If desired, the user can also

override these keywords by keywords at the level of individual formulae. With the help of this

stylesheet, the label management tools can identify, select, and re–combine formal parts of

documents and use them, for example, as input to automated reasoners.

The documents processed by the label management tools operate on libraries of Theorema

notebooks. A library is a collection of Mathematica notebooks using the above stylesheet. By the

tools described below it is guaranteed that the notebook labels are unique. Also, we provide an

extra index file that lists all notebooks in the library and also describes the mutual inclusion of

notebooks in the library, see below. In addition, the Mathematica package facility is used in the

organization of the notebooks in the library for speeding up re–loading of notebooks.

In the following, we will describe the main tools which we designed and implemented for

achieving the objectives specified in Section 2.1.3 above. For the convenience of the user, these

tools can be accessed also by a new Theorema toolbar, called 'Library Utilities'.

2.2.2 Tool for Systematic Generation of Hierarchical Labels

An example of a Theorema notebook is given in Figure 2.1. above. It has a notebook title ("Basic

Notions: Tuples") and a notebook label ("BN:Tuples"). Formulae, in input cells, are grouped

under section and subsection headings. Hierarchically grouping cells in sections, subsections and

so on, is a feature of Mathematica notebooks. It is common practice that larger notebooks have

chapters, sections and so on, each represented by groups of cells. The extent of these groups is

indicated by a bracket on the right. [Wolfram:03] which can also be conveniently used for optical

contraction of sections to obtain an easy overview.

The headings of the cell groups, the notebook title, the notebook label, and labels of individual

formulae are the components used for generating and attaching unique composite labels to all

formulae and groups of formulae in the notebook. If the notebook label is not present in the

Tools for Mathematical Theory Exploration

12

document a notebook label will be generated automatically from the notebook title such that every

notebook in the notebook library has a unique identifier. For this reason, the notebook title is a

mandatory element in the Theorema notebooks. User given notebook labels are checked against

the list of existing notebook labels (extracted from the library index file). The user is notified

when the notebook label is already used by another Theorema notebook.

From the notebook title, notebook label, section headings, etc. provided by the user our tool

automatically generates composite labels for each section, subsection, etc., and individual formula

in the notebook. These composite labels are generated in three variants which we call long, short,

and decimal composite labels, respectively. The details of this process are described below.

In Figure 2.1., for example, the user provided notebook and theory labels. The user also

provided all of the headings in the notebook, among them "Operation on Tuples: Concatenation".

The generated labels are: "BN:Tuples.Propositions Involving the Definitions Above.Operation on

Tuples: Concatenation’’ for the long label variant, "BN:Tuples.ProInvDefAbo.OpeTupCon’’ for

the short label variant, and "BN:Tuples.5.1" for the decimal label variant.

The short variant of the label is obtained from the long variant by a simple string truncation

algorithm, with some proviso for preserving uniqueness. The period in the above label variants

plays the role of a separator, displaying the composite structure of the labels generated.

In Mathematica, notebooks are represented as Mathematica expressions. The label generating

routine takes as input the Mathematica expression of a Theorema notebook. The notebook

expression has a recursive structure, reflecting the grouping and subgrouping of cells in the

notebook. Correspondingly the label generating routine proceeds recursively. The label variants

are created by concatenation operations, where the operands are, depending on the label variant,

the text of the heading, the short text of the headings (obtained by string truncation algorithms),

and notebook counters. Eventual user–given labels are taken into account for the generation of the

short and long label variants. The notebook label is prepended to each of the labels so that any

resulting label we look at, in the Theorema notebook, contains the notebook label as a substring.

Because the notebook label is unique among notebook labels in the library, we are sure that the

generated labels uniquely identify the formulae and groups of formulae within the library.

Tools for Mathematical Theory Exploration

13

Figure 2.4. Figure 2.5.

Figures 2.4. and 2.5. show the notebooks in Figures 2.1. and 2.2. after they have been processed

by the label generating routine. The labels that can be seen right above the formulae and groups of

formulae are the decimal part of the generated labels. The short label variants are not shown.

From now on, when we use the word ’label’ we refer to one of the three variants of a label.

Now, groups of formulae and individual formulae of Theorema notebooks can be referenced

by composite labels and can be used for composing new Theorema notebooks and knowledge

bases as an input to formal reasoners as described in the next two sections (see Figure 2.3.).

2.2.3 Tool for Including Formal Parts of Notebooks into Other Notebooks

When we write a new Theorema notebook we may now also include parts of already existing

Theorema notebooks in the library. For this we implemented an ’Include’ command which takes all

formulae referenced in its arguments and copies them, together with their unique labels, into the

current notebook. This gives us the possibility to concentrate knowledge dispersed in various

notebooks in the library in one Theorema notebook and use this new notebook independently of

the library. Of course, there is also a possibility to list the new notebook in the library index of the

current library or some other library. This is particularly convenient when distributing libraries

over the web.

The ’Include’ command has the structure

Tools for Mathematical Theory Exploration

14

Include#Label1, Label2, ..., Labeln, Option',

whose functionality should be self–explanatory: Take the collections of formulae referenced by

the composite labels Label1, ..., Labeln from the current library and copy them into a new

version of the notebook that contains the 'Include' command and cancelled the 'Include' command.

There are two settings of the 'Option' argument of the 'Include' command. With the first

setting, the original composite labels of the formulae included are kept unchanged. With the

second setting, the composite label of the 'Include' command will be prepended to the labels of the

formulae included. If the no setting for 'Option' is given, the latter setting is considered.

2.2.4 Tool for Using Selected Formal Parts of Notebooks

The various reasoners (provers, simplifiers, and solvers) of Theorema can be called by instruc-

tions of the following structure

Reason#Goal, using � KnowledgeBase, by � ReasoningMethod',

where 'Reason' can be 'Prove', 'Compute', 'Solve'; 'KnowledgeBase' is expressed by

; Label1, ..., Labeln?,

and Label1 , ..., Labeln are composite labels of collections of formulae in the notebook library.

For example,

Prove#"LenTpl.3.1", using � ;"BN:Tuples", "NN:Basic"?, by � TupleEqIndProver',

where 'TupleEqIndProver' is a Theorema prover that combines rewriting and induction over

tuples.

Alternatively, we also implemented the following 'Theory' construct:

Theory#Label, ; Label1, ..., Labeln?',

which is something like a temporary assignment of a new label to specified collections of formu-

lae so that we can formulate calls to reasoners also in the following form:

Reason#Goal, using � Label, by � ReasoningMethod'.

For example, the above call can be formulated in the following way:

Theory#"Tuples and Natural Numbers", ;"BN:Tuples", "NN:Basic.1"? '
Prove#"LenTpl.3.1", by � TupleEqIndProver, using � "Tuples and Natural Numbers"'.

At the implementation level, the selection tool, whose usage is described above, uses a subroutine

that translates the formal content of the Theorema notebooks into Theorema internal syntax which

is understood by the Theorema provers. This subroutines use Theorema's input parsing routines

Tools for Mathematical Theory Exploration

15

described briefly in [Windsteiger:01]. The translated knowledge, in Theorema internal syntax, is

stored together with the labels attached to it, into Mathematica package files for efficiency

reasons. Loading knowledge stored in Mathematica package files is faster than translating the

formal knowledge in the Theorema notebooks into Theorema internal syntax. The library index

file keeps record of these package files.

2.3 Conclusions to this Chapter

We presented simple tools that allow to reference specific parts of collections of mathematical

knowledge bases organized in libraries of Theorema notebooks. These tools generate systemati-

cally composite hierarchical labels for all the sections, subsections etc. and the individual formu-

lae of Theorema notebooks from section headings and individual labels of formulae in the original

notebooks provided by the user. With these tools one then can quickly compose specific new

notebooks and knowledge bases as input to the formal reasoners of the Theorema system using the

composite hierarchical labels. These tools can also be used for knowledge bases in other systems

by translation of the formulae formats between systems.

Seemingly, label management is a trivial part of mathematical knowledge management. It also

seems that label management in the sense specified in this chapter is not an explicit goal in the

current MKM systems (see the overview in Chapter 6 Section 1). However, we believe that, in

fact, systematic and efficient label management is quite significant for the user–friendliness of

future mathematical knowledge management systems and needs systematic treatment. For differ-

ent purposes within MKM the choice of labels must meet different criteria. For example, for

human readers of mathematical knowledge bases (e.g. in the form of Theorema notebooks), long

textual labels may be preferable whereas, in the presentation of proofs, short version of labels are

desirable in order not to disrupt the flow of the proof presentation. In the extreme case, if the

proof presentation style of 'Focus Windows' is used (see Chapter 5), one even does not need labels

in proof presentations. However, at the same time, labels as references for organizing new knowl-

edge bases from given ones, for example as input to provers, are very important. Thus, flexible

label management tools on top of the logic tools of MKM systems are necessary.

Tools for Mathematical Theory Exploration

16

3 3. Interactive Proving in Theorema

3.1 The Problem

One of the main goals of the Theorema project is the design and implementation fully automated

provers. In this paradigm, the user provides the formula to be proved and the knowledge from

which the goal and the prover will either come up with a proof or report that it cannot find a

proof. However, interaction of the user with an algorithmic prover at certain situations during the

generation of a proof may sometimes be very helpful. Let us try, for example, to prove that the

limit of the sum of two sequences of real numbers is the sum of their limits. Formalized in Theo-

rema, this is:

Proposition#"limit of sum", any#f , a, g, b',
+limit#f , a' Â limit#g, b'/w limit#f ¨g, a � b' "lim of ¨"'

where ’limit’ and ’̈ ’ are defined as follows:

Definition%"limit",
�
f,a

limit#f , a'y ��
���

0

�
N
�
n

n � N

�f#n'� a� � H "lim:")

Definition#"sum of sequences", any#f , g, x', +f ¨g/#x' f#x'� g#x' "f ¨ g" '

where ’+’ and – are the well known addition and subtraction operations on the reals.

Using the Theorema PND prover, which is a general prover for predicate logic, a first proof

attempt may be generated by the call:

Prove#Proposition#"limit of sum"',
using � �Definition#"limit"', Definition#"sum of sequences"'�, by � PredicateProver';

The (failing) proof attempt is:

Prove:

(Proposition (limit of sum): lim of ¨)

�
a,b, f ,g

+limit# f , a' Â limit#g, b' Á limit# f ¨ g, a � b'/ ,

under the assumptions:

(Definition (limit): lim:) �
a, f

-limit# f , a' x�� -H ! 0 Á �
N
�
n

+n � N Á � f #n' � a� � H /11 ,

Tools for Mathematical Theory Exploration

17

(Definition (sum of sequences): f ¨ g) �
f ,g,x

++ f ¨ g/#x' f #x'� g#x'/ .

For proving (Proposition (limit of sum): lim of ¨) we take all variables arbitrary but fixed and

prove:

(1) limit# f0, a0' Â limit#g0, b0' Á limit# f0 ¨ g0, a0 � b0' .

Proving (1) by the deduction rule fails.

We assume

(2) limit# f0, a0' Â limit#g0, b0'

and show

(3) limit# f0 ¨ g0, a0 � b0' .

From (2.2), by (Definition (limit): lim:), we obtain:

(5) �� -H ! 0 Á �
N
�
n

+n � N Á �g0#n'� b0� � H /1 .

From (2.1), by (Definition (limit): lim:), we obtain:

(4) �� -H ! 0 Á �
N
�
n

+n � N Á � f0#n' � a0� � H /1 .

 Proving (3) by contradiction fails.

We assume

(6) » limit# f0¨ g0, a0 � b0' ,

and show a contradiction .

From (6), by (Definition (limit): lim:), we obtain:

(7) » �� -H ! 0 Á �
N
�
n

+n � N Á �+ f0 ¨ g0/#n' � +a0 � b0/� � H /1 .

Formula (7) is simplified to:

(8) �� -» -H ! 0 Á �
N
�
n

+n � N Á �+ f0 ¨ g0/#n'� +a0 � b0/� � H /11 .

By (8) we can take appropriate values such that:

(9) » -H0 ! 0 Á �
N
�
n

+n � N Á �+ f0¨ g0/#n' � +a0 � b0/� � H0/1 .

Formula (9) is expanded into

(10) H0 ! 0 Ð �
N
�
n

+n � N Á �+ f0¨ g0/#n'� +a0 � b0/� � H0/ .

Formula (10.2) is simplified to:

(11) �
N

-» �
n

+n � N Á �+ f0 ¨ g0/#n'� +a0 � b0/� � H0/1 .

From (10.1), by (5), we obtain:

(13) �
N
�
n

+n � N Á �g0#n'� b0� � H0/ .

From (10.1), by (4), we obtain:

(12) �
N
�
n

+n � N Á � f0#n'� a0� � H0/ .

By (12) we can take appropriate values such that:

(14) �
n

+n � N0 Á � f0#n'� a0� � H0/ .

By (13) we can take appropriate values such that:

(15) �
n

+n � N1 Á �g0#n'� b0� � H0/ .

The proof of (a contradiction) fails. (The prover "PND" was unable to transform the proof

situation.)

Ã

Tools for Mathematical Theory Exploration

18

The reason why the proof attempt fails is manifold. The main reason is that, in fact, the knowledge

we provided is not strong enough for proving the goal formula in the exact sense that the goal is

not a logical consequence of the knowledge. Hence, as a first interaction of the user, we use a

different prover (the "PCS" prover) that, implicitly, uses quite some special knowledge on real

numbers and, in addition, applies a particular strategy for handling formulae with operations

defined by alternating quantifiers (like "� � �") as, for example, the operation of ’limit’. The PCS

prover (which stands for "Prove Compute Solve") combines predicate logic proving, simplifica-

tion, and inequality solving over the reals. Its main strategy is the reduction of a proof problem on

functions on the reals to inequality solving over the reals. The PCS prover has been proposed B.

Buchberger, see [Buchberger:96], and was implemented in the PhD thesis [Vasaru–Dupré:00].

The corresponding prove call in our example is:

Prove#Proposition#"limit of sum"',
using � �Definition#"limit"', Definition#"sum of sequences"'�, by � PCS'.

The proof attempt is:

Prove:

(Proposition (limit of sum): lim of ¨)

�
f ,a,g,b

+limit# f , a' Â limit#g, b' Á limit# f ¨ g, a � b'/ ,

under the assumptions:

(Definition (limit): lim:) �
f ,a

L

N

MMMMMMMlimit# f , a' x ��
� �

0

�
N

�
n

n � N

+� f #n'� a� � H /
\

^

]]]]]]] ,

(Definition (sum of sequences): f ¨ g) �
f ,g,x

++ f ¨ g/#x' f #x'� g#x'/ .

We assume

(1) limit# f0, a0' Â limit#g0, b0' ,

and show

(2) limit# f0 ¨ g0, a0 � b0' .

As there are several methods which can be applied, we have several choices to proceed with the

proof.

Alternative proof 1: failed

Formula (1.1), by (Definition (limit): lim:), implies:

(3) ��
� �

0

�
N

�
n

n � N

+� f0#n'� a0� � H / .

By (3), we can take an appropriate Skolem function such that

(4) ��
� �

0

�
n

n � N0
� � �

+� f0#n' � a0� � H / ,

As there are several methods which can be applied, we have several choices to proceed with the

proof.

Alternative proof 1: failed

Formula (1.2), by (Definition (limit): lim:), implies:

(5) ��
� �

0

�
N

�
n

n � N

+�g0#n'� b0� � H / .

Tools for Mathematical Theory Exploration

19

By (5), we can take an appropriate Skolem function such that

(6) ��
� �

0

�
n

n � N1
� � �

+�g0#n'� b0� � H / ,

As there are several methods which can be applied, we have several choices to proceed with

the proof.

Alternative proof 1: failed

Formula (2), using (Definition (limit): lim:), is implied by:

(7) ��
� �

0

�
N

�
n

n � N

+�+ f0¨ g0/#n' � +a0 � b0/� � H / .

We assume

(8) H0 ! 0 ,

and show

(9) �
N

�
n

n � N

+�+ f0 ¨ g0/#n'� +a0 � b0/� � H0/ .

As there are several methods which can be applied, we have several choices to proceed with

the proof.

Alternative proof 1: failed

The proof of (9) fails. (The prover "QR" was unable to transform the proof situation.)

Alternative proof 2: failed

We have to find N2
�
 such that

(10) �
n

+n � N2
�
Á �+ f0 ¨ g0/#n'� +a0 � b0/� � H0/ .

Formula (10), using (Definition (sum of sequences): f ¨ g), is implied by:

(11) �
n

+n � N2
�
Á �+ f0#n' � g0#n'/� +a0 � b0/� � H0/ .

The proof of (11) fails. (The prover "QR" was unable to transform the proof situation.)

Alternative proof 2: failed

The proof of (2) fails. (The prover "NDS" was unable to transform the proof situation.)

Alternative proof 2: failed

The proof of (2) fails. (The prover "NDS" was unable to transform the proof situation.)

Alternative proof 2: failed

The proof of (2) fails. (The prover "NDS" was unable to transform the proof situation.)

Ã

The PCS prover also failed to prove this conjecture. The next type of user interaction is adding

the appropriate knowledge to the knowledge bases. In our example, by examining the last proof

attempt, especially formulae (11), (4) and (6), we conclude that additional knowledge about

modules and distances between points (expressed by modules) may help:

Lemma$"distance of sum",

�
x,y,z,t,

�
, �

+�+x� z/ � +y� t/� � +G � H//u+�x� y� � G Â �z� t� � H/ "dist �" (

Prove#Proposition#"limit of sum"',
using � �Definition#"limit"', Definition#"sum of sequences"', Lemma#"distance of sum"'�,
by � PCS'

Tools for Mathematical Theory Exploration

20

The proof attempt is (for a better overview, we have omitted the proof steps that were already

presented in the previous proof attempt):

Prove:

(Proposition (limit of sum): lim of ¨)

�
f ,a,g,b

+limit# f , a' Â limit#g, b' Á limit# f ¨ g, a � b'/ ,

under the assumptions:

(Definition (limit): lim:) �
f ,a

L

N

MMMMMMMlimit# f , a' x ��
� �

0

�
N

�
n

n � N

+� f #n'� a� � H /
\

^

]]]]]]] ,

(Definition (sum of sequences): f ¨ g) �
f ,g,x

++ f ¨ g/#x' f #x'� g#x'/ ,

(Lemma (distance of sum): dist+)

�
x,y,z,t,

�
,
� +�x � y� � G Â �z� t� � H Á �+x � z/� +y� t/� � G � H / .

We assume

(1) limit# f0, a0' Â limit#g0, b0' ,

and show

(2) limit# f0 ¨ g0, a0 � b0' .

(... omitted proof steps ...)

We have to find N2
�
 such that

(10) �
n

+n � N2
�
Á �+ f0 ¨ g0/#n'� +a0 � b0/� � H0/ .

Formula (10), using (Definition (sum of sequences): f ¨ g), is implied by:

(11) �
n

+n � N2
�
Á �+ f0#n' � g0#n'/� +a0 � b0/� � H0/ .

Formula (11), using (Lemma (distance of sum): dist+), is implied by:

(12) ��
,
�

� � � ���
0

�
n

+n � N2
�
Á � f0#n'� a0� � G Â �g0#n' � b0� � H / .

As there are several methods which can be applied, we have several choices to proceed with the

proof.

Alternative proof 1: failed

The proof of (12) fails. (The prover "QR" was unable to transform the proof situation.)

Alternative proof 2: failed

We have to find G0
�
, H1

�
, and N2

�
 such that

(13) +G0
�
� H1

�
 H0/ Ð �

n
+n � N2

�
Á � f0#n' � a0� � G0

� Â �g0#n'� b0� � H1
� / .

Formula (13), using (6), is implied by:

+G0
�
� H1

�
 H0/ Ð �

n
+n � N2

�
Á H1

�
! 0 Â n � N1#H1

� ' Â � f0#n'� a0� � G0
� / ,

which, using (4), is implied by:

(14) +G0
�
� H1

�
 H0/ Ð �

n
+n � N2

�
Á G0

�
! 0 Â H1

�
! 0 Â n � N0#G0

� ' Â n � N1#H1
� '/ .

As there are several methods which can be applied, we have several choices to proceed with the

proof.

Alternative proof 1: failed

The proof of (14) fails. (The prover "QR" was unable to transform the proof situation.)

Tools for Mathematical Theory Exploration

21

Alternative proof 2: failed

Formula (14) is implied by

(15) +G0
�
� H1

�
 H0/ Ð G0

�
! 0 Ð H1

�
! 0 Ð �

n
+n � N2

�
Á n � N0#G0

� ' Â n � N1#H1
� '/ .

The proof of (15) fails. (The prover "QR" was unable to transform the proof situation.)

Ã

We can, again, examine the proof attempt to decide on how to continue in order to obtain a proof

of the given proposition. We can either add more lemmata to the knowledge base used by the

prover, or use a different prover and/or different proof strategies of the chosen prover.

Following the first alternative, we can formulate the required knowledge (as lemmata, proposi-

tions, definitions, etc.) and call the prover again, where the knowledge base used by the prover is

now enlarged to contain the new knowledge. The last proof attempt in the above example illus-

trates this procedure. We can repeatedly call the prover, each time with some new knowledge

added to the base used by the prover, until hopefully a proof or disproof of the conjecture is

obtained. However, this style of work (attempt to find a proof, add more knowledge, restart the

proving process) is, of course, not really economic. Rather, we want to introduce new knowledge

right at the time when the proof fails and continue the proof from this point on.

In the case we want to use a different prover of the Theorema system we have to modify the

’Prove’ call so that it invokes a different prover of the Theorema system. In the example above, we

have first used the ’PredicateProver’ and then the ’PCS’ prover. Now, each prover of the Theorema

system comes with a set of options that give users the possibility to indicate certain strategies to be

applied during a proof search. The options have default values. For all that, their values do not

change during a proof search, so users of the system cannot, for example, chose to first apply one

strategy, and then continue with another.

