
Tools for Using Automated Provers 

in Mathematical Theory Exploration

Dissertation

zur Erlangung des akademischen Grades

"Doktor der technischen Wissenschaften"

Eingereicht von

Dipl.-Ing.  Florina Mihaela Piroi

Juli 2004

Erster Begutachter : o.Univ.Prof. Dr.Dr.h.c Bruno BUCHBERGER

Zweiter Begutachter : o.A.Univ.Prof .Dr.Josef Küng

Angefertigt am : Forschungsinstitut für symbolisches Rechnen

Technisch Naturwissenschaftliche Fakultät

Johannes Kepler Universität Linz



Eidesstattliche Erklärung

Ich  erkläre  an  Eides  statt,  dass  ich  die  vorliegende Dissertation  selbstständig  und ohne
fremde  Hilfe  verfasst,  andere  als  die  angegebenen  Quellen  nicht  benützt  und  die  den
benutzten  Quellen  wörtlich  oder  inhaltlich  entnommenen  Stellen  als  solche  kenntlich

gemacht habe.

Linz, Juli 2004

Florina Mihaela Piroi

Tools for Mathematical Theory Exploration

2



Abstract

The thesis is the outcome of the authoress’ work within the Theorema system. Theorema

is  designed to provide computer support  for  all  aspects  of the mathematical exploration
cycle  (including  proving,  solving,  and  computing),  in  the  frame  of  one  uniform  logic.

The purpose of the thesis was to design and implement advanced tools that assist Theo-

rema users in mathematical theory exploration.

Theorema  puts an emphasis on “systematic theory exploration”, rather than “isolated
theorem  proving”.  Extensive  mathematical  theory  explorations  usually  involve  a  large

amount of mathematical knowledge, that needs to be hierarchically structured and stored
such that it  can be easily  accessed,  used and applied at  a later  time. The tool  described
first  in  this  thesis  provides  facilities  to  build  up  and  maintain  hierarchic  structures  of

mathematical  knowledge.  It  does  this  by  composite  label  generation  and  label  manage-
ment. Based on the generated composite labels, the tool can also address, reference, and
select knowledge for later use.

An important phase in mathematical theory exploration is proving. In Theorema, this

is done by automatic applications  of inferences and heuristics  implemented in the prov-
ers of the system. The tool described next provides means to interact with the Theorema

provers  at  certain  situations  in  the  proof  generation  process.  It  allows  users  to  actively

guide  the  proof  search  process  by,  for  instance,  adding  necessary  assumptions  and
providing solving terms.

In the Theorema  system we also  underline  the attractive  presentation  of proofs.  The
proof presentation tools described in this thesis help the users of the Theorema system to

better understand proofs by providing different presentation styles and a “magic magnify-
ing glass”.

For each of the tools described usage examples are given.

Keywords:  Automated theorem proving, mathematical knowledge management, interac-
tive proving, proof simplification, focus windows, Theorema . 
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Zusammenfassung

Diese  Doktorarbeit  ist  das  Ergebnis  der  Arbeit  der  Autorin  im  Rahmen  des  Theorema

Systems.  Theorema  wurde  mit  dem  Ziel  entwickelt,  dem  Benutzer   Unterstützung  in
allen Phasen  des Explorierens mathematischer Theorien im Rahmen einer einheitlichen
Logik  zu  bieten.  Das  Ziel  dieser  Arbeit  ist  das  Entwerfen  und  Implementieren  fortge-

schrittener  Werkzeuge,  die  die  Theorema  Benutzer  beim  Explorieren  mathematischer
Theorien unterstützen sollen.

Anstelle  von Beweisen isolierter  Sätze legt Theorema  das  Hauptaugenmerk auf eine
systematische  Exploration  von  mathematischen  Theorien.  Aufwändiges  Erforschen

erfordert üblicherweise umfangreiches mathematisches Wissen, das hierarchisch strukturi-
ert  und so  gespeichert  wird,  dass  es  zu einem späteren  Zeitpunkt leicht  zugänglich und
verwendbar  ist.  Das in  dieser  Arbeit  zuerst  beschriebene  Werkzeug bietet  die  Möglich-

keit,  die  hierarchische  Struktur  mathematischen  Wissens  aufzubauen  und  zu  erhalten.
Dies  wird  erreicht,  indem  zusammengesetzte  Marken  erzeugt  und  verwaltet  werden
(“label  management”).  Basierend  auf  diesen  zusammengesetzten  Marken   kann  das

Werkzeug  also  Wissen  für  eine  spätere  Verwendung  adressieren,  referenzieren  und
auswählen.