From the outset, Theorema’s current provers are designed to work in an automatic style: they

take as input a goal formula to be proven and a (possible empty) list of assumption formulae to be

used for proving it. The prover can be ’tuned’ via its options, but no other operation can be

performed by the user once the ’Prove’ call is sent to the Mathematica kernel for evaluation. The

result of this automated proof search process is presented then to the user in a natural language

style. If the proof is unsuccessful the user, as in the alternatives presented before, re–starts the

proof search process, on different premises (additional knowledge, different options of the used

prover, different prover of Theorema). However, we would like to have the possibility to guide

the proof search routines during the proof search. For example, we would like to hint the prover to

use certain instances for specific quantified variables at various points in the proof. In the proof

attempt above, for instance, we would like to hint the prover to use
�

0cccccc2 for each G0
�

 and H1
�

 in

formula (13), where H0 is introduced by formula (8). In other words, we are interested to have an

interaction between the user and the Theorema system amid the development of proofs. In the

following sections we will describe the tools that support such a user–system interaction.

First attempts to integrate interactivity into Theorema were done by Tudor Jebelean (a core

member of the Theorema group) and are described in [Buchberger&al:98]. Some of the ideas in

Tools for Mathematical Theory Exploration

22

this work were taken as the starting point of the work in this thesis. Prior to this work, in

[Tomuta:98] is shown how interactive proving was to be integrated in the architecture of Theo-

rema, but very little implementation was done. Another attempt to provide user–system interac-

tion is described in [Nakagawa&Kossak:99]. Felix Kossak, in [Kossak:99], further develops the

prototype presented in [Nakagawa&Kossak:99].

The set of tools we have implemented form an environment that we will refer to as the

"interactive environment", from now on. Proving within this environment will be called proving in

the "interactive mode", while the default proving mode in the Theorema system will be called

proving in the "non–interactive mode".

3.2 Description of the Tools

3.2.1 Preliminaries

The interactive environment allows a finer grained interaction between a human user and the

Theorema system. When the environment was designed we had in mind three groups of users. For

the first group of users, the environment has a didactical value: it can be used to train formal

proving, only allows correct operations and never gets tired. The second group of users are those

who are already familiar with formal proving techniques and with the details of the Theorema

system. For them, the interactive environment enriches the proving power of the Theorema

system, by allowing them to use their creative ideas and intuition (for example, instantiating

quantified variables with certain values). The third group of users is the Theorema developers

group, for which the environment can be used as a tool for testing the provers that are still in

development.

Tools for Mathematical Theory Exploration

23

In the non–interactive mode, the Theorema provers apply the inference rules automatically.

The inferences are repeatedly applied until either a proof is obtained or no inferences can be

applied anymore. The users only see the final output of this process. In contrast, when searching

for proofs in the interactive environment, the system is compelled to stop after each application of

an inference rule, to present the produced proof sofar, and to wait for a decision from the side of

user. In the interactive mode, the proofs are gradually developed starting from an initial proof tree

that has two nodes: the root node that contains the proof problem as given by the user (goal

formula and assumption formulae, if any), and a child node, which contains the proof problem as

in the root node and, additionally, internal information, specific to the provers and to the proof

search routines of Theorema. The child node is an unexplored node, or in Theorema terminology:

a pending node. The information stored in an unexplored node is called a "proof situation". The

node expansion is done by calling a prover to apply one of its inferences on the proof situation of

the node to expand. An inference rule application will produce none, one or more proof situations

that are inserted into the proof tree as unexplored children of the expanded node. The proof search

mechanism will add to the information stored in the expanded node a trace of the inference rule

application.

While the system waits for a user decision to continue, in the interactive mode, the user can

perform one or more of the following actions:

• select a proof situation in the proof;

• inspect a selected proof situation;

• add or remove assumptions in a selected proof situation;

• suggest instances for universally or existentially bound variables;

• add or remove branches in the proof tree;

• choose one among different provers to continue the proof, eventually change its options;

• make the system expand the proof by one inference rule application;

• ask the system to finish the proof without anymore user interventions;

• put an end to the proving session and exit the environment.

The components of the interactive environment which realize the concrete execution of the above

user actions can be grouped in three categories:

• working notebook files;

• developer information and log windows;

• menu–palette windows (also called toolbars).

Tools for Mathematical Theory Exploration

24

3.2.1.1 Working Notebook Files

In this category fall the Mathematica notebook files in which the user writes and stores the

mathematical knowledge used during a proving session (interactive or not). A special notebook is

"The Proof Window" which is used for presenting the proofs generated by the Theorema provers.

In the non–interactive mode this notebook displays the proof in a natural language style. The

proof cannot be modified anymore. In the interactive mode, "The Proof Window" displays the

sofar developed proof, which can be modified via the tools of the interactive environment.

By combining selection of cells in the working notebooks and button clicks on the

menu–palettes of the interactive environment, the user can navigate inside the proof–tree, in order

to continue the proof on a certain branch, introduce new branches, add/remove assumptions,

instantiate variables, etc.

3.2.1.2 Developer Information and Log Windows

These windows are used to display environment specific and proof specific information. Their

content does not directly influence the proving process. The interactive environment makes use of

one log window and one developer information window. The log window records the main

commands of the user, displays messages about the interactive environment status and eventual

warnings. The developer information window is used to display (on user request) the information

stored in the nodes of the proof–tree. This information can be displayed both in a user–friendly

external and in Theorema internal form.

In addition to these two windows, the environment uses notification dialogs to inform the user

that an action she performed is not accepted by the system.

3.2.1.3 Menu–palette Windows

The menu–palette windows (also called toolbars) are an important component of the interactive

environment. The commands triggered by the buttons on these toolbars allow the user to guide the

proof development. Some of the commands require arguments which are provided by prior

selections in the working notebooks (e.g. 'New Goal' needs a formula as an argument, 'Start' needs

a 'Prove' command as an argument, etc.).

There are five toolbars which help the user to carry out the actions listed at the beginning of

this section. We give now a brief description of these toolbars and of the functionality of their

buttons, more details being given in the next section of this chapter in Section 3.2.2.

• The "Theorema Interactive" toolbar (Figure 3.1.a.) contains the main commands for control-

ling the development of the proof in the interactive mode. These commands are 'Start', 'Next',

'Finish' and 'Stop'. The 'Start' command will trigger the execution of a 'Prove' call, in the interac-

tive mode. The 'Next' command will ask the proving system to expand the selected proof situation

Tools for Mathematical Theory Exploration

25

by one inference rule application. (The inference rule is automatically chosen by the current

prover.) The ’Finish’ command will signal the proof search routines to automatically expand the

pending nodes in the current proof until either a successful or failed proof is obtained. The ’Stop’

command will abort the current proof development and reset the environment, preparing it for a

new prove session.

Additionally, the "Theorema Interactive" toolbar has buttons that toggle the display of the

"Advanced Proof Operations", of the "Prover", and of the "Debug" toolbars, a button that toggles

the interaction mode on and off, and an ’Exit’ button for closing the interactive environment.

• The "Advanced Proof Operations" toolbar (Figure 3.1.b.) is shown by pressing the 'Ad-

vanced Op' button on the "Theorema Interactive" toolbar. Pressing this button again will hide the

"Advanced Proof Operations" toolbar. All of the operations triggered by the buttons on this

toolbar need, among their input parameters, a pointer to a proof situation in the proof–tree of the

current proof. This pointer determines where the next operation will be performed. The pointer

can be set using the 'Set Focus' button, which takes as input a cell selected in "The Proof Win-

dow". The '� Inst' button helps the user instantiate existentially quantified variables, while '� Inst'

does the same for universally quantified variables. '+ Branch' creates and alternative branch in the

proof–tree, while '– Branch' removes a branch in the proof–tree. '+ Assm' triggers the insertion of

a formula into the list of assumptions of the selected proof situation (i.e. where the focus is set). '–

Assm' button triggers the removal of an assumption formula from the list of assumptions of a

focused proof situation. For a formula in a selected cell in some working notebook, the function

called by the 'New Goal' button will add a new branch in the proof object, where the respective

formula is set as the current goal, while on the already existing branches the formula is added as

an assumption.

a. b.

Figure 3.1: a. The "Theorema Interactive" toolbar; b. The "Advanced Proof Operations" toolbar.

• The "Theorema Provers" toolbar (Figure 3.2.a.) allows the user to select a domain–specific

prover to be used for the next proving steps. The currently selected prover is marked with red on

this toolbar. The "Prover Options ... " button opens a prover specific palette ("Prover Options ...")

which allows the user to alter the options of the currently selected prover.

Tools for Mathematical Theory Exploration

26

a. b.

Figure 3.2: a. The "Theorema Provers"; b. The "Prover Options ... " toolbars.

In Figure 3.2. we see that the currently selected prover is the prover for Predicate Logic and

on the "Prover Options ..." menu–palette we see that the 'TryAlternatives' option is in bold fonts

which mean that its value is 'True'. (This option, when set to 'True' will instruct the 'PredicateProv-

er' to try to prove each of the disjuncts in a disjunctive goal.)

• The "Debug" toolbar (Figure 3.3.) gives users the possibility to display, for a selected proof

situation in the proof–tree, the content of the proof situation. Namely, it can display the current

goal formula, the assumption formulae for the selected proof situation. The information displayed

when pressing the '•lf Goal', '•asml', '•prinfo', '•af' and 'Focused Position' buttons is especially of

interest for the developers of the Theorema system and is described in the subsections below.

Figure 3.3: The "Debug" toolbar.

In the next section we describe in detail how each of the actions triggered by the buttons on the

described toolbars are carried out.

3.2.2 Using the Environment

For illustrating the operations performable in the interactive proving mode we will use a simple

theorem on quantifiers:

Theorem%"Simple Example", --�
x

P#x'1 Á Q1w-�
x

+P#x' Á Q/1).

We chose an easy example because we want to focus on the description of the interactive environ-

ment rather than on the proof of the theorem itself. We will use this example throughout the

remainder of this section.

After initializing the Theorema environment, the user can, at any time, open the toolbars that

enables him to use the interactive environment by the following call:

Tools for Mathematical Theory Exploration

27

+
 Initialize the Theorema environment
/
�� Theorema‘;

+
 open the interactive environment
/
StartInteractive# ';

The desktop of the user will look, now, similar to the one in Figure 3.4:

 Figure 3.4: The initial screen in the Interactive environment.

In Figure 3.4 we can see the "Theorema Interactive" toolbar, a working notebook, ’Interactive

Example.nb’, and the Log Window which is empty for the moment. All other toolbars can be

brought onto the desktop by pressing their corresponding button (’Advanced Op’ for the "Ad-

vanced Proof Operations" toolbar, ’Provers’ to obtain the "Theorema Provers" toolbar, and

’Debug’ to display the "Debug" toolbar.) Leaving the interactive environment is done by pressing

the ’Exit’ button, which will cause all the objects belonging to the interactive environment to be

hidden except for the notebooks that were previously open (like the ’Interactive Example.nb’). The

’On/Off’ button is used to temporarily turn off the interactive proving mode, without hiding all the

environment’s components.

Notice that some of the buttons on the "Theorema Interactive" toolbar are grayed out and

cannot be pressed. They will become active when a proof is started. From now on we assume that

the toolbar "Theorema Interactive" is always visible on the user’s desktop when working within

the interactive environment.

Tools for Mathematical Theory Exploration

28

3.2.2.1 Setting the Action Focus

In the interactive mode, after each completed proof step, the user must decide which action to

carry out next (add an assumption, instantiate variables, let the chosen prover perform one infer-

ence step, change the active Theorema prover, etc. See the following subsections). Several of

these actions require that the user first specifies where in the proof the actions should be carried

out, i.e. where the "Action Focus" is. In other words, the user has to have the possibility to select

nodes in the proof–tree. The 'Set Focus' button on the "Advanced Proof Operations" toolbar is

providing this possibility. We say that a node that is selected has the "Action Focus" set on it.

At any given time in the interactive proving mode, "The Proof Window" shows a natural

language representation of the current proof–tree. It is natural to expect, then, that selecting cells

in this window will also set the Action Focus on the underlying nodes in the proof–tree. This

behavior can be realized with the help of the 'Set Focus' button: The user selects a cell in "The

Proof Window", by a click on the cell bracket, and presses then the 'Set Focus' button. (In Mathe-

matica, selecting cells in notebooks is done by a click on the cell's bracket). This will trigger the

execution of a routine that searches, in the current proof–tree, the node that contains the informa-

tion displayed in the selected cell. When the node is found the Action Focus is set to it. There are

two restrictions that the user has to consent with. First, the only cells that can be selected are cells

that contain formulae and cells that represent pending nodes (they have a gray background).

Second, multiple cell selection is not allowed.

3.2.2.2 Main Operations: Start, Next, Finish, Stop

To start a proof session in the interactive mode the procedure is as follows: the user selects a cell

that contains a 'Prove' call. Now, a click on the 'Start' button of the "Theorema Interactive" toolbar

will start the proof attempt. The user will see "The Proof Window" display the initial proof

situation. The 'Prove' command that was called in our example can be seen in Figure 3.4. The

initial proof situation contains the goal to prove and no other assumptions. Notice now that the

'Next', 'Finish' and 'Stop' buttons are active.

Tools for Mathematical Theory Exploration

29

Figure 3.5: Starting a proof attempt.

The proof tree created by carrying out this operation contains two nodes: the root node, stating the

initial proof situation, and its child node, which is a pending node (i.e. not yet expanded). In "The

Proof Window" this node is represented by a cell with a gray background (see Figure 3.5.).

If we click on the ’Next’ button, the ’PredicateProver’ (which was chosen to prove this theo-

rem) will expand the pending node by an application of one inference rule. In our example, the

prover applied the deduction rule. Namely, it assumed that the left hand side of the implication in

the goal formula is true, the new goal to prove is now the right hand side of the implication. The

result of this inference application is displayed in "The Proof Window" (see Figure 3.6.).

By default, a proof that has more than one pending node in the proof–tree is expanded by

expanding the left–most pending node in the tree. In "The Proof Window" this node corresponds

to the first cell with a gray background, when the window is parsed top–down. If the user whishes

to continue the proof on a different branch she has to set the Action Focus to the pending node of

that branch, prior to the click on the 'Next' button. Further clicks on the 'Next" button will expand

the proof on the branch of the selected node, until either the branch cannot be expanded anymore,

or the user decides to continue the proof exploring on a different branch. (In "The Proof Window"

branches are illustrated by group cells, the extent of a group is indicated by a bracket on the right.

See Figure 3.11. below.)

Tools for Mathematical Theory Exploration

30

Figure 3.6: The Next step in the proof.

The ’Finish’ button indicates the proof search routines to continue the expansion of the proof

without any intervention from the user. The result of this action, in our example is the following

successful proof (which is the content of "The Proof Window", after the proof search routines are

done):

Prove:

(Theorem (Simple Example)) -�
x

P#x' Á Q1 Á �
x

+P#x' Á Q/ ,

with no assumptions.

We prove (Theorem (Simple Example)) by the deduction rule.

We assume

(1) �
x

P#x' Á Q

and show

(2) �
x

+P#x' Á Q/ .

Formula (2) is transformed into:

(3) �
x

+» P#x' Á Q/ .

Formula (3) is transformed into:

(4) �
x

+» P#x'/ Î Q.

We prove (4) by proving the first alternative negating the other(s).

We assume

(6) » Q.

We now show

Tools for Mathematical Theory Exploration

31

(5) �
x

+» P#x'/ .

From (6) and (1) we obtain by modus tollens

(7) » �
x

P#x' .

Formula (7) is simplified to:

(8) �
x

+» P#x'/ .

Formula (5) is true because it is identical to (8).

Ã

The ’Stop’ button on the "Theorema Interactive" toolbar will clear "The Proof Window" of its

actual content, and will prepare the interactive environment for a new proof session.

3.2.2.3 Displaying Information (not only) for Developers

The natural language representation of the proof–tree does not show all the content of the proof

nodes. The reason for this is that part of the information stored in the nodes is not relevant for the

user, but only for the provers of the system. The information displayed to the user is describing

the way an inference rule was applied on a certain proof situation. (An inference application

involves, normally, only a few formulae from the set of available formulae at a position in the

proof–tree.) Other information stored in the nodes of the proofs is prover specific, like the fact

that certain formulae are already matched against others for the application of a certain inference

rule.

However, in the interactive proving mode it is often the case that we are interested in the

whole content of the proof node. We may want to know, for example, which are the formulae that

are or were available when an inference rule was applied. The developers of the Theorema system

may want to check the prover specific information to help them to develop and improve their

provers. For this reasons, we have implemented a set of routines that access and display the

additional information stored in a node. These routines are triggered by clicks on the buttons of

the "Debug" toolbar. Each routine extracts and presents the content of a node that has the Action

Focus set on it. These routines display the extracted information in a special window, called

"Debug Messages". From left to right on the "Debug" toolbar, these routines do the following:

• display the goal for the selected proof node: The 'Goal' and '•lf Goal' buttons trigger

routines that extract the goal formula of the proof situation stored in the user selected

proof node. The display of the formula is done in a user–friendly form when the 'Goal'

button is pressed, and in Theorema internal form when the '•lf Goal' button is pressed.

For example, when the Action Focus is set on the pending node of the unfinished proof

shown in Figure 3.6. (the cell with the gray background), the user–friendly external and

the Theorema internal form of the goal of the node are displayed in the "Debug Mes-

sages" window like this:

Goal at the selected proof step :

Tools for Mathematical Theory Exploration

32

�(2) � ��
x

+P#x' Á Q/�

Goal at the selected proof step :

•lf%"2", �
x

+P#x' Á Q/, •finfo#')

• display the list of available assumptions: The 'Assm List' and '•asml' buttons trigger

routines that extract the list of assumptions stored by the user–selected proof node. The

assumptions are displayed in a user–friendly form when the 'Assm List' button is pressed,

and in Theorema internal form when the '•asml' button is pressed. For the Action Focus

set as in the example above, the assumptions displayed in the "Debug Messages" window

are:

Assumptionsin the proof situation at selected proof step :

�(1) � ��
x

P#x' Á Q

in the user–friendly style, and

Assumptionsin the proof situation at selected proof step :

•asml%•lf%"1", �
x

P#x' Á Q, •finfo#'))

in the Theorema internal style. Note that, in this example and at this point in the proof,

the only assumption available is the temporary assumption that was made by the applica-

tion of the deduction rule in the previous proof step.

• display the proof information: When an inference rule is applied, trace about how it

was applied, which formulae it used and generated is stored in the nodes of the

proof–tree. This trace is called 'proof information' and is used for generating the natural

language presentation style of the proof, which is shown in "The Proof Window". The

nodes of the proof–tree that were not yet expanded do not have a trace information. The

'Proof Info' and '•prinfo' buttons trigger routines that extract the proof information (if

available), and display it to the user. The proof information is presented in a

user–friendly form when 'Proof Info' is pressed, and in Theorema internal form when

'•prinfo' is pressed. If the proof information is not available (when the selected proof

node is a pending node) the routines display a message stating this fact.

In the example above, the Action Focus is set on the pending node of the unfinished

proof. In this case there is no proof information to display, because the node was not yet

expanded. (No inference rule was yet applied that would have left a trace of its applica-

tion.) Let us set the Action Focus on the node that contains information about formula

Tools for Mathematical Theory Exploration

33

(2). For this, we select the cell that contains formula (2) (in "The Proof Window") and

click on the ’Set Focus’ button. If we click now on the ’Proof Info’ button the "Debug

Messages" window will show the following:

The Proof Information at the selected proof step :

Inference Rule Keyword : ProveImplication

Used Formulae Labels : Theorem +Simple Example/

Generated Formulae :

�(1) � ��
x

P#x' Á Q�,

�(2) � ��
x

+P#x' Á Q/�.

and by clicking on the '•prinfo' button, the following will be displayed in the "Debug

Messages" window:

The Proof Information at the selected proof step :

�"ProveImplication", •usedFormulae#"Theorem +Simple Example/"',
•generatedFormulae%•lf%"1", �

x
P#x' Á Q, •finfo#'), •lf%"2", �

x
+P#x' Á Q/, •finfo#'))!

The three parts of the proof information above, namely the inference keyword, the labels

of the formulae used, and the formulae generated, are present for all the traces created by

any given inference rule throughout the provers of the Theorema system. Some infer-

ences may leave additional traces in the proof information. Take, for example, the ’PCS’

inference rule that is applied when an assumption formula is an instance of an existential

goal formula. When this inference rule is applied to a proof situation, the proof search

mechanism stores in the proof information, additional to the three parts above, facts

about the substitution that unifies the two formulae. All these will also be displayed in

the "Debug Messages" window when one of the ’Proof Info’ or '•prinfo' buttons are

clicked on.

• display the proof situation: The 'Proof Situation' button triggers a routine that extracts

the proof situation at the selected node in the proof–tree. This includes the goal formula,

the list of assumption formulae, and prover specific facts. The '•af' button triggers the

display of the prover specific facts, only. For both of these buttons, the displayed data is

in Theorema internal form. Below is shown the proof situation for the already selected

node in the example considered in this section:

Proof Situation at the selected proof step :

Tools for Mathematical Theory Exploration

34

�
•lf%"Theorem +Simple Example/", -�

x
P#x' Á Q1 Á �

x
+P#x' Á Q/, •finfo#'),

•asml#', •lkTab%��"ProversHistory", ���, �"LastProver", PND�,
�"PND", •lkTab%��"ModusPonensFacts", •lkTab#��'�,

�"MatchingFacts", •lkTab#��'�, �"NewFormulae", ���, •oldForms#'��,
�"GoalHistory", �-�

x
P#x' Á Q1 Á �

x
+P#x' Á Q/!!!)!!)

!

Please observe the difference between the proof situation and the proof information of a

node in the proof–tree. The proof situation contains a goal formula and a possible empty

list of assumptions, together with prover specific facts, while the proof information

contains the trace of applying an inference rule to this proof situation.

• display all assumptions: The inference rules of the Theorema provers transform the

proof situation they are applied to into other proof situations. It is often the case that

inferences which rewrite formulae among the assumptions of a proof situation replace the

formulae with the newly inferred ones. Therefore, formulae which occurred in the list of

assumption formulae of a node in the proof–tree may not occur anymore in the list of

assumption formulae of a descendant node. The 'All Assumption' button calls a routine

that extracts all the formulae that occurred as assumptions during the proof prior to the

selected node in the proof–tree. The formulae are displayed in the "Debug Messages"

window in the user–friendly style.

• display the position of the node where the Action Focus is set: 'Focused Position'

displays the position of the selected node in the proof–tree. The position is relative to the

style Mathematica organizes and stores expressions. The developers of the Theorema

system can use the displayed position for directly manipulating the data structure that

holds the proof–tree, using special Theorema and Mathematica function calls which we

do not describe here. In our example, the position of the node which has the Action

Focus set is:

The Current Focused s Selected Position :

�2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1�

Tools for Mathematical Theory Exploration

35

3.2.2.4 Adding and Removing Assumptions

In the introductory example of this chapter we have seen that, in the non–interactive proving

mode, all the knowledge that might be needed to obtain a successful proof of a conjecture has to

be provided beforehand, at the time the proof search process is started. In contrast, in the interac-

tive mode the user of the Theorema system can start with some assumptions and, as soon as she

sees the need for it, may add assumption formulae to the proof situation of an unexpanded node.

This can be done in the following way:

• First, the user has to make sure that the Action Focus is set on an unexpanded node in

the proof–tree. If the Action Focus is not correspondingly set and the user still tries to

add the assumption, a notification window with a message will appear, asking the user to

set the focus correctly.

• Second, the user has to select the cell with the formula she wants to add to the proof

situation of the selected pending node. The formula has to be given in the Theorema

language, as a Lemma, Proposition, Definition, etc. After selecting the cell, the user has

to click on the '+ Assm' button on the "Advanced Proof Operations" toolbar.

When the '+ Assm' button is clicked the selected pending node will be expanded. The proof

information of the expanded node is generated by the routine attached to the button and has the

same structure with the proof information produced by an inference rule of a Theorema prover.

The new pending node is a child of the expanded node and will contain a proof situation derived

from the one of the expanded node by adding to its assumption formulae the formula added by the

user. This can be easily checked by using the buttons on the "Debug" toolbar (Section 3.2.2.3) to

display the new proof situation.

The screenshot in the Figure 3.7. shows the working notebook "Interactive Example.nb" that

contains a lemma "Instance", in Theorema language, whose formula is labeled "I1". The user has

added this lemma to the proof situation of the pending node shown in Figure 3.6. The result is

shown in "The Proof Window" in Figure 3.7. (the notebook partially behind the "Interactive

Example.nb" notebook).

Dual to the assumption addition operation, we provide the user with a formula deleting

operation, which allows her to remove assumptions from a proof situation. Discarding assump-

tions can be done when the user considers that certain formulae will not contribute to the proof

development.

Tools for Mathematical Theory Exploration

36

Figure 3.7: Added assumption "I1".

Assumptions can be removed only from a proof situation of an unexpanded node in the

proof–tree. Removing assumptions is done following the same procedure as adding them: the user

has to set the Action Focus on a pending node, select the formula she wants removed, and then

click the '– Assm' button on the "Advanced Proof Operations" toolbar. The formula to be removed

must be selected in the "Debug Messages" window, where the user has previously displayed the

list of assumptions for the selected pending node, in the user–friendly style (see 'Assm List'

description in Ssection 3.2.2.3). The routine that deletes the indicated assumption formula from

the proof situation of the selected pending node will first check that the formula, indeed, occurs

among the assumptions of the proof situation.

 Figure 3.8: Removed the assumption "I1".

Tools for Mathematical Theory Exploration

37

In Figure 3.8. we can see the outcome of removing the formula "I1" from the proof situation of the

unexpanded node in figure 3.7. Selecting the formula to be removed was done in the "Debug

Messages" window (also shown in Figure 3.8.).

3.2.2.5 Instantiate Quantified Variables

One of the specific difficulties in algorithmic proof generation is finding appropriate instances for

quantified formulae. Within the interactive environment we give the user the possibility to pro-

pose instances in these situations.

To instantiate a universally or existentially quantified variable the user has to select in "The

Proof Window" the quantified formula and click on the ’� Inst’ or ’� Inst’, respectively. A window

will appear where the user can type in a substitution for the variables she whishes to instantiate.

The substitution has the syntax ’{variable_list} | {term_list}’. The number of variables has to

coincide with the number of terms. It is not necessary that the variables given in this window

occur in the formula for which the user gives a variable substitution. The variables that do not

occur in the formula will be ignored by the instantiation routines.

In Figure 3.9. the user instantiates variables x and y in formula (2). The instantiation routine

will, of course, ignore the variable y which does not occur in formula (2). The result of the

instantiation is shown in Figure 3.10. Note that, even though the variable y is ignored when the

instantiation in formula (2) is performed, the given substitution shows all the user given variables.

Figure 3.9: Instantiating the variable in the goal.

Tools for Mathematical Theory Exploration

38

Figure 3.10: The result of variable instantiation.

Of course, the user can instantiate existentially quantified variables only if they occur in a goal

formula and universally quantified variables only if they occur in assumption formulae.

3.2.2.6 Add/Remove Branches, Insert a Goal Formula

For the case the user wishes to work on an alternative proof of a goal of a proof in development,

within the same interactive proving session, the interactive environment provides her with the

possibility to add branches at any position in the proof–tree, except for the root. The button '+

Branch' on the "Advanced Proof Operations" toolbar implements this facility. To add a branch at

some point in the proof, the user has to select a formula cell in "The Proof Window" and click on

the '+ Branch' button of the "Advanced Proof Operations" toolbar. The routine triggered by this

button will insert two nodes in the proof–tree. One node is inserted as a child of the node that was

selected in "The Proof Window". (Recall that such a selected node has the Action Focus set.) The

node will have, then, two sub–trees: The first one is the sub–tree of the node with the Action

Focus set, the second sub–tree is a pending node, which is the second node inserted by the routine

in the proof–tree. The proof situation of the inserted pending node duplicates the proof situation

of the node with the Action Focus set. In this way, the user can continue to develop the proof with

the sofar derived formulae available on the added branch as well.

Tools for Mathematical Theory Exploration

39

Figure 3.11: A new branch was added to the proof–tree.

Using the simple example of this section, Figure 3.11. shows that the user (after a few proof steps

were executed) decided to investigate how the proof develops if the lemma "Instance" is added to

the proof situation. In order not to overwrite the existing proof steps, a new branch is added

immediately after the generation of formula (2). Then, the user set the focus on the pending node

of the new branch, and added the lemma "Instance", whose formula is labeled "I1". The user can

continue to develop the proof on any of the two branches, provided that the Action Focus is set

correspondingly to the pending node of one branch or the other.

Within the interactive environment, the user also has the possibility to delete entire branches

from a current proof–tree. For example, if the user decides that a proof alternative she was

working on does not lead to a successful proof, she can delete it so that the proof contains less

unuseful information. To delete a branch in the proof–tree, the user has to select a formula cell

that belongs to the undesired branch. When the '– Branch' button on the "Advanced Proof Opera-

tion" toolbar is clicked, the branch will be deleted.

The 'New Goal' button on the "Advanced Proof Operation" toolbar combines the branch

addition and assumption addition operations in the following way: If the user selects a cell

containing a formula (in Theorema language) in any of the working notebook files and then clicks

the 'New Goal' button the triggered routine adds a new branch to the proof–tree after the node

Tools for Mathematical Theory Exploration

40

with the Action Focus set. The second branch will contain the formula as an assumption, while

the first branch will contain the formula as a goal to be proven. In other words, the added formula

can be used in proving the original goal if it can be, in turn, proved.

Figure 3.12: Adding a new goal to the proof.

Figure 3.12. shows the outcome of using the ’NewGoal’ routine. The goal for the first branch is

formula (I1) while, on the second branch, the goal is formula (4) and formula (I1) is among the

assumptions of the pending node.

Tools for Mathematical Theory Exploration

41

3.2.2.7 Change Provers, Set Prover Options

The Theorema system has different provers for different mathematical domains and theories. In

the non–interactive proving mode, the prover called to find a proof for a conjecture remains fixed

during the whole proof search process. In the interactive mode, the user can call the application of

the various domain specific provers within the same proof search process. The selection of the

different provers is done by a click on one of the buttons on the "Theorema provers" toolbar, at

any time during an interactive proving session.

We have said before that each of the Theorema provers comes with a set of options which can

guide the prover in finding a proof of a conjecture. In the non–interactive proving mode these

options are fixed for the duration of the proof search. In contrast, in the interactive mode we can

change the values of these options during a proof session. The "Prover Options ..." button on the

"Theorema provers" toolbar will dynamically create another toolbar, "Prover Options" which

contains a button for each of the options of the currently selected Theorema prover. Setting prover

options whose possible values are 'True' or 'False' can be done by a click on the name of the

option. The option name will appear in bold face when set to 'True', and plain face when set to

'False'. For the options that take other values than 'True' or 'False', a click on their name will open

a small dialog window where the user can type in the value of the option.

3.2.3 Comments on Implementation

One crucial matter of interactive proving is to make the proof search routine stop after a certain

number of inference rule applications and await input from the user. The solution chosen in earlier

implementations was to suspend the execution of the proof search routine, after one inference rule

application, to allow user input. This was done by starting a Mathematica subprocess that col-

lected the user actions. Unfortunately, closing the subprocess to continue the proof search was not

a clean operation due to a bug in Mathematica (version 3.0 for Linux and Unix) [Kossak:99].

Several workarounds had to be implemented to ensure that the user input was not lost.

In the current implementation we have opted for a different solution. We have introduced a

system–global boolean variable which keeps track on the current proving mode (interactive or

non–interactive), and a step–counter that controls the number of proof steps to be performed by

the proof search routine.

In the non–interactive proving mode, the step–counter variable is ignored and the proof search

routine proceeds until either a successful proof is obtained or no inference rule can be applied

anymore. In the interactive mode, every time the proof search routine is invoked the step–counter

is, first, set to a predefined value. With each inference rule application this value is decreased by

one. As soon as the step–counter reaches zero, the proof search routine stops, and returns the

proof developed sofar which is, then, presented to the user, in "The Proof Window". The user can

modify the proof via the tools of the interactive environment. When the 'Next' button on the

Tools for Mathematical Theory Exploration

42

"Theorema Interactive" toolbar is clicked the proof search routine is invoked to further expand the

proof. The expansion is done for the left–most pending node in the proof–tree, unless otherwise

indicated by the user (see Section 3.2.2.2). The value of the step–counter in the current implementa

tion is set to 1, which means that the proof search stops after one inference rule application.

We mention here two important advantages of this solution. One is that only few modifica-

tions of the main proof search routines of the system were necessary: First, a check of the

step–counter value was added to the termination conditions of the proof search routine and,

second, certain Theorema specific variable initialization are by–passed when the proof search is

invoked in the interactive mode. (For example, we do not want the proof–tree to be initialized to

an empty one, as in the non–interactive mode, but we want to expand it further). The second

important advantage of the solution chosen by us is that no alteration of the existing provers of the

Theorema system had to be done in order to use them for proving in the interactive mode.

From the outset, Mathematica is not an environment for developing user interfaces. Therefore,

the elements of the interactive environment interface do not include objects like drop–down lists,

dynamic menus, context–sensitive menus, check boxes, etc. Also, to our knowledge, there is no

possibility, in Mathematica, to track the mouse actions. In other words, we cannot determine user

inputs by tracking the mouse clicks and movements. The solution we have chosen to overcome

this difficulty is to use the manipulation of notebooks in the Mathematica kernel. Within any open

notebook, the front end always maintains a current selection [Wolfram:03, Section 2.11.3].

Selections can be done by user clicks or by issuing commands from the kernel. Mathematica also

provides commands for extracting the content of a selections in a notebook. So we are able to

retrieve user input when the user makes selections in notebooks. The retrieved input is passed to

the routines implementing the tools of the interactive environment. The routines will process the

input correspondingly to the tool they implement, e.g. add an assumption to the current proof

situation, delete a branch in the proof–tree, provide solving terms for the proof of existentially

quantified formulae, etc.

The toolbars described in the previous sections are implemented using Mathematica's button

box objects, i.e. objects that perform actions whenever one clicks on them. The implementation

of the toolbars is done in such a way that it is easy to add new buttons to them, and also to arrange

them in various ways on the user–screen.

Tools for Mathematical Theory Exploration

43

3.2.4 Further Developments

With the following versions of Theorema we plan to include in the interactive environment a

tool for inference rule selection. Namely, for a selected proof situation, the tool should present, on

request, a list with the inference rules that can be applied. The user can select, then, one or more

inferences to be applied in the next step. Selecting more than one inference from the list means

that the user intends to investigate several proof alternatives for the given proof situation, one

alternative for each inference rule selected. However, to implement such a inference selection

tool, important modifications of the provers of Theorema are necessary. For example, inference

rules need to be uniquely identifiable among all the inferences of the system. This requirement

was expressed also in [Kossak:99] where, for a correspondingly modified ’PredicateProver’,

selecting an inference rule for the next step was possible.

Other tools we plan to include in the environment are possibilities to store and load interactive

proof sessions, extracting proof strategies from an interactive proof session. A variant of the latter

tool can be used to help the developers of the Theorema provers compose new provers based on

the sequence of inferences used in an interactive proof session. To achieve this, we will have to

analyze the proofs obtained in the interactive mode, in order to extract the relevant proof steps and

inference rules.

3.3 Back to the Introductory Example

Let us continue the example given at the beginning of this chapter. We recall that we wanted to

prove that the limit of the sum of two sequences if the sum of their limits. As additional knowl-

edge, we only considered the definitions of ’limit’ and of the ’sum of sequences’. Later we have

added a lemma on distances expressed by modules. In the Theorema formulation all these are:

Proposition#"limit of sum", any#f , a, g, b',
+limit#f, a' Â limit#g, b'/w limit#f ¨g, a � b' "lim of ¨"'

Definition%"limit",

�
f,a

limit#f , a'y ��
���

0

�
N
�
n

n � N

�f#n'� a� � H "lim:")

Definition#"sum of sequences", any#f , g, x',
+f ¨g/#x' f#x' � g#x' "f ¨ g" '

Lemma$"distance of sum",

�
x,y,z,t,

�
,
� +�+x� z/ � +y� t/� � +G � H//u+�x� y� � G Â �z� t� � H/ "dist �" (

Let us try to prove the proposition using the interactive environment of the Theorema system. The

’Prove’ call we start with is:

Tools for Mathematical Theory Exploration

44

Prove#Proposition#"limit of sum"', using �

�Definition#"limit"', Definition#"sum of sequences"', Lemma#"distance of sum"'�, by � PCS'

After clicking on the ’Start’ button on the "Theorema Interactive" toolbar we are faced with "The

Proof Window" in Figure 3.13. The window shows us the initial proof situation of our proof

problem.

 Figure 3.13: Initial Proof Situation in the interactive mode.

We continue to develop the proof step–wise, by repeatedly pressing the 'Next' button. Let us, now,

look at the below content of "The Proof Window":

Prove:

(Proposition (limit of sum): lim of ¨)

�
f ,a,g,b

+limit# f , a' Â limit#g, b' Á limit# f ¨ g, a � b'/ ,

under the assumptions:

(Definition (limit): lim:) �
f ,a

L

N

MMMMMMMlimit# f , a' x ��
� �

0

�
N

�
n

n � N

+� f #n'� a� � H /
\

^

]]]]]]] ,

(Definition (sum of sequences): f ¨ g) �
f ,g,x

++ f ¨ g/#x' f #x'� g#x'/ ,

(Lemma (distance of sum): dist+)

�
x,y,z,t,

�
,

� +�x � y� � G Â �z� t� � H Á �+x � z/� +y� t/� � G � H / .

We assume

(1) limit# f0, a0' Â limit#g0, b0' ,

and show

Tools for Mathematical Theory Exploration

45

(2) limit# f0 ¨ g0, a0 � b0' .

As there are several methods which can be applied, we have several choices to proceed with the

proof.

Alternative proof 1: pending

Formula (1.1), by (Definition (limit): lim:), implies:

(3) ��
� �

0

�
N

�
n

n � N

+� f0#n'� a0� � H / .

By (3), we can take an appropriate Skolem function such that

(4) ��
� �

0

�
n

n � N0 � � � +� f0#n' � a0� � H / ,

As there are several methods which can be applied, we have several choices to proceed with the

proof.

Alternative proof 1: pending

Formula (1.2), by (Definition (limit): lim:), implies:

(5) ��
� �

0

�
N

�
n

n � N

+�g0#n'� b0� � H / .

By (5), we can take an appropriate Skolem function such that

(6) ��
� �

0

�
n

n � N1 � � � +�g0#n'� b0� � H / ,

As there are several methods which can be applied, we have several choices to proceed with

the proof.

Alternative proof 1: pending

Formula (2), using (Definition (limit): lim:), is implied by:

(7) ��
� �

0

�
N

�
n

n � N

+�+ f0¨ g0/#n' � +a0 � b0/� � H / .

We assume

(8) H0 ! 0 ,

and show

(9) �
N

�
n

n � N

+�+ f0 ¨ g0/#n'� +a0 � b0/� � H0/ .

As there are several methods which can be applied, we have several choices to proceed with

the proof.

Alternative proof 1: failed

The proof of (9) fails. (The prover "QR" was unable to transform the proof situation.)

Alternative proof 2: pending

We have to find N2
�
 such that

(10) �
n

+n � N2
�
Á �+ f0 ¨ g0/#n'� +a0 � b0/� � H0/ .

Formula (10), using (Definition (sum of sequences): f ¨ g), is implied by:

(11) �
n

+n � N2
�
Á �+ f0#n' � g0#n'/� +a0 � b0/� � H0/ .

Formula (11), using (Lemma (distance of sum): dist+), is implied by:

(12) ��
,

�

� � � ���
0

�
n

+n � N2
�
Á � f0#n'� a0� � G Â �g0#n' � b0� � H / .

Tools for Mathematical Theory Exploration

46

Pending proof of (12).

Alternative proof 2: pending

Pending proof of (2).

Alternative proof 2: pending

Pending proof of (2).

Alternative proof 2: pending

Pending proof of (2).

Ã

Notice that the current goal on the left–most branch of the proof is an existentially quantified

formula, namely, formula (12). The prover has to find some values for G and H such that G + H = H0 .

After some thought we decide to instantiate both G and H in formula (12) with
�

0
cccccc2 . The content of

"The Proof Window", omitting the steps that already occurred in the proof attempt above, is:

(... omitted proof text ...)

Formula (11), using (Lemma (distance of sum): dist+), is implied by:

(12) ��
, �

� �
� ��� 0

�
n

+n � N2
�
Á � f0#n'� a0� � G Â �g0#n' � b0� � H / .

The user instantiated the existential goal (12)with:

(instantiation) �H, G� � � � 0cccccc2 , � 0cccccc2 �
The new goal is

(ng) + � 0cccccc2 �
� 0cccccc2 H0/ Ð �

n
+n � N2

�
Á � f0#n'� a0� � � 0cccccc2 Ï �g0#n' � b0� � � 0cccccc2 /

Pending proof of (ng).

(Note: From now on we will only present the changes of the proof displayed in "The Proof

Window".)

Proceeding some proof steps more we are stuck with the following proof attempt:

(... omitted proof text ...)

The user instantiated the existential goal (12)with:

(instantiation) �H, G� � � � 0cccccc2 , � 0cccccc2 �

Tools for Mathematical Theory Exploration

47

The new goal is

(ng) + � 0cccccc2 �
� 0cccccc2 H0/ Ð �

n
+n � N2

�
Á � f0#n'� a0� � � 0cccccc2 Ï �g0#n'� b0� � � 0cccccc2 /

Formula (ng), using (6), is implied by:

+ � 0cccccc2 �
� 0cccccc2 H0/ Ð �

n
+n � N2

�
Á

� 0cccccc2 ! 0 Ï n � N1# � 0cccccc2 ' Ï � f0#n'� a0� � � 0cccccc2 / ,

which, using (4), is implied by:

(13) + � 0cccccc2 �
� 0cccccc2 H0/ Ð �

n
+n � N2

�
Á

� 0cccccc2 ! 0 Ï n � N0# � 0cccccc2 ' Ï n � N1# � 0cccccc2 '/ .

As there are several methods which can be applied, we have several choices to proceed with the

proof.

Alternative proof 1: failed

The proof of (13) fails. (The prover "QR" was unable to transform the proof situation.)

Alternative proof 2: pending

Formula (13) is implied by

(14) + � 0cccccc2 �
� 0cccccc2 H0/ Ð � 0cccccc2 ! 0 Ð �

n
+n � N2

�
Á n � N0# � 0cccccc2 ' Ï n � N1# � 0cccccc2 '/ .

Pending proof of (14).

Our intuition has already found a value for N2
�

, namely, the maximum of N0#
�

0cccccc2 ' and N1#
�

0
cccccc2 ' .

But the pending proof situation of the current proof does not contain any knowledge on maximum.

Therefore, we provide the prover with an auxiliary lemma:

Lemma$"max greater",

�
m, M1, M2

++m � max#M1, M2'/ Á +m � M1 Â m � M2// "�max" (

The content of "The Proof Window", after adding the above lemma and clicking once the ’Next’

button, is:

(... omitted proof text ...)

Alternative proof 2: pending

Formula (13) is implied by

(14) + � 0cccccc2 �
� 0cccccc2 H0/ Ð � 0cccccc2 ! 0 Ð �

n
+n � N2

�

Á n � N0# � 0cccccc2 ' Ï n � N1# � 0cccccc2 '/ .