Eine wichtige Phase bei der Erforschung mathematischer Theorien ist das Beweisen.
Dieses wird in Theorema durch automatische Anwendungen von Inferenzen und Heuris-

tiken  durchgeführt,  die  in  sogenannten  Beweisern  implementiert  sind.  Das  als  nächstes
beschriebene  Werkzeug  bietet  Möglichkeiten  zur  Interaktion  mit  den  Beweisern  in
bestimmten  Situationen  des  Beweisvorgangs.  Dieses  Werkzeug  erlaubt  es  Benutzern,

den Suchvorgang des  Beweises  aktiv zu steuern,  indem notwendige  Annahmen, Lösun-
gen für Existenzaussagen, usw. zur Verfügung gestellt werden.

Ein  weiteres  wichtiges  Augenmerk legt  Theorema  auf  die  attraktive  Gestaltung  der
Beweispräsentation.  Die hierfür entwickelten und in dieser Arbeit  beschriebenen beiden

Werkzeuge  helfen  Benutzern,  Beweise  besser  zu  verstehen.  Deren  Implementierung
basiert  auf  der  Verwendung  verschiedener  Präsentationsstile  und  der  Idee  eines
“magischen Vergrößerungsglases”.

Anschauliche  Beispiele  sollen  die  Vorteile  einer  Nutzung  der  Werkzeuge

unterstreichen.

Schlagworte:  Automatisches  Beweisen,  mathematisches  Wissensmanagement,  Interak-
tives Beweisen, Vereinfachen von Beweisen, Fokusfenster, Theorema.
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1 1. Introduction

1.1 Goal and Structure of the Thesis

Theorema is a software system that aims at providing, in the frame of one uniform logic, computer

support  to  all  aspects  of  the  mathematical  exploration  cycle:  formalizing  and  introducing  new

notions,  conjecturing  and  proving  facts  about  the  introduced  notions,  extracting algorithms from

proved  theorems,  using these  algorithms for  computing and  solving,  writing (interactive)  lecture

notes, publishing. Some of the early papers on the design of the system are [Buchberger:96a,b,c],

[Buchberger:97]  and  [Buchberger:98a,b].  A  progress  report  on  Theorema  is  given  in

[Buchberger&al:00];  more recent  papers  on the current status of the system can be found on the

website of the project (www.theorema.org).

In the Theorema  system great emphasis is put on "systematic theory exploration",  rather than

"isolated  theorem  proving".  The  systematic  theory  exploration  paradigm  was  introduced  in

[Buchberger:99].  Mathematical  theory  exploration  is  explained  by  the  concept  of  "exploration

situations",  concept  introduced  in  [Buchberger:00b].  The  paper  also  introduces  the  parameters

that  characterize  an  exploration  situation,  namely:  "known  notions",  "known facts  about  known

notions", a "new notion", "axioms that relate the new notion with the known notions", and finally,

"a class of goal propositions that completely explore the relation of the new notion with the known

notions". Various approaches to systematic, computer–supported mathematical theory exploration

are presented in [Buchberger:00b].

In this thesis we describe the implementation and usage of several tools that assist humans in

their mathematical theory exploration within the Theorema system.

Extensive mathematical theory explorations usually involve a large amount of (mathematical)

knowledge. The tools described in Chapter 2 emerged from the need to manage the mathematical

knowledge a user  develops during a theory exploration session. The tools  implement facilities to

preserve the hierarchic structure of mathematical theories by management of composite, hierarchi-

cal labels. Additionally, based on the generated composite labels, the tools give the user means to

address, reference and select mathematical knowledge for later use.

The  Theorema  system integrates proving,  computing and solving within one coherent logical

frame.  Normally,  a  call  to  solve/prove  a  conjecture  will  automatically  apply  the  inferences  and



heuristics  implemented in  the  used  prover  (or  the  combination of  provers).  The  outcome of  this

automated  process  may  not  always  be  satisfactory,  and,  hence,  interaction  of  the  user  with  the

prover, at certain situations during the proof generation, may be of help. In Chapter 3 we describe

tools that realize user–system interaction in the frame of Theorema. 