The user added the assumption:

(�max) �
m,M1,M2

+m � max#M1, M2' Á m � M1 Â m � M2/ ,

Formula (14), using (�max), is implied by:

(15) + � 0cccccc2 �
� 0cccccc2 H0/ Ð � 0cccccc2 ! 0 Ð �

n
+n � N2

�

Á n � max#N0# � 0cccccc2 ', N1# � 0cccccc2 ''/ .

Pending proof of (15).

At this point, we decide to let the proof search routines finish the proof without user intervention.

We press the ’Finish’ button on the "Theorema Interactive" toolbar, and the outcome is :

Tools for Mathematical Theory Exploration

48

(... omitted proof text ...)

Formula (14), using (�max), is implied by:

(15) + � 0cccccc2 �
� 0cccccc2 H0/ Ð � 0cccccc2 ! 0 Ð �

n
+n � N2

�

Á n � max#N0# � 0cccccc2 ', N1# � 0cccccc2 ''/ .

As there are several methods which can be applied, we have several choices to proceed with the

proof.

Alternative proof 1: failed

The proof of (15) fails. (The prover "QR" was unable to transform the proof situation.)

Alternative proof 2: proved

Partially solving it, formula (15) is implied by

(16) + � 0cccccc2 �
� 0cccccc2 H0/ Ï � 0cccccc2 ! 0 Ï +N2

�

 max#N0# � 0cccccc2 ', N1# � 0cccccc2 ''/ .

As there are several methods which can be applied, we have several choices to proceed with the

proof.

Alternative proof 1: failed

The proof of (16)fails. (The prover "QR" was unable to transform the proof situation.)

Alternative proof 2: proved

We can partially solve (16). By taking N2
�

� max#N0# � 0cccccc2 ', N1# � 0cccccc2 '' , formula (16) is implied by

(17) + � 0cccccc2 �
� 0cccccc2 H0/ Ï � 0cccccc2 ! 0 .

We prove the individual conjunctive parts of (17):

Proof of (17.1) � 0cccccc2 �
� 0cccccc2 H0 :

As there are several methods which can be applied, we have several choices to proceed with

the proof.

Alternative proof 1: failed

The proof of (17.1) fails. (The prover "QR" was unable to transform the proof situation.)

Alternative proof 2: proved

Now,
� 0cccccc2 �

� 0cccccc2 H0

can be proved by a call to Collins cad–method.

Hence formula (17.1) is proved, and we are done.

Proof of (17.2) � 0cccccc2 ! 0:

As there are several methods which can be applied, we have several choices to proceed with

the proof.

Alternative proof 1: failed

The proof of (17.2) fails. (The prover "QR" was unable to transform the proof situation.)

Alternative proof 2: proved

Now,
� 0cccccc2 ! 0

can be proved by a call to Collins cad–method.

Hence formula (17.2) is proved, and we are done.

Ã

Tools for Mathematical Theory Exploration

49

Indeed, the proof succeeded, and we are happy about it. Using the simplification tools described

in Chapter 4. we can post–process the final proof for a better presentation of the result of the

interactive proof session. The proof is, then:

Prove:

(Proposition (limit of sum): lim of ¨)

�
f ,a,g,b

+limit# f , a' Â limit#g, b' Á limit# f ¨ g, a � b'/ ,

under the assumptions:

(Definition (limit): lim:) �
f ,a

L

N

MMMMMMMlimit# f , a' x ��� �
0

�
N

�
n

n � N

+� f #n'� a� � H /
\

^

]]]]]]] ,

(Definition (sum of sequences): f ¨ g) �
f ,g,x

++ f ¨ g/#x' f #x'� g#x'/ ,

(Lemma (distance of sum): dist+)

�
x,y,z,t,

�
,

� +�x � y� � G Â �z� t� � H Á �+x � z/� +y� t/� � G � H / .

We assume

(1) limit# f0, a0' Â limit#g0, b0' ,

and show

(2) limit# f0 ¨ g0, a0 � b0' .

Formula (1.1), by (Definition (limit): lim:), implies:

(3) ��� �
0

�
N

�
n

n � N

+� f0#n'� a0� � H / .

By (3), we can take an appropriate Skolem function such that

(4) ��� �
0

�
n

n � N0 �
� �

+� f0#n' � a0� � H / ,

Formula (1.2), by (Definition (limit): lim:), implies:

(5) ��� �
0

�
N

�
n

n � N

+�g0#n'� b0� � H / .

By (5), we can take an appropriate Skolem function such that

(6) ��� �
0

�
n

n � N1 �
� �

+�g0#n'� b0� � H / ,

Formula (2), using (Definition (limit): lim:), is implied by:

(7) ��� �
0

�
N

�
n

n � N

+�+ f0¨ g0/#n' � +a0 � b0/� � H / .

We assume

(8) H0 ! 0 ,

and show

(9) �
N

�
n

n � N

+�+ f0 ¨ g0/#n'� +a0 � b0/� � H0/ .

We have to find N2
�

 such that

(10) �
n

+n � N2
�

Á �+ f0 ¨ g0/#n'� +a0 � b0/� � H0/ .

Formula (10), using (Definition (sum of sequences): f ¨ g), is implied by:

(11) �
n

+n � N2
�

Á �+ f0#n' � g0#n'/� +a0 � b0/� � H0/ .

Formula (11), using (Lemma (distance of sum): dist+), is implied by:

Tools for Mathematical Theory Exploration

50

(12) ��
,

�
� � � ���

0

�
n

+n � N2
�

Á � f0#n'� a0� � G Â �g0#n' � b0� � H / .

The user instantiated the existential goal (12) with:

(instantiation) �H, G� � �
�
0cccccc2 ,

�
0cccccc2 �

The new goal is

(ng) +
�
0cccccc2 �

�
0cccccc2 H0/ Ð �

n
+n � N2

�

Á � f0#n'� a0� �
�
0cccccc2 Ï �g0#n'� b0� �

�
0cccccc2 /

Formula (ng), using (6), is implied by:

+
�
0cccccc2 �

�
0cccccc2 H0/ Ð �

n
+n � N2

�

Á

�
0cccccc2 ! 0 Ï n � N1#

�
0cccccc2 ' Ï � f0#n'� a0� �

�
0cccccc2 / ,

which, using (4), is implied by:

(13) +
�
0cccccc2 �

�
0cccccc2 H0/ Ð �

n
+n � N2

�

Á

�
0cccccc2 ! 0 Ï n � N0#

�
0cccccc2 ' Ï n � N1#

�
0cccccc2 '/ .

Formula (13) is implied by

(14) +
�
0cccccc2 �

�
0cccccc2 H0/ Ð

�
0cccccc2 ! 0 Ð �

n
+n � N2

�

Á n � N0#
�
0cccccc2 ' Ï n � N1#

�
0cccccc2 '/ .

The user added the assumption:

(�max) �
m,M1,M2

+m � max#M1, M2' Á m � M1 Â m � M2/ ,

Formula (14), using (�max), is implied by:

(15) +
�
0cccccc2 �

�
0cccccc2 H0/ Ð

�
0cccccc2 ! 0 Ð �

n
+n � N2

�

Á n � max#N0#
�
0cccccc2 ', N1#

�
0cccccc2 ''/ .

Partially solving it, formula (15) is implied by

(16) +
�
0cccccc2 �

�
0cccccc2 H0/ Ï

�
0cccccc2 ! 0 Ï +N2

�

 max#N0#
�
0cccccc2 ', N1#

�
0cccccc2 ''/ .

We can partially solve (16). By taking N2
�

� max#N0#
�
0cccccc2 ', N1#

�
0cccccc2 '' , formula (16) is implied by

(17) +
�
0cccccc2 �

�
0cccccc2 H0/ Ï

�
0cccccc2 ! 0 .

We prove the individual conjunctive parts of (17):

Proof of (17.1)
�
0cccccc2 �

�
0cccccc2 H0 :

Now,
�
0cccccc2 �

�
0cccccc2 H0

can be proved by a call to Collins cad–method.

Hence formula (17.1) is proved, and we are done.

Proof of (17.2)
�
0cccccc2 ! 0:

Now,
�
0cccccc2 ! 0

can be proved by a call to Collins cad–method.

Hence formula (17.2) is proved, and we are done.

Ã

Tools for Mathematical Theory Exploration

51

4 4. Proof Simplification

4.1 The Problem

The output of the Theorema provers are proof objects that contain all the information on the

sequence of inference rules used in the proofs and the formulae involved in each inference step. In

particular, the proof object also contains the information on those branches of the proof search

that were not successful or ultimately did not contribute to the successful branch of the proof. By

default, the Theorema post–processor for proof objects produces a Mathematica notebook from

the final proof object that shows the entire proof object together with some explanatory text in

natural language (e.g. English) at each proof step. (In order to have natural language explanatory

texts in the proofs these texts have to be provided in the code of the postprocessor). The nested

structure of the proof object is reflected by nested Mathematica cell brackets so that the user can

open and close entire sub–trees of the proof object depending on which parts and sub–parts of the

proof she wants to inspect.

However, many times, the user does not want to see the complete information on the proofs

generated. Often, the user is only interested in the successful branch in a proof search and does not

want to see the information on failing or superfluous branches. Also, when a proof has been

found by a prover, it may well be the case that afterwards, by inspecting the proof object, one may

be able to re–structure the proof in such a way that it becomes more concise and easier to under-

stand. Finally, when a proof has been found by a prover with a certain granularity of inference

rules, one may want to view the proof as if it had been produced by a prover with a coarser

granularity of inference rules. The tools which we describe in this chapter perform these

"simplifications" of proof objects.

Proof object simplification is done as post–processing, i.e. after the proof objects have been

generated by the provers. This is a reasonable and natural strategy: Some provers need to

back–track on unsuccessful branches; the repetition of sequences of proof steps in different

branches of a proof can not be easily detected at proving time; and, also, possibilities for

re–structuring and contracting proofs may only be visible after the complete proof has been found.

Also, let us emphasize that there is no objective criterion for what is "the appropriate granularity"

of proof steps the reader of a proof wants to see. Therefore, in the tool that combines certain

patterns of proof steps to bigger proof steps, input from the user (or the designer of the prover)

Tools for Mathematical Theory Exploration

52

must be provided telling the proof simplification algorithm which proof steps pattern it should

contract.

One might wish that good provers, at proving time, eliminate all failing and successful

branches. However, as a design decision, we did not go for this possible design goal in the basic

design of Theorema because the information contained in failing proofs (or proof branches) may

be mathematically very interesting and rewarding to be studied (or post–processed) in detail. In

fact, the recent theorem conjecturing and algorithm synthesis method proposed in

[Buchberger:03a] takes exactly this information from failing proofs as one of the two essential

starting points for the method.

We take the following proof of a simple lemma, automatically generated by the Theorema set

theory prover, see [Windsteiger:01] as our basic example:

Prove:

(Lemma (factor–set non–empty)) �
R

+is–reflexive#R' Á is–all–nonempty#factor–set#R''/ ,

under the assumptions:

(Definition (factor set)) �
R

L
N
MMfactor–set#R' : �class#R, x' «

x
x ± X!\

^
]] ,

(Definition (class)) �
R,x

L
N
MMclass#R, x' : �a «

a
a ± X Â ;a, x? ± R!\

^
]] ,

(Definition (is relation)) �
R

+is–relation#R' :x R ° XlX/ ,

(Definition (is reflexive)) �
R

-is–reflexive#R' :x �
x

+x ± X Á ;x, x? ± R/1 ,

(Definition (is subset set)) �
P

L
N
MMis–subset–set#P' :x �

p
+p ± P Á p ° X/\^

]] ,

(Definition (is all non empty)) �
P

L
N
MMis–all–nonempty#P' :x �

p
+p ± P Á p � ��/\^

]] .

Using available computation rules we can simplify the knowledge base:

Formula (Definition (is all non empty)) simplifies to

(1) �
P

L
N
MMis–all–nonempty#P' :x �

p
+p ± P Á �� � p/\^

]] ,

As there are several methods which can be applied, we have several choices to proceed with the

proof.

Alternative proof 1: proved

We assume

(2) is–reflexive#R0' ,

and show

(3) is–all–nonempty#factor–set#R0'' .

Formula (3), using (Definition (factor set)), is implied by:

is–all–nonempty%�class#R0, x' «
x

x ± X!) ,

which, using (Definition (class)), is implied by:

is–all–nonempty%��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X!) ,

which, using (1), is implied by:

Tools for Mathematical Theory Exploration

53

(4) �
p

L

N

MMMMMMMp ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! Á �� � p
\

^

]]]]]]] .

As there are several methods which can be applied, we have several choices to proceed with the

proof.

Alternative proof 1: proved

We assume

(5) p0 ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! ,

and show

(6) �� � p0 .

We can choose an appropriate value in (5) such that

(7) a10 ± X,

(8) p0 �a «
a

a ± X Â ;a, a10? ± R0! .

From (7) we can infer

(9) X � �� .

From (8) we can infer

(10) p0 ° �a «
a

a ± X Â ;a, a10? ± R0! ,

(11) �a «
a

a ± X Â ;a, a10? ± R0! ° p0 .

From (10) we can infer

(12) �
a3

+a3 ± p0 Á a3 ± X Â ;a3, a10? ± R0/ .

From (11) we can infer

(13) �
a4

+a4 ± X Â ;a4, a10? ± R0 Á a4 ± p0/ .

Using available computation rules we can simplify the knowledge base:

Formula (13) simplifies to

(14) �
a4

+;a4, a10? ² R0 Á a4 ² X Á a4 ± p0/ ,

Formula (6) means that we have to show that

(15) �
p1

+p1 ± p0/ .

We have no means to solve (15).

As there are several methods which can be applied, we have several choices to proceed with

the proof.

Alternative proof 1: proved

We did not find any ground formula to match a part of (15).

Formula (15), using (8), is implied by:

(16) �
p1

L
N
MMp1 ± �a «

a
a ± X Â ;a, a10? ± R0!\

^
]] .

In order to prove (16) we have to show:

(17) �
p1

+p1 ± X Â ;p1, a10? ± R0/ .

We have no means to solve (17).

As there are several methods which can be applied, we have several choices to proceed with

the proof.

Alternative proof 1: proved

Tools for Mathematical Theory Exploration

54

Because parts of the knowledge base match a part of (17), we try to find an instance of (17).

Alternative proof 1: proved

Now, let p1 : a10 . Thus, for proving (17) it is sufficient to prove:

(18) a10 ± X Â ;a10, a10? ± R0 .

As there are several methods which can be applied, we have several choices to proceed

with the proof.

Alternative proof 1: proved

We prove the individual conjunctive parts of (18):

Proof of (18.1) a10 ± X:

Formula (18.1) is true because it is identical to (7).

Proof of (18.2) ;a10, a10? ± R0 :

Formula (10), by (8), implies:

(19) �a5 «
a5

a5 ± X Â ;a5, a10? ± R0! ° �a «
a

a ± X Â ;a, a10? ± R0! .

From (19) we can infer

(20) �
a51

+a51 ± X Â ;a51, a10? ± R0 Á a51 ± X Â ;a51, a10? ± R0/ .

Using available computation rules we can simplify the knowledge base:

Formula (20) simplifies to

(21) �
a51

True,

Formula (11), by (8), implies:

(22) �a «
a

a ± X Â ;a, a10? ± R0! ° �a6 «
a6

a6 ± X Â ;a6, a10? ± R0! .

From (22) we can infer

(23) �
a7

+a7 ± X Â ;a7, a10? ± R0 Á a7 ± X Â ;a7, a10? ± R0/ .

Using available computation rules we can simplify the knowledge base:

Formula (23) simplifies to

(24) �
a7

True,

Formula (2), by (Definition (is reflexive)), implies:

(25) �
x

+x ± X Á ;x, x? ± R0/ .

Formula (18.2), using (25), is implied by:

(26) a10 ± X.

Formula (26) is true because it is identical to (7).

Alternative proof 2: pending

Pending proof of (18).

Alternative proof 2: pending

Pending proof of (17).

Alternative proof 2: pending

Tools for Mathematical Theory Exploration

55

Pending proof of (17).

Alternative proof 2: pending

Pending proof of (15).

Alternative proof 2: pending

Pending proof of (4).

Alternative proof 2: pending

Pending proof of (Lemma (factor–set non–empty)).

Ã

Now compare this presentation of the proof, which is just a one–to–one nested readable output of

the nested proof object generated by the prover, with the following proof, which results from

applying the simplification tools described in this chapter to the proof object.

Prove:

(Lemma (factor–set non–empty)) �
R

+is–reflexive#R' Á is–all–nonempty#factor–set#R''/ ,

under the assumptions:

(Definition (factor set)) �
R

L
N
MMfactor–set#R' : �class#R, x' «

x
x ± X!\

^
]] ,

(Definition (class)) �
R,x

L
N
MMclass#R, x' : �a «

a
a ± X Â ;a, x? ± R!\

^
]] ,

(Definition (is relation)) �
R

+is–relation#R' :x R ° XlX/ ,

(Definition (is reflexive)) �
R

-is–reflexive#R' :x �
x

+x ± X Á ;x, x? ± R/1 ,

(Definition (is subset set)) �
P

L
N
MMis–subset–set#P' :x �

p
+p ± P Á p ° X/\^

]] ,

(Definition (is all non empty)) �
P

L
N
MMis–all–nonempty#P' :x �

p
+p ± P Á p � �� /\

^
]] .

Using available computation rules we can simplify the knowledge base:

Formula (Definition (is all non empty)) simplifies to

(1) �
P

L
N
MMis–all–nonempty#P' :x �

p
+p ± P Á �� � p/\^

]] ,

We assume

(2) is–reflexive#R0' ,

and show

(3) is–all–nonempty#factor–set#R0'' .

Formula (2), by (Definition (is reflexive)), implies:

(25) �
x

+x ± X Á ;x, x? ± R0/ .

Formula (3), using (Definition (factor set)), is implied by:

is–all–nonempty%�class#R0, x' «
x

x ± X!) ,

Tools for Mathematical Theory Exploration

56

which, using (Definition (class)), is implied by:

is–all–nonempty%��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X!) ,

which, using (1), is implied by:

(4) �
p

L

N

MMMMMMMp ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! Á �� � p
\

^

]]]]]]] .

We assume

(5) p0 ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! ,

and show

(6) �� � p0 .

We can choose an appropriate value in (5) such that

(7) a10 ± X,

(8) p0 �a «
a

a ± X Â ;a, a10? ± R0! .

Formula (6) means that we have to show that

(15) �
p1

+p1 ± p0/ .

Formula (15), using (8), is implied by:

(16) �
p1

L
N
MMp1 ± �a «

a
a ± X Â ;a, a10? ± R0!\

^
]] .

In order to prove (16) we have to show:

(17) �
p1

+p1 ± X Â ;p1, a10? ± R0/ .

Now, let p1 : a10 . Thus, for proving (17) it is sufficient to prove:

(18) a10 ± X Â ;a10, a10? ± R0 .

We prove the individual conjunctive parts of (18):

Proof of (18.1) a10 ± X:

Formula (18.1) is true because it is identical to (7).

Proof of (18.2) ;a10, a10? ± R0 :

Formula (18.2), using (25), is implied by:

(26) a10 ± X.

Formula (26) is true because it is identical to (7).

Ã

Tools for Mathematical Theory Exploration

57

4.2 Simplifying Proofs

The proof simplification behavior can be controlled by the options of the function call that

invokes them. This is consistent with the general philosophy of Theorema (and similar to the one

of Mathematica functions), in which the behavior of the main commands (’Prove’, ’Compute’, etc.)

is determined by options. The user is not imposed any additional burden in specifying these

options because default values are provided for each of the options available. The option names

recognized by the proof simplifier refer to branches of proofs and inference steps, options named

’branches’ and ’steps’, respectively. The values the option ’branches’ can take are ’Proved’,
’Disproved’, ’Failed’, ’Pending’ and ’All’. The values the option ’steps’ can take are ’Useful’,

’Combined’, ’Lifted’, ’LiftedParallel’, ’Essential’ and ’All’. Each of the option names and values

will be detailed in the following sections.

The proof simplification process is driven by the information stored in the proof object. With

the exception of the procedures corresponding to the option values ’Combined’ and ’Essential’ (see

below), the simplification routines will consider only the formulae occurring in the proof, ignoring

the information on how they were obtained (i.e. which inference rule was applied and how).

We have seen in Chapter 1 Section 1.3.1. how information about the proving process is stored

in the proof object. The simplification routines use only part of that information, i.e. the name of

the inference rule applied, the formulae used when the inference rule was applied, and the gener-

ated formulae. Using this information, during the simplification process, trivial but necessary

proof steps can be presented to the user in a more concise and intuitive form.

A typical proof call that produces a proof–object is:

Prove#Proposition#"Goal"', using � Knowledge, by � Prover +
, other options
/';

Simplification within Theorema may either be invoked as part of the ’Prove’ command, or as a

separate ’Transform’ command:

Prove#Proposition#"Goal"', using � Theory#"Assumptions"', by � Prover

+
, other options
/, TransformBy� ProofSimplifier, TransformerOptions�

�branches � +
 simplification options
/, steps �+
 simplification options
/�';

or

Transform#proof � object, by � ProofSimplifier, TransformerOptions�

�branches � +
 simplification options
/, steps �+
 simplification options
/�';

The ’Transform’ function takes as input a proof object and returns another proof object which is

processed by the proof simplifier to retain only the information required by the user via the

options.

Tools for Mathematical Theory Exploration

58

In the following we will describe in detail how each of the option values of ’branches’ and

’steps’ influence the simplification process.

4.2.1 ’branch’ Simplification

A Theorema proof object is a tree–like data structure that may contain four types of branches,

determined by the proof value of their leaves: "Proved", "Disproved", "Failed" and "Pending".

Depending on the proving technique that was used, a proof built by Theorema's provers may

contain one or more branches of possible different types. In no case can "Proved" and "Dis-

proved" branches occur in the same proof object. A successful proof has at least one branch with

the proof value either "Proved" or "Disproved". In this sense, "successful" means that the provers

of the system have completed a proof either by proving that the given goal is true or by disproving

it. The proof object might contain other types of branches, too. For example, branches with the

proof value of the nodes "Pending" correspond to the eventual proof alternatives that were not

inspected anymore by the prover after the proof succeeded.

Most of the times when a proof is displayed, the user is interested to see only the successful

branches, if any. When the result of a 'Prove' command is a failed proof it is not necessary that the

property the user tried to prove is not true. For this reason, the user may want to inspect the failed

branches of the proof.

The ’branches’ option gives the user the possibility to indicate the proof simplifier which type

of branches are to be retained in the proof object. The values this option can take are ’All’,

’Proved’, ’Disproved’, ’Failed’ and ’Pending’. The ’All’ option value is the default one, leaving

the branches of the proof object untouched.

The most common usage of the option 'branches', 'branches | Proved', is to remove unsuc-

cessful and pending branches from a proof object. For example, suppose that among the assump-

tions of a proof situation we have a formula 'A w G' and that the current goal to be proved is

formula 'G'. The propositional prover of Theorema will produce two proof alternatives:

Alternative 1: prove 'A';

Alternative 2: add the formula '¬A' to the assumptions and prove 'G'.

If the first proof alternative succeeds the proof object has the proof value "Proved": the success-

ful branch in the proof is the one of Alternative 1. The proof object contains a pending branch for

Alternative 2 which was not investigated anymore since the proof succeeded in the first case.

Using the 'branches | Proved' option of the ProofSimplifier, the first branch (the successful one)

is kept and the pending one is deleted.

In the case the first alternative does not succeed, the proof branch for Alternative 1 will have

the proof value "Failed". The prover continues with the proof of the second alternative. If the

Tools for Mathematical Theory Exploration

59

proof succeeds in this case, this proof branch makes the whole proof successful. Using the

’branches | Proved’ of the ProofSimplifier, this successful branch is now kept and the first

branch is deleted, as a failed branch.

The function implementing this simplification process takes as input the proof object to be

simplified and the type or a list with the types of branches to be kept (e.g. ’{Proved, Failed}’).

Then it removes all the nodes in the proof object that have the proof value different from any of

the input branch types. It may be possible that the output of this process is an empty proof object.

This can happen, for example, when the proof did not succeed (i.e. the proof object has no

successful branch), but the option passed to of the proof simplifier is ’branches | Proved’,

removing all branches of the proof object.

Let us apply the branch simplification to the proof given as example at the beginning of the

chapter. The proof has several pending branches which correspond to the unexplored nodes in the

proof. The result of the branch simplification is:

Prove:

(Lemma (factor–set non–empty)) �
R

+is–reflexive#R' Á is–all–nonempty#factor–set#R''/
,

under the assumptions:

(Definition (factor set)) �
R

L
N
MMfactor–set#R' : �class#R, x' «

x
x ± X!\

^
]] ,

(Definition (class)) �
R,x

L
N
MMclass#R, x' : �a «

a
a ± X Â ;a, x? ± R!\

^
]] ,

(Definition (is relation)) �
R

+is–relation#R' :x R ° XlX/ ,

(Definition (is reflexive)) �
R

-is–reflexive#R' :x �
x

+x ± X Á ;x, x? ± R/1 ,

(Definition (is subset set)) �
P

L
N
MMis–subset–set#P' :x �

p
+p ± P Á p ° X/\^

]] ,

(Definition (is all non empty)) �
P

L
N
MMis–all–nonempty#P' :x �

p
+p ± P Á p � ��/\^

]] .

Using available computation rules we can simplify the knowledge base:

Formula (Definition (is all non empty)) simplifies to

(1) �
P

L
N
MMis–all–nonempty#P' :x �

p
+p ± P Á �� � p/\^

]] ,

We assume

(2) is–reflexive#R0' ,

and show

(3) is–all–nonempty#factor–set#R0'' .

Formula (3), using (Definition (factor set)), is implied by:

is–all–nonempty%�class#R0, x' «
x

x ± X!) ,

which, using (Definition (class)), is implied by:

is–all–nonempty%��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X!) ,

which, using (1), is implied by:

Tools for Mathematical Theory Exploration

60

(4) �
p

L

N

MMMMMMMp ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! Á �� � p
\

^

]]]]]]] .

We assume

(5) p0 ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! ,

and show

(6) �� � p0 .

We can choose an appropriate value in (5) such that

(7) a10 ± X,

(8) p0 �a «
a

a ± X Â ;a, a10? ± R0! .

From (7) we can infer

(9) X � �� .

From (8) we can infer

(10) p0 ° �a «
a

a ± X Â ;a, a10? ± R0! ,

(11) �a «
a

a ± X Â ;a, a10? ± R0! ° p0 .

From (10) we can infer

(12) �
a3

+a3 ± p0 Á a3 ± X Â ;a3, a10? ± R0/ .

From (11) we can infer

(13) �
a4

+a4 ± X Â ;a4, a10? ± R0 Á a4 ± p0/ .

Using available computation rules we can simplify the knowledge base:

Formula (13) simplifies to

(14) �
a4

+;a4, a10? ² R0 Á a4 ² X Á a4 ± p0/ ,

Formula (6) means that we have to show that

(15) �
p1

+p1 ± p0/ .

We have no means to solve (15).

We did not find any ground formula to match a part of (15).

Formula (15), using (8), is implied by:

(16) �
p1

L

N
MMp1 ± �a «

a
a ± X Â ;a, a10? ± R0!\

^
]] .

In order to prove (16) we have to show:

(17) �
p1

+p1 ± X Â ;p1, a10? ± R0/ .

We have no means to solve (17).

Now, let p1 : a10 . Thus, for proving (17) it is sufficient to prove:

(18) a10 ± X Â ;a10, a10? ± R0 .

We prove the individual conjunctive parts of (18):

Proof of (18.1) a10 ± X:

Formula (18.1) is true because it is identical to (7).

Proof of (18.2) ;a10, a10? ± R0 :

Formula (10), by (8), implies:

(19) �a5 «
a5

a5 ± X Â ;a5, a10? ± R0! ° �a «
a

a ± X Â ;a, a10? ± R0! .

Tools for Mathematical Theory Exploration

61

From (19) we can infer

(20) �
a51

+a51 ± X Â ;a51, a10? ± R0 Á a51 ± X Â ;a51, a10? ± R0/ .

Using available computation rules we can simplify the knowledge base:

Formula (20) simplifies to

(21) �
a51

True,

Formula (11), by (8), implies:

(22) �a «
a

a ± X Â ;a, a10? ± R0! ° �a6 «
a6

a6 ± X Â ;a6, a10? ± R0! .

From (22) we can infer

(23) �
a7

+a7 ± X Â ;a7, a10? ± R0 Á a7 ± X Â ;a7, a10? ± R0/ .

Using available computation rules we can simplify the knowledge base:

Formula (23) simplifies to

(24) �
a7

True,

Formula (2), by (Definition (is reflexive)), implies:

(25) �
x

+x ± X Á ;x, x? ± R0/ .

Formula (18.2), using (25), is implied by:

(26) a10 ± X.

Formula (26) is true because it is identical to (7).

Ã

4.2.2 ’steps’ Simplification

In contrast to simplifying branches, proof steps simplification will inspect the proof steps

(individual inferences) of a proof. Simplifying proof steps means removing, merging, or moving

proof steps such that the result of all these actions is a condensed proof with a succinct structure.

Naturally, these kind of transformations make sense only if the proof is successful. This kind of

simplification is triggered via the ’steps’ option. The possible values of the option are ’All’,
’Useful’, ’Lifted’, ’LiftedParallel’, ’Combined’ and ’Essential’. We will describe each of them

below.

4.2.2.1 Option Value ’All’

This is the default value of the ’steps’ option. It applies, one by one, all of the step simplifications

(that are described below).

4.2.2.2 Option Value ’Useful’

This value of the ’steps’ option causes the removal of all steps that do not contribute at proving the

given goal. The simplification is done in two phases:

a) identification of the useful steps, and

b) removal of the useless steps.

Tools for Mathematical Theory Exploration

62

The first step in the identification phase is to remove the pending and failed branches from the

proof object, because it is clear that these do not help in proving the goal. This removal is equiva-

lent with specifying ’branch | {Proved, Disproved}’ in the call of the proof simplifier. Note that

if the proof is not successful this will return an empty proof object and a warning message is

printed. It is understandable, then, that such a simplification only makes sense in the case of a

successful proof (i.e. a proof that either has a proved or a disproved branch).

Let us consider the case of simplifying a successful proof. After removing any existing

Pending and/or Failing branches the identification phase continues in a bottom–up manner. The

proof object tree is traversed in post–order (starting from the right–most leaf of the proof tree). As

the nodes of the proof tree are visited, we construct and maintain a list of formulae labels which

are used in proving the goal. Based on this list we can delete nodes and formulae that do not

contribute to proving the goal. Maintaining the list of used formulae labels is part of the identifica-

tion phase of the simplification process, while removing the steps and formulae is part of the

removal phase. In more detail, for each of the nodes in the proof tree we can have one of the

following cases:

1. The node has no children: a leaf node in the proof tree is a node that states the reasons

the goal is proved or disproved. (Recall that we have a successful proof in which we

removed the pending and failed branches.) The formulae stored in this node are defi-

nitely contributing to the proof so we add their labels to the list of used formulae labels.

The parent of the leaf node is notified about the fact that the node was checked.

2. The node has only one child: in this case we compare the labels of the generated

formulae of the node with the labels in the list of used formulae labels. If they occur in

the list we replace in the list the occurring labels with the labels of the used formulae in

the current node. If they do not occur in the list we delete the node from the proof tree.

In both cases, the parent node is notified about the check done on the current node.

3. The node has more than one child: If there is a child that has not produced a check

notification, the simplification process continues on the subtree with the unchecked child

as the root of the subtree. If the node has received check notifications from all its

children we perform the same operations as for a node with only one child (case 2).

4. The node is the root of the tree: this node stores the conjecture and the assumptions

the user specified in the 'Prove' call. The simplification procedure checks whether the

labels of these assumptions are in the list of used formulae labels. However, if they do

not occur in the list, they will not be deleted from the proof object since this should be

the decision of the user and not of the Theorema system. Messages will notify the user

which of the assumptions were not used.

As an example, let us apply the 'steps | Useful' proof simplification to the basic example given

at the beginning of this chapter in Section 4.1. Formulae (9) – (14), (12) – (14) and (19) – (24) in

the unsimplified proof are removed by the simplification routine, as well as the pending branches

of the proof:

Tools for Mathematical Theory Exploration

63

Prove:

(Lemma (factor–set non–empty))

�
R

+is–reflexive#R' Á is–all–nonempty#factor–set#R''/ ,

under the assumptions:

(Definition (factor set)) �
R

L
N
MMfactor–set#R' : �class#R, x' «

x
x ± X!\

^
]] ,

(Definition (class)) �
R,x

L
N
MMclass#R, x' : �a «

a
a ± X Â ;a, x? ± R!\

^
]] ,

(Definition (is relation)) �
R

+is–relation#R' :x R ° XlX/ ,

(Definition (is reflexive)) �
R

-is–reflexive#R' :x �
x

+x ± X Á ;x, x? ± R/1 ,

(Definition (is subset set)) �
P

L
N
MMis–subset–set#P' :x �

p
+p ± P Á p ° X/\^

]] ,

(Definition (is all non empty)) �
P

L
N
MMis–all–nonempty#P' :x �

p
+p ± P Á p � ��/\^

]] .

Using available computation rules we can simplify the knowledge base:

Formula (Definition (is all non empty)) simplifies to

(1) �
P

L
N
MMis–all–nonempty#P' :x �

p
+p ± P Á �� � p/\^

]] ,

We assume

(2) is–reflexive#R0' ,

and show

(3) is–all–nonempty#factor–set#R0'' .

Formula (3), using (Definition (factor set)), is implied by:

is–all–nonempty%�class#R0, x' «
x

x ± X!) ,

which, using (Definition (class)), is implied by:

is–all–nonempty%��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X!) ,

which, using (1), is implied by:

(4) �
p

L

N

MMMMMMMp ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! Á �� � p
\

^

]]]]]]] .

We assume

(5) p0 ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! ,

and show

(6) �� � p0 .

We can choose an appropriate value in (5) such that

(7) a10 ± X,

(8) p0 �a «
a

a ± X Â ;a, a10? ± R0! .

Formula (6) means that we have to show that

(15) �
p1

+p1 ± p0/ .

Formula (15), using (8), is implied by:

(16) �
p1

L
N
MMp1 ± �a «

a
a ± X Â ;a, a10? ± R0!\

^
]] .

In order to prove (16) we have to show:

Tools for Mathematical Theory Exploration

64

(17) �
p1

+p1 ± X Â ;p1, a10? ± R0/ .

Now, let p1 : a10 . Thus, for proving (17) it is sufficient to prove:

(18) a10 ± X Â ;a10, a10? ± R0 .

We prove the individual conjunctive parts of (18):

Proof of (18.1) a10 ± X:

Formula (18.1) is true because it is identical to (7).

Proof of (18.2) ;a10, a10? ± R0 :

Formula (2), by (Definition (is reflexive)), implies:

(25) �
x

+x ± X Á ;x, x? ± R0/ .

Formula (18.2), using (25), is implied by:

(26) a10 ± X.

Formula (26) is true because it is identical to (7).

Ã

4.2.2.3 Option values ’Lifted’ and ’LiftedParallel’

The order in which the formulae are generated during an automated proof is not always the order

that gives short proofs. For this reason we implemented a simplification procedure that rearranges

the proof nodes in the proof–tree. This simplification procedure is triggered by the ’{steps |

Lifted}’ option.

The routine that implements this simplification method parses the proof–tree and tries to move

nodes upwards in the tree (closer to the root). The place where a node is moved to depends on the

formulae used by the inference rule that created the information stored in the node. Assume, for

example, that nodes N1 and N2 store information about the inference rules that generated the

formulae labeled +l1/ and +l2/ , respectively. Also assume that N1 is an ancestor of N2 . Assume,

now, that the node N stores information about the application of an inference rule that used the

formulae labeled +l1/ and +l2/ , N being a descendant of N2 . Then, the node N will be removed

from its current position and inserted as a child of the node N2 . The children of the node N2 will

become the children of the inserted node. We call the operation described above "lifting".

Tools for Mathematical Theory Exploration

65

When proving a proposition or a conjecture the prover might come to the situation where it

has to prove a goal which is a conjunction or a disjunction of formulae. The routines that create

and manage the proof tree, will insert a branching node in the tree, i.e. a node that has one child

for each formula in the conjunction/disjunction. The prover will proceed to prove each of the

subgoals, one by one. During this process it may happen that the prover infers formulae that were

already inferred on other branches of the proof tree. The option ’{steps | LiftedParallel}’
searches for such identical formulae. Depending on the formulae that were used for inferring

them, the nodes are removed, and only one node is inserted at a higher level in the proof tree. This

’removal and insertion’ operation is done in the same way as described for the ’{steps |Lifted}’

simplification option. Additionally for the ’LiftedParallel’ simplification procedure, any informa-

tion that refers to the formulae generated at the removed nodes will be modified to refer to the

information available in the newly inserted node.

As a final remark for this subsection we note that, without specifically searching for identical

formulae on different branches as the ’LiftedParallel’ simplification routine does, the ’Lifted’

simplification lifts these formulae as well, i.e. take them out from the parallel branches.

To illustrate this kind of simplification, we use the proof which shows that the congruence

relation defined by ’�’ is transitive. The call for obtaining this proof is:

proof–object Prove#Proposition#"Equivalence Transitivity"',
using � �Definition#"Congruence Def by LessOrEqual"',

Proposition#"LessOrEqual Transitivity"'�, by � PredicateProver'

The obtained proof is rather lengthy and can be simplified using the ’steps|Useful’ simplifica-

tion described above:

proof–object

Transform#proof–object, by � ProofSimplifier, TransformerOptions� �steps � Useful�';

Then, the proof is:

Prove:

(Proposition (Equivalence Transitivity): aaÁa) �
x,y,z

+x a y Â y a z Á x a z/ ,

under the assumptions:

(Definition (Equivalence Def by LessOrEqual): a:��) �
x,y

+x a y :x x � y Â y � x/
,

(Proposition (LessOrEqual Transitivity): ��Á�) �
x,y,z

+x � y Â y � z Á x � z/ .

For proving (Proposition (Equivalence Transitivity): aaÁa) we take all variables arbitrary but

fixed and prove:

(1) x0 a y0 Â y0 a z0 Á x0 a z0 .

We prove (1) by the deduction rule.

We assume

(2) x0 a y0 Â y0 a z0

Tools for Mathematical Theory Exploration

66

and show

(3) x0 a z0 .

For proving (3), by the definition (Definition (Equivalence Def by LessOrEqual): a:��), it

suffices to prove:

(4) x0 � z0 Â z0 � x0 .

The formula (2.1) is expanded by the definition (Definition (Equivalence Def by

LessOrEqual): a:��) into:

(5) x0 � y0 Â y0 � x0 .

The formula (2.2) is expanded by the definition (Definition (Equivalence Def by

LessOrEqual): a:��) into:

(6) y0 � z0 Â z0 � y0 .

We prove the individual conjunctive parts of (4):

Proof of (4.1) x0 � z0 :

From (5.1), by (Proposition (LessOrEqual Transitivity): ��Á�), we obtain:

(7) �
z

+y0 � z Á x0 � z/ .

From (6.1), by (7), we obtain:

(12) x0 � z0 .

Formula (4.1) is true because it is identical to (12).

Proof of (4.2) z0 � x0 :

From (6.2), by (Proposition (LessOrEqual Transitivity): ��Á�), we obtain:

(20) �
z

+y0 � z Á z0 � z/ .

From (5.2), by (20), we obtain:

(27) z0 � x0 .

Formula (4.2) is true because it is identical to (27).

Ã

The formulae that the prover derived after the splitting point in the proof above are candidates for

the ’steps|Lifted’ simplification:

Prove:

(Proposition (Equivalence Transitivity): aaÁa) �
x,y,z

+x a y Â y a z Á x a z/ ,

under the assumptions:

(Definition (Equivalence Def by LessOrEqual): a:��) �
x,y

+x a y :x x � y Â y � x/
,

(Proposition (LessOrEqual Transitivity): ��Á�) �
x,y,z

+x � y Â y � z Á x � z/ .

For proving (Proposition (Equivalence Transitivity): aaÁa) we take all variables arbitrary but

fixed and prove:

(1) x0 a y0 Â y0 a z0 Á x0 a z0 .

We prove (1) by the deduction rule.

We assume

(2) x0 a y0 Â y0 a z0

and show

Tools for Mathematical Theory Exploration

67

(3) x0 a z0 .

For proving (3), by the definition (Definition (Equivalence Def by LessOrEqual): a:��), it

suffices to prove:

(4) x0 � z0 Â z0 � x0 .

The formula (2.1) is expanded by the definition (Definition (Equivalence Def by

LessOrEqual): a:��) into:

(5) x0 � y0 Â y0 � x0 .

From (5.1), by (Proposition (LessOrEqual Transitivity): ��Á�), we obtain:

(7) �
z

+y0 � z Á x0 � z/ .

The formula (2.2) is expanded by the definition (Definition (Equivalence Def by

LessOrEqual): a:��) into:

(6) y0 � z0 Â z0 � y0 .

From (6.1), by (7), we obtain:

(12) x0 � z0 .

From (6.2), by (Proposition (LessOrEqual Transitivity): ��Á�), we obtain:

(20) �
z

+y0 � z Á z0 � z/ .

From (5.2), by (20), we obtain:

(27) z0 � x0 .

We prove the individual conjunctive parts of (4):

Proof of (4.1) x0 � z0 :

Formula (4.1) is true because it is identical to (12).

Proof of (4.2) z0 � x0 :

Formula (4.2) is true because it is identical to (27).

Ã

4.2.2.4 Option value ’Combined’

The simplification options described above have only dealt with removing unused or re–arranging

the information inside a proof object so that the user may get a better grasp of the proof. The

option value ’Combine’ will merge simpler steps into more complex ones, by applying a set of

rules that are specific to the particular inferences.

The rationale for this type of simplification is better explained by an example. For instance,

one version of the predicate logic prover uses level–saturation by forward inference on ground

formulae combined with universal formulae. If the set of assumptions contains the formulae:

'P[a]', 'Q[b]' and '(� x,y)(P[x] Â Q[y] w R[x,y])', one inference step will produce the intermedi-

ary formula '(� y)(Q[y] w R[a,y])' (which looks less "natural") and another step will produce the

final result 'R[a,b]'. By combining the two inferences one obtains in one step the final result

(without showing the intermediary formula). One may ask: why not use such a complex inference

rule during the search for the proof? We could include such an inference into the code of the

prover. This will increase the size of the prover which, in turn, makes searching for inferences that

are applicable to such a proof situation more time consuming, since there would be more infer-

Tools for Mathematical Theory Exploration

68

ences to be checked for applicability. We let the developer of the prover decide whether it pays of

to have more inference rules.

One notes that this type of simplification is dependent on the particular prover, because only

certain types of inferences can be combined in a meaningful way. Since it is not desirable to write

a simplification routine for every particular combination of inferences, we implemented a flexible

and universal "combining" routine which takes the specification of such combinations in a stan-

dard form from the developer of the prover:

�proof step1, proof step2, ..., proof stepn�| �combined step�

In the example above, the simple inference steps are identified by the keyword "ObtainFromBy":

obtain from ground formula ("base") by universal formula ("rule"). The complex inference step is

identified by the keyword "ObtainFromManyBy": obtain from many ground bases by a universal

rule. The specification of the combination is given as:

��¢ObtainFromBy, �base1_, rule_� � �intermediary_��,
�¢ObtainFromBy, �base2_, intermediary_� � �final_���
| �¢ObtainFromManyBy, �base1, base2, rule� � �final��

The specification is given as a Mathematica rewrite rule, having on the left–hand side a list of

inference steps (to be combined) and on the right–hand side the resulting inference. Each infer-

ence is represented as a pair consisting of the keyword corresponding to the inference and another

rule which specifies the formulae involved in the inference: the list of the formulae used, on the

left–hand side, and the list of resulting formulae, on the right–hand side. The underscores occur-

ring on the left–hand side of the main rule qualify the corresponding names as variables (they can

represent any formula) – this notation is borrowed from the syntax of Mathematica. The under-

scores are necessary in order to be able to express recursive combination rules, which make

possible to specify, in this example, the use of an arbitrary number of "bases" in the following way:

��¢ObtainFromBy, �bases__, rule_� � �intermediary_��,
�¢ObtainFromBy, �base_, intermediary_� � �final_��� |

�¢ObtainFromManyBy, �bases, base, rule� � �final��

Here, the variable "bases__" (with two underscores) has the meaning "an arbitrary number of

formulae" (but at least one) – again this notation is borrowed from Mathematica.