Most  automated  theorem  provers  do  not  put  emphasis  on  producing  proofs  that  are  easy  to

read  and  understand.  (A  very  telling  illustration  of  this  is  provided  by  the  collection  of  proofs

produced for the irrationality of 
r����

2  by 15 different provers in [Wiedijk:01].) From the outset, in

Theorema  we tried to stress the importance of attractive proof presentation. Theorema  proofs are

designed to resemble proofs generated by humans, i.e. they contain formulae and explanatory text

in English.  However,  what makes a  presentation of  proofs  attractive  and easy to  understand  is  a

highly subjective matter. The tools described in Chapters 4 and 5 help the users of the Theorema

system to  better  understand  proofs  by  providing  different  presentation  styles  (Chapter  4)  and  a

"magic  magnifying glass"  (Chapter  5).  While  reading  proofs  using  the  magic  magnifying glass,

called  Focus  Window  in  Chapter  5,  the  user  is  presented,  at  each  proof  step  seen  through  the

glass, with only the formulae relevant for the "magnified" step. The rest of the proof is left in the

background.

In Chapter 6 we give an account on the work that has been done up–to–date in the in the areas

of  mathematical  knowledge  management,  interactive  provers  and  natural  language  proof

presentation.

The feasibility of all the  tools described in this thesis is proven by their implementation  in the

frame  of  the  Theorema  system.  However,  the  ideas  and  techniques  behind  the  tools  are  also

applicable to other mathematical software systems.

1.2 Statement of Originality

The  work  presented  in  this  thesis  is  the  outcome  of  the  authoress'  work  within  the  Theorema

system. The  Theorema  system is  developed  at  the Research Institute for  Symbolic Computation,

under the leadership of Bruno Buchberger.

The  design of  the  label  management tools  (Chapter  2)  is  based  on the ideas  of  Bruno Buch-

berger. The concrete implementation for Theorema is done by the authoress.

A first prototype of an interactive proving environment within Theorema  was implemented by

Tudor  Jebelean  [Buchberger&al:98].  Further  developments  are  described  in  [Nakagawa&-

Kossak:99] and [Kossak:99]. The contribution of the authoress is the migration from the prototype

status of the interactive environment to a stable component of the Theorema system. This necessi-

tated a complete re–implementation of the interactive environment. Additional functionality of the

environment,  like  displaying  debug  and  proof  information,  selecting  nodes  in  the  proof–tree,

selecting provers, variable instantiation, are also contributed by the authoress.
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The  need  for  proof  transformation tools  has  been  posed  and  discussed  within the  Theorema

group and during the project seminars already in the second half of 1999. Tudor Jebelean began a

first  implementation of  proof  simplification routines (a  first  version of  branch simplification and

retaining useful proof steps, see Chapter 4). The remaining proof simplification routines discussed

in Chapter 4, as well as upgrades of the earlier implementations done by Tudor  Jebelean,  are the

contribution of the authoress.

Finally,  the  original  idea  of  the  focus  windows is  presented  in  [Buchberger:00a],  the  design

and implementation of  this presentation technique was done by the authoress under the guidance

of Bruno Buchberger.

1.3 Theorema – A Description

In this section we describe features of the Theorema system that are relevant to the content of this

thesis. The interested reader should consult the Theorema papers cited in this document as well as

the list of papers on the system’s website (www.theorema.org).

The  Theorema  system is  implemented  on  top  of  the  computer  algebra  system Mathematica

[Wolfram:03] which has a document centered front–end and offers unique facilities for the input

and output of logical expressions (including complex graphics), for programming by rewrite rules,

and for interactivity.

The  Theorema  system contains  various  provers  for  general  and  specific  domains:  a  proposi-

tional and a predicate logic prover [Buchberger&al:00], the Prove–Compute–Solve (PCS) prover

for predicate  logic with equality [Vasaru–Dupré:00], induction provers over natural numbers and

over  lists  [Buchberger&Vasaru:97],  a  set–theory  prover  [Windsteiger:01],  a  Groebner  Bases

based prover for boolean combinations of polynomial equalities and inequalities, etc. The provers

of  Theorema  follow a  natural  style  approach:  the  inferences  resemble  the  natural  steps  used  by

human provers,  and  the  rendering  of  the  proofs  is  done  in  natural  language.  This  approach  has

been  pioneered  by  Buchberger,  (see  e.g.  [Buchberger:96c])  who designed  and  implemented  the

first  versions  of  the  predicate  logic  prover.  In  a  simplified  and  abridged  view,  the  provers  are

collections of  inference rules.  One proof  step in a  Theorema  proof  corresponds  to  one inference

rule application. 