In the example below the simplification given by the developer of the prover looks like:

���¢ExpandAssmByDef, �base1_, def1_� � �rule2_��,
�¢ObtainFromBy, �base2_, rule2�, � �base3_,���|

�¢ObtainFromManyBy, �base1, base2, def1� � �base3��,
��¢ObtainFromBy, �base1_, rule1_� � �rule2_��,

�¢ObtainFromBy, �base2_, rule2_� � �final_��� |
�¢ObtainFromManyBy, �base1, base2, rule1� � �final���

Tools for Mathematical Theory Exploration

69

meaning that whenever an assumption expanded by a definition, or a formula inferred at some

moment in the proof, is used later to infer another formula we can combine these two steps in one

step.

We take the same proof we used for illustrating the ’steps | Lifted’ simplification.

Transform#proof–object, by � ProofSimplifier,

TransformerOptions� �steps � �Lifted, Combined��'

The result of the call follows. By using the ’Combined’ simplification routine formulae (7) and

(20) were removed.

Prove:

(Proposition (Equivalence Transitivity): aaÁa) �
x,y,z

+x a y Â y a z Á x a z/ ,

under the assumptions:

(Definition (Equivalence Def by LessOrEqual): a:��) �
x,y

+x a y :x x � y Â y � x/
,

(Proposition (LessOrEqual Transitivity): ��Á�) �
x,y,z

+x � y Â y � z Á x � z/ .

For proving (Proposition (Equivalence Transitivity): aaÁa) we take all variables arbitrary but

fixed and prove:

(1) x0 a y0 Â y0 a z0 Á x0 a z0 .

We prove (1) by the deduction rule.

We assume

(2) x0 a y0 Â y0 a z0

and show

(3) x0 a z0 .

For proving (3), by the definition (Definition (Equivalence Def by LessOrEqual): a:��), it

suffices to prove:

(4) x0 � z0 Â z0 � x0 .

The formula (2.1) is expanded by the definition (Definition (Equivalence Def by

LessOrEqual): a:��) into:

(5) x0 � y0 Â y0 � x0 .

The formula (2.2) is expanded by the definition (Definition (Equivalence Def by

LessOrEqual): a:��) into:

(6) y0 � z0 Â z0 � y0 .

From (5.1) and (6.1), by (Proposition (LessOrEqual Transitivity): ��Á�), we obtain:

(12) x0 � z0 .

From (6.2) and (5.2), by (Proposition (LessOrEqual Transitivity): ��Á�), we obtain:

(27) z0 � x0 .

We prove the individual conjunctive parts of (4):

Proof of (4.1) x0 � z0 :

Formula (4.1) is true because it is identical to (12).

Proof of (4.2) z0 � x0 :

Tools for Mathematical Theory Exploration

70

Formula (4.2) is true because it is identical to (27).

Ã

4.2.2.5 Option value ’Essential’

As its name suggests, the value ’{steps | Essential}’ option of the proof simplifier will retain

only the most important part of the proofs. Concretely, it will perform a simplification of

branches, removing any pending and failing branches (’branches|{Proved, Disproved}’), then

will remove any steps in the proof that are not relevant for proving the goal (’steps | Useful’)

and will lift the nodes if it is possible (’steps|Lift’). In the end, it will try to merge as many proof

steps as possible into more complex proving steps using merging rules defined by the user (’steps

| Combined’).

Tools for Mathematical Theory Exploration

71

5 5. Focus Windows

5.1 The Problem

From the Theorema theory exploration that covers the theory of equivalence relations, equiva-

lence classes, partitions, and induced relations [Windsteiger:01] we consider the following lemma:

"The factor set of a reflexive relation is a non–empty set of subsets". The mathematical notions

used to obtain a successful proof of this lemma are all defined in terms of sets (where 'X' is a

constant). In the Theorema language this is done as follows:

Definition#"is relation", any#R', is–relation#R' :x +R ° XlX/';

Definition%"is reflexive", any#R', is–reflexive#R' :x �
x � X

;x, x? ± R);

Definition%"class", any#x, R', class#R, x' : �a «
a � X

;a, x? ± R!);

Definition%"factor set", any#R', factor–set#R' : �class#R, x' «
x

x ± X!);

Definition%"is subset set", any#P', is–subset–set#P' :x �
p � P

p ° X);

Definition%"is all non empty", any#P', is–all–nonempty#P' :x L
N
MM �

p � P
p � ��\^

]]);

The lemma "The factor set of a reflexive relation is a non–empty set of subsets" can be formulated

in the Theorema language in the following way:

Lemma#"factor set is non empty set of subsets", any#R', +is–relation#R' Â is–reflexive#R'/ Á
+is–all–nonempty#factor–set#R'' Â is–subset–set#factor–set#R''/'

Since all the definitions are given in terms of set theory, for proving the above lemma we invoke

the set theory prover (described in detail in [Windsteiger:01]).

Tools for Mathematical Theory Exploration

72

Prove#Lemma#"factor set is non empty set of subsets"',
using � ;Definition#"factor set"', Definition#"class"', Definition#"is relation"',

Definition#"is reflexive"', Definition#"is subset set"', Definition#"is all non empty"'?,
by � SetTheoryPCSProver, ProverOptions � �GRWTarget� �"goal", "kb"�,

RWExistentialGoal� True, UseCyclicRules� True, DisableProver � �STC, PND��,
transformBy� ProofSimplifier, TransformerOptions� �branches � Proved, steps � Useful�,
SearchDepth� 50'

Not used: �Definition +is relation/�

By the option mechanism we give the prover some general directions on how to prove the lemma.

Among these directions, we indicate that whenever the goal can be rewritten it should be rewritten

before any formula in the knowledge is rewritten, even when it is an existentially quantified

formula. When the proof is done, we transform it by the proof simplifier, using the branches

simplification and the useful steps simplifications. The simplification process informs us that the

definition "is relation" was not used in the proving process. The outcome of the ’Prove’ call is:

Prove:

(Lemma (factor set is non empty set of subsets))

�
R

+is–relation#R' Â is–reflexive#R' Á
is–all–nonempty#factor–set#R'' Â is–subset–set#factor–set#R''/

,

under the assumptions:

(Definition (factor set)) �
R

L
N
MMfactor–set#R' : �class#R, x' «

x
x ± X!\

^
]] ,

(Definition (class)) �
R,x

L
N
MMclass#R, x' : �a «

a
a ± X Â ;a, x? ± R!\

^
]] ,

(Definition (is relation)) �
R

+is–relation#R' :x R ° XlX/ ,

(Definition (is reflexive)) �
R

-is–reflexive#R' :x �
x

+x ± X Á ;x, x? ± R/1 ,

(Definition (is subset set)) �
P

L
N
MMis–subset–set#P' :x �

p
+p ± P Á p ° X/\^

]] ,

(Definition (is all non empty)) �
P

L
N
MMis–all–nonempty#P' :x �

p
+p ± P Á p � ��/\^

]] .

Using available computation rules we can simplify the knowledge base:

Formula (Definition (is all non empty)) simplifies to

(1) �
P

L
N
MMis–all–nonempty#P' :x �

p
+p ± P Á �� � p/\^

]] ,

We assume

(2) is–relation#R0' Â is–reflexive#R0' ,

and show

(3) is–all–nonempty#factor–set#R0'' Â is–subset–set#factor–set#R0'' .

We prove the individual conjunctive parts of (3):

Proof of (3.1) is–all–nonempty#factor–set#R0'' :

Formula (3.1), using (Definition (factor set)), is implied by:

is–all–nonempty%�class#R0, x' «
x

x ± X!) ,

which, using (Definition (class)), is implied by:

Tools for Mathematical Theory Exploration

73

is–all–nonempty%��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X!) ,

which, using (1), is implied by:

(4) �
p

L

N

MMMMMMMp ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! Á �� � p
\

^

]]]]]]] .

We assume

(5) p0 ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! ,

and show

(6) �� � p0 .

We can choose an appropriate value in (5) such that

(7) a10 ± X,

(8) p0 �a «
a

a ± X Â ;a, a10? ± R0! .

Formula (6) means that we have to show that

(15) �
p1

+p1 ± p0/ .

Formula (15), using (8), is implied by:

(16) �
p1

L
N
MMp1 ± �a «

a
a ± X Â ;a, a10? ± R0!\

^
]] .

In order to prove (16) we have to show:

(17) �
p1

+p1 ± X Â ;p1, a10? ± R0/ .

Now, let p1 : a10 . Thus, for proving (17) it is sufficient to prove:

(18) a10 ± X Â ;a10, a10? ± R0 .

We prove the individual conjunctive parts of (18):

Proof of (18.1) a10 ± X:

Formula (18.1) is true because it is identical to (7).

Proof of (18.2) ;a10, a10? ± R0 :

Formula (2.2), by (Definition (is reflexive)), implies:

(27) �
x

+x ± X Á ;x, x? ± R0/ .

Formula (18.2), using (27), is implied by:

(28) a10 ± X.

Formula (28) is true because it is identical to (7).

Proof of (3.2) is–subset–set#factor–set#R0'' :

Formula (3.2), using (Definition (factor set)), is implied by:

is–subset–set%�class#R0, x' «
x

x ± X!) ,

which, using (Definition (class)), is implied by:

is–subset–set%��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X!) ,

which, using (Definition (is subset set)), is implied by:

(29) �
p

L

N

MMMMMMMp ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! Á p ° X
\

^

]]]]]]] .

We assume

Tools for Mathematical Theory Exploration

74

(30) p1 ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! ,

and show

(31) p1 ° X.

We can choose an appropriate value in (30) such that

(32) a80 ± X,

(33) p1 �a «
a

a ± X Â ;a, a80? ± R0! .

For proving (31) we choose

(40) p20 ± p1 ,

and show:

(41) p20 ± X.

Formula (40), by (33), implies:

(44) p20 ± �a «
a

a ± X Â ;a, a80? ± R0! .

From (44) we can infer

(45) p20 ± X Ï ;p20, a80? ± R0 .

Formula (41) is true because it is identical to (45.1).

Ã

Looking at proofs like the one above, we can make the following comments: In each step of a

mathematical proof, a new formula is derived from formulae appearing in earlier portions of the

text using an inference rule. Typically, in long proofs, the formulae used in a proof step occur a

couple of lines, paragraphs, or even pages distant from the place in the text at which the proof step

occurs. In the proof above, for example, formula (27) is obtained using (also) the definition of the

factor set which occurred right at the beginning of the proof. Reference to the used formulae is

traditionally done by labels and the reader has to jump back and forth between the formulae

referenced and the proof step in which they are needed. This is unpleasant and makes understand-

ing of proofs quite difficult even if the proofs are nicely structured and well presented.

From the outset, in Theorema we tried to emphasize attractive proof presentation. Theorema

proofs are designed to resemble proofs generated by humans, i.e. they contain formulae and

explanatory text in English. In addition, Theorema provides various tools for helping the reader to

browse the proofs: nested brackets at the right–hand margin make it possible to contract entire

sub–proofs to just one line; various color codes distinguish the (temporary) proof goals from

formulae in the (temporary) knowledge base; links to labeled formulae are realized as hyperlinks

that display the formula referenced in a small auxiliary window; etc. Using hyperlinks, a reader of

Theorema proofs can avoid back and forth jumps in the proof, in order to understand the validity

of a specific step. Still, reading and understanding linear proofs is difficult even for proofs

generated by the typical Theorema provers.

There are few automated proving assistants that provide tools for studying proofs (one exam-

ple is the Omega system with its interface, L:ui [Benzmueller&al:97, Siekmann&al:99]). How-

ever, even those have the problem described above, that one may have to jump to various formu-

Tools for Mathematical Theory Exploration

75

lae in the proof–tree in order to check or understand the validity of a specific step. Focus windows

provide a means to overcome this problem.

The technique we will describe below can be can be also viewed as a systematic extension of

the idea of hyperlink labels in proofs. It can be implemented for any proving assistant system

using proofs as formal objects, namely, a data structure which contains, for each proof step,

information on which formulae are used and which formulae are produced in the given step. This

means that also systems that do only proof checking (like Mizar [Miz]) could make use of this

technique.

5.2 The Main Idea

The idea of focus windows was introduced in [Buchberger:00a]: Starting from the proof objects,

one analyzes, in each of its proof steps, which formulae are used and which ones are produced in

the given step. One then composes a window containing exactly these formulae for each proof

step. The windows also contain buttons for moving to the next window in the proof. In proof

situations that branch to two or more proof situations the subsequent windows are displayed in

contracted form and the user can decide which one to open next. In addition, each focus window

contains a small simplified image of the entire proof–tree so that the user can also jump to a

randomly chosen proof situation in the proof–tree.

The data structure of Theorema proof objects was carefully designed in order to give easy

access to the formulae relevant in each proof step. Also, the data structure for Theorema proof

objects leaves some slots open for adding additional information which is relevant for certain

prove methods or certain proof presentation methods. We recall here that a proof situation in a

proof generated by one of the Theorema provers consists of the current proof goal and the current

knowledge base (definitions, axioms, known theorems, and temporary assumptions). In one proof

step, applying an inference will generate new formulae in the knowledge base or a new goal or

both. In one proof step, typically, a prover uses only a few formulae in the knowledge base. We

will call them "relevant formulae".

In a first phase, for the proof step being inspected, we display in the corresponding focus

window the current goal and the relevant formulae. We do not immediately show the result of the

next proof step but give the user time to study and understand the proof situation and think of a

possible follow–up. Upon clicking, we display in addition to the current information in the focus

window, the new goal and/or the new formulae in the knowledge base. When clicking the next

button, we then display the focus window for the next proof situation (next proof step).

Tools for Mathematical Theory Exploration

76

Another way of describing the focus window technique is to think about a long proof written

on a sequence of blackboards. Now, for reading and understanding the proof, you equip the reader

with a magic glass (a "focus glass") that, in each proof step, concentrates all the relevant formulae

on one blackboard and erases all the other formulae so that the reader, in each proof step, has all

the relevant information in front of his eyes and is not distracted by any irrelevant material.

Note that this technique does not depend on the particular inference rule but on its application

results. For example, if polynomial simplification or even advanced techniques like cylindric

algebraic decomposition or symbolic summation are black–box inference rules in the prover

applied to a particular proof problem then, for each proof step, the corresponding focus window

will only show the proof goal and the relevant formulae before applying the special inference rule

and the formulae produced by this inference rule and will not show any internal details of the

execution of the inference rule.

5.3 Implementation of Focus Windows

The proof presentation technique shortly described above should not be difficult to implement in

any existing automated prover. The main pre–requisite is that the data structure for the proof

object, for each proof step, contains sufficient information for extracting the formulae used and

inferred in the particular step. The Focus Windows technique can then be described, roughly, by

the following pseudo–algorithm:

Step 1: phase = initial;

current_position = root_position;

ShowWindow[phase, current_position, proof_object];

Step 2: while user_action is not done

 if phase is initial or transformation

 then phase = attention;

 else phase = transformation;

 end if;

 current_position =

 DetermineCurrentPosition[current_position,

 user_action, proof_object];

 ShowWindow[phase, current_position, proof_object];

end while;

Step 3: stop.

Note that the value of 'proof_object' does not change during the execution of the algorithm: The

proof object is the essential input of the algorithm. The variables used in this pseudo–algorithm

are 'phase', 'current_position' and 'user_action'. The variable 'phase' may have the values 'initial',

'attention', or 'transformation '. The 'current_position' points to the current proof step in the proof

object is. The values 'current_position' may depend on the exact data structure of the proof

Tools for Mathematical Theory Exploration

77

objects. We assume here that the proof object is in a tree–like form but the algorithm may be

easily adapted to any other data structure. The 'user_action' variable is needed to take in the user

actions (button clicks, keys on the keyboard, words typed in at the prompter, etc.). The constants

appearing in the algorithm are in italics.

The core of the algorithm is the ShowWindow function. At the very beginning, it is called with

the initializing parameters initial and root_position. In the initial phase, we generate the initial

focus window that contains the goal that has to be proved and the available knowledge (axioms,

definitions, lemmata, temporary assumptions, etc.). When the user takes an action three main steps

are executed:

1. Depending on the actual phase, the type of the next phase is set.

2. Depending on the 'current_position' and the 'user_action', the algorithm determines the

position in the proof object of the next proof step on which we want to focus on (Deter-

mineCurrentPosition).

3. The focus window corresponding to the new 'current_position' and 'phase' is shown.

The front–end of Mathematica provides convenient programming tools for active objects that,

basically, allow to apply the usual Mathematica programming style also for programming

man–machine interfaces. We use this facility for entering the information in the action buttons and

the schematic proof–tree representation into the ShowWindow function. We give some more

details about this below.

The user actions are taken in via the buttons 'Next', 'Previous' and 'Done' in the navigation area

and the schematic proof–tree presentation whose nodes are, in fact, also realized as buttons. The

schematic proof–tree representation is a static object in the sense that the data attached to its node

buttons do not change during the presentation of the proof by the focus window viewer. In

contrast, the buttons 'Next' and 'Previous' are dynamic objects, whose information is used in the

following way:

Suppose that the focus window is presenting the Attention Window of some node n of the

proof–tree. Then the data attached to the 'Previous' button is a link to the parent node of n. The

data attached to the 'Next' button is a link to the node n because when pressing it we want to bring

up the Transformation Window of the same node n.

Suppose that the focus window is presenting the Transformation Window of some node n of

the proof–tree. Note that such a window may have several branches. Then the data attached to the

'Previous' button in each of the branches is a link to the node n because when pressing it we want

to bring up the Attention Window of the same node n. The data attached to the 'Next' button in

each of the branches is a link to the corresponding child node of n.

Tools for Mathematical Theory Exploration

78

5.4 Using Focus Windows

We will present now the focus windows technique using the example we gave in the beginning of

this chapter. We recall how a typical call of a Theorema prover looks like:

Prove #Lemma#"Goal"', using � KnowledgeBase,

by � SomeProver, ProverOptions � �options for the prover�,
showBy � SomeDisplayer'

The user of Theorema can control both the work of ’SomeProver’ by setting the ’ProverOptions’

and also the way the proof is presented by setting the ’showBy’ options. By default, Theorema will

present the proof in a new Mathematica notebook as a linear proof text. This happens when the

’showBy’ option is not given in the ’Prove’ call. By setting ’showBy � FocusWindow’ the focus

window display method will be invoked. For the example given at the beginning of the chapter the

following command generates the focus window presentation of the same proof:

Prove#Lemma#"factor set is non empty set of subsets"', using � ; ...�"user given knowledge" ... ?,
by � SetTheoryPCSProver, showBy � FocusWindow +
 , other options
/',

We mentioned earlier, that the focus window method presents proofs in a step–wise manner. More

specifically, each step of the proof will be shown to the user in two phases: the attention phase and

the transformation phase with a corresponding Attention Window and a Transformation Window.

Each of these windows has

Ê a "goal area" in which the current goals are shown,

Ê an "assumptions area" in which the "relevant" assumptions are shown,

Ê a "proof–tree area" in which the entire proof–tree is displayed in a schematic, simplified

form,

Ê an area that presents all the assumptions that are available (the "all assumptions area"),

Ê and a "navigation area" that allows the user navigate in the proof by clicking on various

buttons.

Note that the focus windows tool starts from existing proof objects and just implements a particu-

lar way of presenting proof objects. The focus window tool is not a prove method! The focus

windows technique does not assert that each of the proof steps should be "easily" verifiable but,

rather, it just gives a method to keep track of the relevant information used in each proof step a

particular prover generates. What is considered to be a proof step is determined by the proving

algorithm.

Tools for Mathematical Theory Exploration

79

When calling the ’Prove’ command with the ’showBy’ option set to ’FocusWindows’ the user is,

firstly, faced with a window that contains the Initial Proof Situation, i.e. the goal that is to be

proved and the user given knowledge. In our example:

Prove#Lemma#"factor set is non empty set of subsets"',
using � ;Definition#"factor set"', Definition#"class"', Definition#"is relation"',

Definition#"is reflexive"', Definition#"is subset set"', Definition#"is all non empty"'?,
by � SetTheoryPCSProver, showBy � FocusWindows ,

transformBy � ProofSimplifier, TransformerOptions � �
branches � Proved, steps � Useful� , ProverOptions �

�
GRWTarget � �

"goal", "kb" � , UseCyclicRules � True, RWExistentialGoal � True, DisableProver � �
STC, PND � � , SearchDepth � 50'

and the user sees now a window as the one below (note the five areas we described earlier):

Figure 5.1: Initial Proof Situation.

After pressing the ’Next’ button a few times, we are faced with an Attention Window (Figure 5.2)

that shows us the current goal formula (2.1). The assumption area shows the definitions of the

functions ’class’ and 'factor–set' and of the predicate 'is–all–nonempty'. The area containing the

schematic representation of the proof–tree and the area containing all the assumptions that are

currently available are shown in closed cells. If the user is interested to see the contents of these

cells it has to double–click on the respective cell brackets. (The organization of notebooks using

cells is a standard Mathematica feature, see [Wolfram:03]). Note that, following the basic philoso-

phy of the focus windows technique, the user will normally not want to see all assumptions but

only the ones that are relevant for the current proof step, which are exactly the ones shown in the

assumptions area.

Tools for Mathematical Theory Exploration

80

Figure 5.2: Attention Window.

A click on the ’Next’ button will bring up the Transformation Window like in Figure 5.3. The

inference step applied in the current proof step rewrote the goal using the three definitions in the

assumptions area - and no other formulae of the current knowledge base! The result of rewriting

the goal is now displayed as formula (3) under the heading ’New goal:’. Formula (2.1) is now an

’Old goal’. No new assumptions were inferred in this step. Therefore, in this example, the assump-

tions area does not contain any new formulae.

Figure 5.3 Transformation window.

Pressing the ’Previous’ button now will take the user back to the Attention Window. Clicking

’Previous’ again, the user will see the Transformation Window of the parent proof step in the

proof–tree. One may go back and forth as many times as it needs to understand the proof com-

Tools for Mathematical Theory Exploration

81

pletely. Here, by "understanding" we mean "verifying the correctness" of each proof step and

"verifying the completeness of the sequence of proof steps".

Figure 5.4: Attention Window before a branching node.

Now let us look closer at the Attention Window in Figure 5.4. The current goal – formula (2)

– is a conjunction of two statements, each of them needs to be proved. Therefore, the proof will

split into two branches. The Transformation Window that comes up after clicking 'Next' contains

now two closed cells, one for each sub–proof. Each of the cells contains its goal area, assumption

area, navigation button area and all–assumption area. The user can continue on the branch she

wishes by clicking on the 'Next' button of the corresponding branch. There is, however, only one

proof–tree area in this window. Figure 5.5. presents this window, where we have opened the cell

corresponding to the first branch of the proof and the cell containing the schematic representation

of the proof–tree. The focused node, marked with a square, has two sub–trees which correspond to

the two sub–proofs that follow.

Tools for Mathematical Theory Exploration

82

Figure 5.5: Transformation Window. First branch cell and schematic tree cells are open.

The simplified proof representation in the proof–tree area is not only a graphical representation

but it also has some functionality. The nodes of the simplified tree representation are in

one–to–one correspondence with the nodes of the proof object. The node corresponding to the

proof step that is currently seen in either the Attention or the Transformation Window is

high–lighted. Also, clicking any of these nodes will cause the corresponding focus window to be

displayed, allowing the user to read the proof in the order she prefers. (In contrast, using the

buttons in the navigation, the proof can be read "forward" and "backward" in the sequence

generated by the prover.)

The tool can, of course, be applied also to incorrect proofs. In particular it can be used to

check the proofs generated by theorem provers that are under construction and not yet fully tested.

Checking the proofs by the focus window technique makes it much easier to detect errors in the

provers. Thus, the focus window tool is also a useful research instrument for people working in

the design and implementation of automated theorem provers.

Starting the Focus Windows presentation style with support for checking provers that are in

the implementation phase is done by using the 'FocusDebug' option of the 'FocusWindows' proof

displayer. More specifically:

Prove#Lemma#"factor set is non empty set of subsets"',
using � ; ... user given knowledge ... ?, by � SetTheoryPCSProver,

showBy� FocusWindows , ShowOptions � �FocusDebug � True� +
, other options
/'

Now, the windows in the Focus Windows presentation will have four additional buttons in the

lower part. These buttons allow the user to inspect parts of the underlying proof object. Since this

Tools for Mathematical Theory Exploration

83

option is meant for the use of the Theorema developers, the information shown when pressing

these buttons is in raw, Theorema internal format. The four buttons will display the Theorema

internal form of the formulae (goals and assumptions), the local context that the prover stored in

the proof object while proving, and information about the inference rule that was applied at a

certain step. Figure 5.6. presents a focus window with the additional four buttons, and Figure 5.7.

presents the information that is displayed when pressing these buttons.

Figure 5.6: Attention Window with buttons for prover–check support.

Figure 5.7: Proof step information in Theorema internal form.

Tools for Mathematical Theory Exploration

84

The proof information shown by the window in Figure 5.7. represents the proof information that is

stored in the proof object for the proof step on which we put the focus: the name of the inference

rule that was applied ("GoalRewriting"), the labels of the formulae used, the formulae that were

generated at this step, and, for this proof step, it shows how the goal formula (2.1) is transformed

by sequentially applying the definitions of ’factor set’, ’class’, and at last ’all non empty’. (Different

provers may store different proof information in the proof object, depending on the inference rules

they apply.)

Comparing the Focus Windows presentation style with the linear proof presentation of the

same proof we made the observation that for small, one–page proofs focus windows viewing

technique generates presentation overhead that distracts the reader from the proof itself, rather

than help him. For longer proofs, though, it increases the possibility of verifying the proofs

drastically. We also observed that linear presentations are helpful for obtaining a quick overview

on the overall flow of the proof whereas focus window presentations support the process of

verifying proofs. Therefore, naturally, we offer the reader of Theorema proofs a possibility to

combine these two styles. As a result, when clicking a formula label in a linear proof text, the

focus window will open showing the relevant formulae of the proof step in which the formula was

generated.

Tools for Mathematical Theory Exploration

85

6 6. A Literature Survey

We will present, now, a review of the existing research that is relevant for the work presented

in the previous chapters.

6.1 Label Management and MKM Systems

It seems that label management in the sense specified in Chapter 2 is not an explicit goal in the

current Mathematical Knowledge Management systems. However, work on annotation of

(collections of) formulae and formula editing has an overlap with and relevance for the work

presented here. We give a review on the pertinent papers.

Starting from the display of formulae as graphics in internet document, working W3C issued

an MathML recommendation, [MathML], for displaying and communicating formulae by means

different from images. Being an application of XML, MathML benefits of the existing tools that

manipulate XML files. Though it does offer some semantics of the symbols in the mathematical

formulae, the set of these symbols is too restricted when compared to those used by working

mathematicians. To ameliorate this situation projects like OpenMath [Caprotti&Carlisle:99] and

OMDoc [Kohlhase:00] emerged. The OpenMath standard concentrates on representing mathemati-

cal expressions together with their semantics, allowing them to be exchanged between computer

programs, stored in databases, or published on the world wide web. At a first glance, one can view

OpenMath as extending the MathML capabilities by using "content dictionaries" where mathemati-

cal symbols are defined syntactically and semantically. OMDoc is an extension of OpenMath and

MathML, adding capabilities of describing the mathematical context of the OpenMath objects

used.

A drawback of the standards mentioned above is that the coherence of the different documents

(e.g. content dictionaries) is not automatically checked. This has to be done by a human. This task

can be rather difficult because the representation formats are not human oriented. This representa-

tion confronts us with another issue, which we intend to address in this paper: publishing mathemat-

ics using these representations is not attractive for the everyday mathematician. There is ongoing

work to improve this state of facts, like the work described in [Goguadze&Palomo:03] and the

one in [Kohlhase:04].

Tools for Mathematical Theory Exploration

86

Furthermore, to our knowledge at the time of writing, systems that use and/or manage big

collection of documents with mathematical content do not make use of a document editing

environment like the one we are about to describe. Within most of the proving systems, the users

are typing their documents in an Emacs–based editor or something similar, see for example, Mizar

[Miz], HOL [Gordon&Melham:93, Hol:4], CoQ [CoQ, Bertot&Bertot:96], PVS [Owre&al:98].

Where translators are provided, the files can be stored, later, in LATEX, MathML or OpenMath

formats. In this form, documents produced by proving assistants can be included in libraries of

digital mathematics like HELM [Helm] and MBase [Kohlhase&Franke:01]. (Helm includes part

of the libraries of the proving assistants Nuprl [Constable&al:86] and CoQ [CoQ], MBase

includes libraries from Omega [Benzmueller&al:97] and TPS [Andrews&al:00]). Systems that

concentrate on representing and publishing mathematics (on the web) make use of document

translators and formulae editing tools that translate formulae and documents to different formats.

For example, the JOME OpenMath Editor [Jome] creates and manipulates OpenMath objects, and

within ActiveMath [Libbrecht&al:01], jEditOQMath is a package of tools for editing and manag-

ing documents in OMDoc format [jEdit].

6.2 Interactive Proving Systems

In general terms it is aggreed that mechanized theorem proving is about using computers to

find a formal proof [Aitken&al:98, Moten:98]. In the algorithmic tradition, mechanized proving

means employing a computer program to determine automatically the truth of a proposition by

means of mathematically justified decision procedures or some more heuristic methods

[Aitken&al:98].

A rough classification of theorem provers divides them in automatic provers, where close to

no human assistance is needed, and interactive provers, which require human assistance in develop-

ing the proof [Moten:98]. An extensive list of both automatic and interactive provers can be

inspected at [ATPs:99]. Though the last update was made mid 1999, the list broadly covers the

available systems and tools in the area of mechanized reasoning at the time of writing this thesis.

A concise historical overview of interactive systems is given in [Nipkow&Reif:98]. Among the

first interactive theorem provers developed are Automath [deBruijn:80] and Stanford LCF

[Milner:72]. The LCF paradigm described by Milner was an ancestor of Endinburgh LCF

[Gordon&al:79], Cambridge LCF [Paulson:87] and other currenty day interactive theorem

provers. Among them Isabelle [Paulson:94], HOL [Gordon&Melham:93], CoQ [CoQ], Nuprl

[Constable&al:86] (for Constructive Type Theory). In the 1990s new systems, using different

kinds of logics, have been implemented: PVS [Owre&al:98], ACL2 [Kaufmann&Moore:97],

Omega [Benzmueller&al:97], IMPS [Farmer&al:92, Farmer&al:96], LEGO [Luo&Pollack:92].

We will briefly describe now some of the above mentioned interactive provers; for descriptions of

the others we direct the reader to the already mentioned references.

The HOL System, now at version 4, is an environment for interactive theorem proving in

higher–order logic. Its most outstanding feature is its high degree of programmability through the

Tools for Mathematical Theory Exploration

87

meta–language ML [Hol:4]. The system has a wide variety of uses from formalizing pure mathe-

matics to verification of industrial hardware. In his PhD thesis, Harrison [Harrison:98] has

formalized and integrated proving over real numbers into HOL.

Nuprl is a computer system which supports the interactive creation of proofs, formulas, and

terms in a formal theory of mathematics [Constable&al:86]. Based on Martin Löf type theory, it is

a system for implementing mathematics. The theories expressed in the Nuprl language are sensi-

tive to the computational meaning of terms, assertions and proofs, and the system can carry out

the actions used to define that computational meaning.

OMEGA is an interactive proof development system. The system has two main components: a

proof planner, and an integrated collection of tools for formulating problems, proving subprob-

lems, and proof presentation [Benzmueller&al:97]. L:ui is an interface for Omega which com-

bines features for graphical display of proofs as a graph, hypertext facilities for term browsing,

proof and proof plan presentation in natural language. It also has an editor for adding and maintain-

ing the knowledge base [Siekmann&al:99].

XBarnacle is a flexible graphical user interface to the Clam and OClam proof planners

[Bundy&al:90, Richardson&al:98]. It allows the user to interact with the provers using a graphical

hierarchical tree display [Lowe:97]. Among the interactions accepted are selecting nodes in the

tree, cutting parts of the tree, displaying proof status and proof situations.

CoQ is a proof assistant for a Logical Framework known as the Calculus of Inductive Construc-

tions [Bertot&Castéran:04]. It allows the interactive construction of formal proofs, and also the

manipulation of functional programs. A variety of user interfaces are provided for it: CoqIde, a

graphical user interface based on gtk; Pcoq, a graphical user–interface in Java; CtCoq developed

following a general approach for building user–interfaces for theorem provers, and ProofGeneral.

Lately, an integration of Coq into TeXmacs is also available (see [CoQ].)

Proof General is, actually, more than an interface for CoQ. It is a generic tool for proof

development that provides a uniform interface and interaction mechanism for different proof

assistants [Aspinall:00]. ProofGeneral is oriented towards interactive provers where the

user–system interaction consists of a dialog via a command interpreter (shell). It can be used with

LEGO, Isabelle, Coq, and, experimentally, with HOL, ACL2 and OClam.

6.3 Proof Simplification

In [Vasaru–Dupré:00, Chapter 7] the author describes a technique by which the user could

determine the amount of proof details generated and shown. The option 'presentation | <value>'

of the 'Prove' command controlled the natural language representation of a proof in a very similar

way with the 'branches' simplification [Chapter 4, Section 4.2.1].

Tools for Mathematical Theory Exploration

88

Proof simplification can be, also, explained as follows: given a proof object in an internal

form, we process it in certain ways by moving around, cutting, and combining proof steps. The

result is then presented to the user in a natural language style. The natural language presentation is

generated from the information existing in the proof object.

Presenting proofs in natural language is a subject of interest in other systems, too. In

[Coscoy:97] the author describes a procedure that annotates CoQ proofs and then generates an

english text of the proof. A verbalization of Nuprl proofs, described in [Holland–Minkely&al:99],

uses a language generator that has two components: a content planner which selects the informa-

tion that should be included in the text, and a linguistinc component that maps concepts to words

and builds sentences. Both systems, though, do not perform any proof transformations, but

directly generate the natural language presentation. The presentations cannot be done at different

levels of detail.

In PROVERB [Huang&Fiedler:96], the proof is first transformed to an adequate level of

abstraction in which certain sequences of low–level proof steps are replaced by one higher level

proof step. The abstracted proof is, then, processed and a natural language presentation is gener-

ated. PROVERB is embedded in the environment of the interactive prover Omega

[Benzmueller&al:97]. Proof presentations generated by PROVERB cannot be depicted at differ-

ent levels of detail.

Drawing on results from cognitive sciences, Fiedler has developed an interactive proof

explanation system, P.rex [Fiedler:01a, Fiedler:01b]. The system adapts its explanations to the

level of the user by flexible reactions to his questions or requests. It is provided that the proofs are

represented such that various levels of abstraction (i.e. detail) are made explicit. P.rex can be

connected with different theorem provers and it has been used to present Omega

[Benzmueller&al:97] and Twelfe [Pfenning&Schürmann:99] proofs.

In [Alexoudi&al:04] Alexoudi desribes ClamNL, a system that produces natural language

presentation at various levels of detail of the inductive proofs generated by the Clam proof

planner. ClamNL has three components: an abstraction controller, a structure planner, and a

natural language generator. The abstraction controller enables the user–proof planner interaction.

6.4 Focus Windows

To our knowledge, the focus windows proof presentation tecnhinque has not been explored in the

existing literature. We emphasise, again, that the focus windows tool, as described and imple-

mented by us, is not a proof method: the proofs presented using focus windows are already

generated by the provers of the Theorema system.

A reasoning method that makes use of windows with a focus set on formulae is presented in

[Grundy:96]. Grundy generalizes the window inference system shown in [Robinson&Staples:93].

Tools for Mathematical Theory Exploration

89

A window inference system, as proposed by Robinson and Staples, allows users to transform an

expression by restricting attention to a subexpression and transforming it, leaving the surroundings

of the subexpression unchanged. The reasoning process, in this case, is conducted with a stack of

windows, where each window has a focus (with the expression to be transformed), a set of formu-

lae that are assumed in the context of the window, and a relation between the focus and any

expression it may be transformed to, relation that has to be preserved. The objective of a proof in

this style is to transform the focus of the window on the bottom of the stack until it has some

desired property. [Grundy:96]. A window inference tool has been implemented in the frame of the

HOL system [Grundy:91].

Tools for Mathematical Theory Exploration

90

6 References

[Aitken&al:98] J. S. Aitken and P. Gray and T. Melham and M. Thomas. Interactive

Theorem Proving: An Empirical Study of User Activity. Special Edition of Journal Of Sym-

bolic Computation, Graphical, 25(2):263–284, February 1998.

[Allen&al:02] S. Allen, M. Bickford, R. Constable, R. Eaton, C. Kreitz, L. Lorigo. FDL: A

Prototype Formal Digital Library. Cornell University, 2002. http://www.nuprl.org/-

FDLproject/02cucs-fdl.html.

[Alexoudi&al:04] M. Alexoudi, C. Zinn, A. Bundy. English Summaries of Mathematical

Proofs. In Proceedings of Computer–Supported Mathematical Theory Development. Work-

shop 7 at Second International Joint Conference on Automated Reasoning. University College

Cork, Cork, Ireland. To appear as a RISC report.

[Andrews&al:00] P. B. Andrews, M. Bishop, C. E. Brown. System Description: TPS: A

Theorem Proving System for Type Theory. In D. McAllester, editor, Automated Deduction -

CADE-17; Proceedings of the 17th International Conference on Automated Deduction,

volume 1831 of Lecture Notes in Artificial Intelligence, pages 164–169, Pittsburgh, PA, USA,

Springer-Verlag, 2000.

[Asperti&al:03] A. Asperti, B. Buchberger, J.H. Davenport, James Harold (Eds.) Proceed-

ings of the Second International Conference, MKM 2003 Bertinoro, Italy, February 16-18,

2003 Series: Lecture Notes in Computer Science, Vol. 2594, 2003, X, 225 p. Also available

online. Softcover ISBN: 3-540-00568-4.

[Aspinall:00] D. Aspinall. Proof General: A Generic Tool for Proof Development. In S.

Graf, M. Schwartzbach, editors, Tools and Algorithms for the Construction and Analysis of

Systems: 6th International Conference, TACAS 2000, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2000, Berlin, Germany, March/-

April 2000, Lecture Notes in Computer Science, volume 1785, pp. 38–42. Springer Verlag

Heidelberg, 2000. ISSN: 0302-9743

[ATPs:99] A Database of Mechanized Reasoning Systems. http://www-

formal.stanford.edu/clt/ARS/systems.html

Tools for Mathematical Theory Exploration

91

[Benzmueller&al:97] C. Benzmüller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang,

M. Kerber, M. Kohlhase, K. Konrad, A. Meier, E. Melis, W. Schaarschmidt, J. Siekmann, V.

Sorge. OMEGA: Towards a Mathematical Assistant. In W. McCune, editor, Automated

Deduction - CADE 14, volume 1249 of Lecture Notes in Artificial Intelligence, Springer-Ver-

lag, July 1997. Townsville, North Queensland, Australia.

[Bertot&Bertot:96] J. Bertot, Y. Bertot. Ctcoq: a System Presentation. In M. A. McRob-

bie, J. K. Slaney, editors, Automated Deduction - CADE 13, New Brunswick, NJ, USA, July

30 - August 3, 1996., volume 1104 of Lecture Notes in Computer Science, pp 231–234. ISBN:

3-540-61511-3

[Bertot&Castéran:04] Y. Bertot, P. Castéran. Interactive Theorem Proving and Program

Development. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Com-

puter Science. An EATCS Series, Springer Verlag 2004. ISBN: 3-540-20854-2.

[deBruijn:80] N. G. de Bruijn. A Survey of the Project AUTOMATH. In J. R. Hinley, J.P.

Seldin, editor, Essyas on Combinatory Logic, Lambda Calculus and Formalism. pp. 580–606.

Academic Press London.

[Buchberger:96a] B. Buchberger. Symbolic Computation: Computer Algebra and Logic.

In F. Baader and K.U. Schulz, editors, FroCoS: Frontiers of Combined Systems, Applied

Logic Series, pages 193–220, Kluwer Academic Press, 1996. Invited talk at the FroCoS

InProceedings in Munich, March 26-29, 1996. Also available as RISC Technical Report

96–36.

[Buchberger:96b] B. Buchberger. Proving, Solving, Computing. In T.Ida,Y,Guo (eds.):

Proceedings of Multiparadigm Logic Programming Conference, Bonn, Germany, Springer

Vienna – New York. September, 6 1996. Invited talk.

[Buchberger:96c] B. Buchberger. Using Mathematica for Doing Simple Mathematical

Proofs. In 4th International Mathematica User's Conference. Tokyo, Wolfram Media Publish-

ing, November 1996.

[Buchberger:97] B. Buchberger. Mathematica: A System for Doing Mathematics by

Computer?. In A. Miola, M. Temperini (eds.): Advances in the Design of Symbolic Computa-

tion Systems, Springer Vienna - New York, 1997, pp. 2-20. Invited talk at the DISCO'93

Conference, Gmunden, Austria.

[Buchberger:98a] B. Buchberger. Mathematica: A System for Doing Mathematics by

Computer?. In A. Miola, M. Temperini (eds.): Advances in the Design of Symbolic Computa-

tion Systems, Springer Vienna - New York, 1997, pp. 2-20. Invited talk at the DISCO'93

Conference, Gmunden, Austria.

Tools for Mathematical Theory Exploration

92

[Buchberger:98b] B. Buchberger. Theorema: Theorem Proving for the Masses Using

Mathematica. Invited talk at the Worldwide Mathematica Conference, Chicago, USA, June

1998.

[Buchberger:99] B. Buchberger. Theorem Proving Versus Theory Exploration. Invited

talk at the Calculemus Workshop, Univ. of Trento, July 11, 1999, Italy.

[Buchberger:00a] B. Buchberger. Focus Windows Presentation: A New Approach to

Presenting Mathematical Proofs (in Automated Theorem Proving Systems). Theorema

Technical Report Research Institute for Symbolic Computation, January 30, 2000.

http://www.risc.uni-linz.ac.at/people/buchberg/downloads.html.

[Buchberger:00b] B. Buchberger. Theory Exploration with Theorema. Analele Universi-

tatii Din Timisoara, Ser. Matematica-Informatica, Vol. XXXVIII, Fasc.2, 2000, (Proceedings

of SYNASC 2000, 2nd International Workshop on Symbolic and Numeric Algorithms in

Scientific Computing, Oct. 4-6, 2000, Timisoara, Rumania, T. Jebelean, V. Negru, A. Popov-

ici eds.), pp. 9-32.

[Buchberger:01a] B. Buchberger. Theorema: A short introduction. The Mathematica

Journal, 8(2):247–252, 2001.

[Buchberger:01b] B. Buchberger. Mathematical Knowledge Management Using Theo-

rema. In [Buchberger&Caprotti:01]

[Buchberger:03a] B. Buchberger. Algorithm Invention and Verification by Lazy Thinking.

In D. Petcu, V. Negru, D. Zaharie, T. Jebelean, editors, Proceedings of SYNASC 2003 (Sym-

bolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, October 1–4,

2003), Mirton Publishing, ISBN 973–661–104–3, pp. 2–26.

[Buchberger:03b] B. Buchberger. Groebner Rings in THEOREMA: A Case Study in

Functors and Categories, SFB (Special Research Area) "Scientific Computing" Technical

Report Nr. 2003–46, Johannes Kepler University, Linz, Austria, 2003.

[Buchberger:04] B. Buchberger. Algorithm-Supported Mathematical Theory Explanation:

A Personal View and Strategy. In Proceeding of Artificial Intelligence and Symbolic Computa-

tion AISC 2004, Lecture Notes in Artificial Intelligence, RISC, Schloss Hagenberg, Austria,

Springer Verlag, September 2004.

[Buchberger&al:98] B. Buchberger, T. Jebelean, D. Vasaru: Theorema: A System for

Formal Scientific Training in Natural Language Presentation. In T. Ottmann, I. Tomek, editor,

Proceedings of ED-MEDIA / ED-TELECOM 98, Freiburg, Germany, June 20-23, 1998, pp.

174-179.

Tools for Mathematical Theory Exploration

93

[Buchberger&al:00] B. Buchberger, C. Duprè, T. Jebelean, F. Kriftner, K. Nakagawa, D.

Vasaru, W. Windsteiger. The \textitTheorema Project: A Progress Report. In M. Kerber, M.

Kohlhase, editor, Symbolic Computation and Automated Reasoning. Proceedings of CAL-

CULEMUS 2000, Symposium on the Integration of Symbolic Computation and Mechanized

Reasoning, pages 98–113, St. Andrews, Scotland, A.K. Peters, Natick, Massachusetts, August

2000. ISBN 1-56881-145-4.

[Buchberger&al:03] B. Buchberger, G. Gonnet, M. Hazewinkel. Annals of Mathematics

and Artificial Intelligence, Volume 38, Number 1–3, May 2003. Kluwer Academic Publishers,

ISSN 1012-2443.

[Buchberger&Caprotti:01] B. Buchberger,O. Caprotti. Editors of the Proceedings of the

First International Workshop on Mathematical Knowledge Management: MKM’2001 RISC,

A–4232 Schloss Hagenberg, September 24–26, 2001. ISBN 3-902276-01-0.

[Buchberger&Craciun:03] B. Buchberger, A. Craciun. Algorithm Synthesis by Lazy

Thinking: Examples and Implementation in Theorema. In F. Kamareddine, editor, Proceed-

ings of the Mathematical Knowledge Management Workshop, Edinburgh, Nov. 25, 2003,

volume 93 of Electronic Notes in Computer Science, pages 24–59, Elsevier, February 2004.

www.elsevier.com/locate/entcs. ISBN 044451290X.

[Buchberger&Vasaru:97] B.Buchberger,D.Vasaru.Theorema:The Induction Prover for

Lists.In B.Buchberger,T.Ida,D.Vasaru,editors,Proceedings of the First International Theorema

Workshop,June 9-10,1997,RISC,Hagenberg,Austria,RISC Report 97-20.

[Bundy&al:90] A. Bundy, F. van Harmelen, C. Horn, A. Smaill. The Oyster–Clam Sys-

tem. In M.E. Stickel, editor, Proceedings of the 10th International Conference on Automated

Deduction, Lecture Notes in Artificial Intelligence, volume 449, pp. 647–648, Kaiserslautern,

FRG, July 1990, Springer Verlag.

[Caprotti&Carlisle:99] O. Caprotti, D. Carlisle. OpenMath and MathML: Semantic Mark

Up for Mathematics. ACM Crossroads, ACM Press, 1999.

http://www.acm.org/crossroads/xrds6-2/openmath.html. Online paper.

[CfPMkm:01] Call for Papers: First International Workshop on Mathematical Knowledge

Management, RISC, A-4232 Schloss Hagenberg, September 24-26, 2001. http://www.risc.uni-

linz.ac.at/institute/conferences/MKM2001/call_for_papers.html

[ChanYeung:00] Kam-Fai Chan, Dit-Yan Yeung. Mathematical expression recognition: a

survey. International Journal on Document Analysis and Recognition, 3(1):3–15, August

2000. citeseer.ist.psu.edu/Article/chan00mathematical.html.

[Constable&al:86] R. L. Constable, S. F. Allen, H.M.Bromley, W. R. Cleaveland, J. F.

Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P.Mendler, P. Panangadenden, J. T.

Tools for Mathematical Theory Exploration

94

Sasaki, S. F.Smith. Implementing Mathematics with the Nuprl Development System, Prentice-

Hall, Enlgewood Cliffs, NJ, 1986.

[CoQ] The Coq proof assistant. http://coq.inria.fr/coq-eng.html.

[Coscoy:97] Y. Coscoy. A Natural Language Explanation for Formal Proofs. In. C.

Retoré, editor, Logical Aspects of Computational Linguistics: First International Conference,

LACL’96. Nancy, France, September 1996. Selected Papers. Lecture Notes in Computer

Science, volume 1328, pp. 149–167. Springer Verlag Heidelberg. ISSN: 0302-9743

[Farmer&al:92] William M. Farmer, Joshua D. Guttman, F. Javier Thayer. IMPS: System

Description. In D. Kapur, editor, Automated Deduction - CADE-11, volume 607 of Lecture

Notes in Computer Science, pages 701–705, Springer Verlag, 1992.

[Farmer&al:96] William M. Farmer, Joshua D. Guttman, F. Javier Thayer Fabrega. IMPS:

An Updated System Description. In Automated Deduction - Cade-13, volume 1104 of Lecture

Notes in Computer Science, pages 298–302. Springer-Verlag, Berlin, 1996.

[Fiedler:01a] A. Fiedler. Dialog–Driven Adaptation of Explanations of Proofs. In B.

Nebel, editor, Proceedings of the 17th International Joint Conference on Artificial Intelli-

gence (IJCAI), Seattle, WA, USA. pp 1295–1300, 2001.

[Fiedler:01b] A. Fiedler. P.Rex: An Interactive Proof Explainer. In R.Gorè, A. Leitsch, T.

Nipkow, editor, Automated Reasoning - 1st International Joint Conference, IJCAR. Siena,

Italy, 2001. Lecture Notes in Artificial Intelligence, volume 2083, pages 416–420, Springer

Verlag. ISSN: 0302-9743.

[Gabbay:90] D. Gabbay. Labelled Deductive Systems, Part II. CIS-Bericht-90-22 90-22,

Centrum für Informations- und Sprachverarbeitung, Universität München, CIS - Universität

München, December 1990.

[Goguadze&Palomo:03] G. Goguadze, A. Gonzalez Palomo. Adapting Mainstream

Editors for Semantic Authoring of Mathematics. Presented at the Mathematical Knowledge

Management Symposium, November 2003, Heriot-Watt University, Edinburgh, Scotland.

[Gordon&al:79] M. Gordon, R. Milner, C. Wadsworth. Edinburgh LCF: A Mechanized

Logic of Computation. Lecture Notes in Computer Science LNCS, volume 78, Springer–Ver-

lag, Berlin, 1979.

[Gordon&Melham:93] M. J. C. Gordon, T. F. Melham. Introduction to HOL: A Theorem

Proving Environment for Higher Order Reasoning, Cambridge, 1993

[Grundy:91] J. Grundy. Window Inference in the HOL System. In M. Archer, J. J. Joyce,

K. N. Levitt, P. J. Windley, editor, Proceedings of the International Workshop on the HOL

Tools for Mathematical Theory Exploration

95

Theorem Proving System and Its Applications. August, 1991, pp. 177–189. University of

California at Davis. IEEE Computer Society Press.

[Grundy:96] Jim Grundy. Transformational Hierarchical Reasoning. The Computer

Journal, 39(4):291–302, May 1996.

[Harrison:98] J. Harrison. Theorem Proving with the Real Numbers, Springer Verlag,

1998. PhD Thesis.

[Helm] Helm: Hypertextual Electronic Library of Mathematics. http://helm.cs.unibo.it/.

[Hol:4] HOL 4 homepage: http://hol.sourceforge.net/

[Holland–Minkley&al:99] A. M. Holland-Minkley, R. Barzilay, R. L. Constable. Verbaliza-

tion of High-Level Formal Proofs. In Proceedings of Sixteenth National Conference on

Artificial Intelligence, July 18-22, 1999, Orlando, Florida. pp. 277-284, 1999.

[Huang&Fiedler:96] X. Huang, A. Fiedler. Presenting machine-found proofs. In M.

McRobbie, J. Slaney, editor, Proc.13th Conference on Automated Deduction, New Brunswick,

NJ, USA, Lecture Notes in Artificial Intelligence, volume 1104, pp. 221–225, Springer-Ver-

lag, 1996.

[jEdit] jEditOQMath Tools Package. http://www.activemath.org/projects/jEditOQMath/.

[Jome] JOME: Java OpenMath Editor. http://mainline.essi.fr/wiki/bin/view/Jome/Web -

Home. Written by Laurent Dirat.

[Kaufmann&Moore:97] M. Kaufmann, J. S. Moore. An Industrial Strength Theorem

Prover for a Logic Based on Common Lisp. In IEEE Transactions on Software Engineering,

Volume 23, Issue 4, April 1997, pp. 203–213. IEEE Press Piscataway, NJ, USA.

ISSN:0098-5589.

[Kohlhase:00] M. Kohlhase. OMDoc: An Infrastructure for OpenMath Content Dictionary

Information. ACM SIGSAM Bulletin, 34(2):43–48, 2000.

[Kohlhase:04] A. Kohlhase, M. Kohlhase. CPoint: Dissolving the Author's Dilemma. In

A. Asperti, G. Bancerek, A. Trybulec, editors, Proceedings of Mathematical Knowledge

Management, Third International Conference, MKM 2004, volume 3119 of Lecture Notes in

Computer Science, Springer-Verlag. To appear.

[Kohlhase&Franke:01] M. Kohlhase, A. Franke. MBase: Representing Knowledge and

Context for the Integration of Mathematical Software Systems. Journal of Symbolic Computa-

tion, 23(4):365–402, 2001.

Tools for Mathematical Theory Exploration

96

[Kossak:99] F. Kossak. An Interface for Interactive Proving with the Mathematical

Software System Theorema. Fachhochschule Hagenberg, Austria, 1999.

[Kutsia&Nakagawa:01] T. Kutsia, K. Nakagawa. An Interface between Theorema and

External Automated Deduction Systems. In S. Linton, R. Sebastiani, editor, Proceedings of 9th

Symposium on the Integration of Symbolic Computation and Mechanized Reasoning, pages

178–182, Siena, Italy, June 2001.

[Libbrecht&al:01] P. Libbrecht, E. Melis, C. Ullrich. The ActiveMath Learning Environ-

ment: System Description. In Calculemus Workshop at IJCAR, pages 173–177, 2001.

[Lowe:97] H. Lowe. The Use of Theorem Provers in the Teaching and Practice of Formal

Methods. In G. O'Regan and S. Flynn, editors, Proceedings of the 1st Irish Workshop on

Formal Methods, Dublin 3-4, July 1997. Electronic Workshops in Coputing, Sringer Verlag,

Published in collaboration with the British Computer Society.

[Lozier:01] D.W. Lozier. NIST Digital Library of Mathematical Functions. In

Buchberger&al:03.

[Luo&Pollack:92] Z. Luo, R. Pollack. LEGO Proof Development System: User's Manual.

Technical report ECS-LFCS-92-211, LFCS, Computer Science Department, University of

Edinburgh.

[MathML] W3C Math Home: What is MathML?. http://www.w3.org/Math/.

[Milner:72] R. Milner. Logic for computable functions descriptions of a mahine implemen-

tation. Technical Report STAN–CS–72–288, A.I. Memo 169, Stanford University, 1972.

[Miz] The Mizar System. http://mizar.uwb.edu.pl/system/. Developed at the University of

Warsaw, directed by A. Trybulec.

[Moten:98] Roderick Moten. Just the Facts, Jack: Truths and Myths of Automated Theo-

rem Provers. Contemporary Mathematics, 252:31–48, June 1999.

[Nakagawa&Kossak:99] Koji Nakagawa and Felix Kossak. User System Interaction

Within Theorema. In Alessandro Armando and Tudor Jebelean, editor, CALCULEMUS 99,

Systems for Integrated Computation and Deduction, volume 23 of number 3 in Electronic

Notes in Theoretical Computer Science, Trento, Italy, Elsevier, July 1999. ISBN:

0444507906.

[Nipkow&Reif:98] T. Nipkow, W. Reif. An Introduction to Interactive Proving, In W.

Bibel, P.H. Schmitt, editors, Automated Deduction - A Basis for Applications. Volume II:

Systems and Implementation Techniques. pp. 3–11. Kluwer Academic Publishers, Dordrecht,

1998. ISBN 0–7923–5130–4

Tools for Mathematical Theory Exploration

97

[Owre&al:98] S. Owre, J. Rushby, N. Shankar, D. Stringer-Calvert. PVS: An Experience

Report. In D. Hutter, W. Stephan, P. Traverso, M. Ullman, editor, Applied Formal Methods -

FM-Trends 98, volume 1641 of Lecture Notes in Computer Science, pages 338–345, Springer

Verlag, Germany, 1998.

[Paulson:87] L.C. Paulson. Logic and Computation: Interactive Proof with Cambridge

LCF, volume 2 of Cambridge Tracts in Theoretical Computer Science. Cambridge University

Press, New York, NY, USA, 1987. ISBN: 0–521–34632–0

[Paulson:94] L. C. Paulson. Isabelle: A Generic Theorem Prover. Lecture Notes in

Computer Science, volume 828, Springer Verlag, September, 1994. ISBN: 0387582444.

[Pfenning&Schürmann:99] F. Pfenning, C. Schürmann. System description: Twelf – a

meta–logical framework for deductive systems. In H. Ganzinger, editor, Proceedings of the

16th International Conference on Automated Deduction (CADE-16),Trento, Italy, July 1999.

Lecture Notes in Artificial Intelligence, volume 1632, pages 202–206. Springer Verlag

Heidelberg, ISSN: 0302-9743.

[Richardson&al:98] J.D.C. Richardson, A. Smaill, I. M. Green. System description: proof

planning in higher–order logic with LambdaCLAM. In C. Kirchner, H. Kirchner, editors,

Proceedings of the 15th International Conference on Automated Deduction, Lindau, Ger-

many, July 1998, Lecture Notes in Artificial Intelligence volume 1421, Springer Verlag, 1998.

[Robinson&Staples:93] P. J. Robinson, J. Staples. Formalizing a Hierarchical Structure of

Practical Mathematical Reasoning. Journal of Logic and Computation, 3(1), pp. 47–61.

February 1993.

[Rockey:04] S. Rockey. Mathematics Digitization. at Cornell University, Mathematics

Library, http://www.library.cornell.edu/math/digitalization.php.

[Siekmann&al:99] J. Siekmann, S. Hess, C. Benzmüller, L. Cheikhrouhou, A. Fiedler, H.

Horacek, M. Kohlhase, K. Konrad, A. Meier, E. Melis, M.Pollet, V. Sorge. LOUI: Lovely

Omega User Interface. Formal Aspects of Computing, 11(3):326–342, 1999.

[Tomuta:98] Elena Tomuta. An Architecture for Combining Provers and its Applications

in the Theorema System. Research Institute for Symbolic Computation, Johannes Kepler

University, Linz, Austria, July 1998. RISC Report 98–14.

[Vasaru-Dupré:00] Daniela Vasaru-Dupré. Automated Theorem Proving by Integrating

Proving, Solving and Computing. RISC Institute, May 2000. RISC report 00–19.

[Wiedijk:01] F. Wiedijk. The Fifteen Provers of the World. Unpublished. Available

on–line at http://www.cs.kun.nl/~freek/notes/index.html

Tools for Mathematical Theory Exploration

98

[Windsteiger:01] Wolfgang Windsteiger. A Set Theory Prover in Theorema: Implementa-

tion and Practical Applications. Research Institute for Symbolic Computation, Johannes

Kepler University, Linz, Austria, May 2001. RISC Report 01–03.

[Wolfram:03] S. Wolfram. The Mathematica Book, Fifth Edition, Wolfram Media, 2003.

Tools for Mathematical Theory Exploration

99

6 Curriculum Vitae

Florina Mihaela Piroi

Personal Data

Date of Birth: 30.12.1973

Place of Birth: Slatina, Romania

Nationality: Romanian

Languages: Romanian (native), English (fluent), German (fluent)

Education

1999–2004 PhD Studies, member of Theorema group, RISC Institute, University of

Linz, Austria, under the supervision of Bruno Buchberger and Tudor Jebelean.

1998–1999 Exchange student in the frame of Socrates program, at the University of

Linz, Austria, from the University of the West, Timisoara, Romania

1997–1998 Master Studies in Distributed and Parallel Computer Science, The

University of the West, Timisoara, Romania

1992–1997 Studies in Computer Science, The University of the West, Timsoara,

Romania

1988–1992 Theoretical High School No.1 Resita, Romania

Career History

6/2003 – 7/2003: Systemtechniker, RISC, University of Linz

2/2001 – 10/2001: Researcher in SFB1302, RISC, Univ. Linz

5/1999 – 4/2000: Co-worker in EU project (4th Frame), ESPRIT 28942, "MOST:

Medical representative on-line simulation training."

10/1998 – 9/1999: Co-worker in EU project (4th Frame) Telematics Educational

Multimedia ET 4002, "COASTER: COAST extended renewal"

1997– 1999: Programmer, 'Albina SRL', Resita, Romania

Tools for Mathematical Theory Exploration

100

Research Interests

Automated theorem proving (member of the Theorema group, www.theorema.org), logic,

software and algorithm design, software development.

Theses

F. Piroi. Development of a Data Processing and Simulating Test Process Model for

Electrical Machines. The University Of The West, Timisoara, Romania. 1997, Diploma

thesis (in Romanian).

F. Piroi. Time and Objects in Databases. The University Of The West, Timisoara,

Romania. 1998, Master thesis (in Romanian).

Publications

F. Piroi, T. Jebelean. Advanced Proof Presentation in Theorema . In S. Maruster, B.

Buchberger, V. Negru, T. Jebelean., editors, Proceedings of SYNASC 01, 3rd Interna-

tional Workshop on Symbolic and Numeric Algorithms for Scientific Computing,

Timisoara, Romania, October 2–5, 2001. Annals of the University of the West, Timi-

soara, Vol. XXXIX, Special Issue, 2001, p. 181–199. ISSN 1224-970X.

F. Piroi, B. Buchberger. Focus windows: A new technique for proof presentation. In H.

Kredel, W. Seiler, editor, Proceedings of the 8th Rhine Workshop on Computer Algebra

Mannheim, Germany, March 21–22, 2002, p. 297–313. Eds. Faculty of Mathematics

and Computer Science, University of Mannheim, Germany.

F. Piroi, B. Buchberger. Focus windows: A new technique for proof presentation. In J.

Calmet, B. Benhamou, O. Caprotti, L. Henocque, and V. Sorge, editors, Artificial

Intelligence, Automated Reasoning and Symbolic Computation. Proceedings of Joint

AICS'2002 - Calculemus'2002 Conference., volume 2385 of Lecture Notes in Artificial

Intelligence, p. 290-304, Marseille, France, July 2002. Springer Verlag. ISBN

3-540-43865-3.

F. Piroi. Focus windows: A tool for automated provers. In D. Petcu, V. Negru, D.

Zaharie, and T. Jebelean, editors, Proceedings Symbolic and Numeric Algorithms for

Scientific Computing. Proceeding of SYNASC’02 International Workshop, Timisoara,

Romania, October 2002, p. 275–279. ISBN 973-585-785-5.

F. Piroi, T. Jebelean. Interactive Proving in Theorema. In Collected Abstracts of Ninth

Workshop on Automated Reasoning, AISB’02. 3-5 April, 2002. Ed. Toby Walsh. Impe-

rial College of Science, Technology and Medicine, University of London. England.

M. Marin, F. Piroi. Rule-based deduction and views in Mathematica. Technical report,

Johannes Kepler University, Linz, Spezialforschungsbereich F013, Numerical and

Symbolic Scientific Computing, TR 2003–43, October, 2003. Eds.: T. Jebelean, J.

Schicho. http://www.sfb013.uni-linz.ac.at/~sfb/reports/2003/pdf-files/sfb03-43.pdf

Tools for Mathematical Theory Exploration

101

M. Marin, F. Piroi. Deduction and Presentation in ULog. Proceedings of the Mathemati-

cal Knowledge Management Symposium Edinburgh, UK, 25 – 29 November 2003. Ed.

F. Kamareddine. Electronic Notes in Theoretical Computer Science Volume 93, 18

February 2004, Pages 161--182. ISBN 044451290X.

M. Marin, F. Piroi. Rule-Based Programming with Mathematica. Radon Institute for

Computational and Applied Mathematics, Austrian Academy of Sciences, Technical

Report No. 2004–3.

http://www.ricam.oeaw.ac.at/publications/reports/04/rep04-03.pdf

F. Piroi, B. Buchberger. An Environment for Building Mathematical Knowledge Librar-

ies. In Proceedings of Computer–Supported Mathematical Theory Development Work-

shop, International Joint Conference on Automated Reasoning '04, July 4–8, 2004 Cork,

Ireland.

M. Marin, F. Piroi. Rule-Based Programming with Mathematica. To be published in

electronic proceedings of The Sixth International Mathematical Symposium 2004,

August 1–6, Banff, Alberta, Canada.

F. Piroi, B. Buchberger. An Environment for Building Mathematical Knowledge Librar-

ies. To appear in the Proceedings of The Third International Conference on Mathemati-

cal Knowledge Management, September 2004, Bialowieza, Poland. Springer Verlag.

Tools for Mathematical Theory Exploration

102