1.3.1 Proof Situations and Proof Objects

Tools  described  in this thesis operate  on and modify proof  situations and proof  objects.  For  this

reason  we  give  a  brief  description  of  the  Theorema  proof  situations  and  proof  objects.  Both

concepts  were  defined  and  formalized  in  detail  in  [Tomuta:98].  We  encourage  the  interested

reader to consult this work, the description bellow summarizes the one done by Tomuta.
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A  proof  situation  is  generally  defined  as  a  pair  consisting  of  a  goal  formula  and  a  possible

empty list of assumption formulae. At the implementation level, the Theorema system uses a triple

for a proof  situation, namely, the goal formula, the list of assumptions and  an additional list that

caries  information  specific  to  the  provers  of  the  system.  From  now  on,  whenever  we  use  this

concept  we  refer  to  the  proof  situations  as  triples,  in  the  Theorema  implementation.  The  infer-

ences of the Theorema  provers  take as input a proof situation and return a possible empty list of

proof situations.

A  proof–object  is  used  to  represent  stages  in  the  proof  of  a  conjecture.  The  Theorema  data

structure used for representing proof–objects  is the deduction tree. The nodes in a deduction tree

can  either  be  open,  processed  or  terminal  nodes.  An  open  node  contains  a  proof  situation.  The

content of a processed node represents one step in the proof, which transformed a proof situation

into one or more proof situations. A terminal node represents a final step in a proof, i.e. the proof

step  did  not  produce  any  proof  situations.  Terminal  and  processed  nodes  have  the  following

components:

•  the  trace  of  the  performed  proof  step:  It  is  used  for  generating  the  natural  language

representation  of the Theorema  proofs.  It  stores the name of  the inference rule used by

the  proof  step,  the  labels  of  the  formulae  used  and  a  list  of  generated  formulae.  Some

proof steps may store extra information in their trace;

• the proof situation on which the proof step has performed;

•  a  list  of  successor  nodes:  When  a  step  in  the  proof  is  performed,  zero,  one  or  more

proof situations may be obtained. These situations are the contents of the (open) succes-

sor nodes. If the list of successors is empty, the node is a terminal one.

• a proof value, which is computed from the proof values of the successors. The possible

proof  values  are  "Proved"  (the  conjecture  is  true  under  the  given  assumptions),  "Dis-

proved"  (the  conjecture  is  not  true  under  the  given  assumptions),  "Failed"  (the  prover

cannot find a proof under given assumptions) and "Pending" (the proving process is not

finished yet);

In this thesis, deduction trees are also called proof–trees.
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1.3.2 Theorema and Mathematical Knowledge Management

Mathematical  Knowledge  Management  (MKM)  is  a  new  research  area  at  the  intersection  of

mathematics and computer science. The "Call for Papers"  of the First International Workshop on

Mathematical  Knowledge  Management  (held  in  September  2001  at  Research  Institute  for  Sym-

bolic Computation, University of Linz, Austria) recognized the need for efficient, new techniques

–  based  on  sophisticated  formal  mathematics  and  software  technology  –  for  taking  fruit  of  the

enormous knowledge available  in  current  mathematical sources  and  for  organizing mathematical

knowledge  in  a  new  way  [CfPMkm:01].  Furthermore,  in  [Buchberger:01b]  are  identified  three

main problems of the mathematical knowledge management area, namely:

• retrieving mathematical knowledge;

• building up mathematical knowledge bases; and

• educating mathematicians to work efficiently with and improve the existing knowledge bases.

In  the  same  paper  it  is  described  how  each  of  the  three  activities  can  be  performed  within

Theorema.

We  give,  now,  a  view of  the  MKM  research  area  and  its  subareas.  Roughly,  this  view was

expressed  by  Bruno  Buchberger  in  the  preface  of  the  first  conference  on  MKM  and  the  subse-

quent special issue of the journal AMAI, see [Buchberger&Caprotti:01] and [Buchberger&al:03].

Other, alternative, views of MKM can be found in the introductions of recent papers on MKM, in

particular the ones in [Buchberger&Caprotti:01], [Asperti&al:03] and [Buchberger&al:03].

In Buchberger's view, the aim of MKM is the computer–support (partialy or fully automated)

of all phases of the mathematical theories exploration:

• invention of mathematical concepts,

• invention and verification (proof) of mathematical propositions,

• invention of problems,

• invention and verification (correctness proofs) of algorithms that solve problems,

and the structured storage of concepts, propositions, problems, and algorithms in such a way that

they can be easily accessed, used and applied at a later time.

MKM in this broad sense is, essentially, a logical activity: All formulae (axioms, definitions of

concepts,  propositions,  problems,  and  algorithms)  must  be  available  in  the  coherent  frame  of  a

logical  system, e.g.  some  version  of  predicate  logic,  and  the  main  operation  of  MKM  on  these

formulae  is  essentially  formal  reasoning  (in  particular  formal  proving),  i.e.  reasoning  guided  by

explicit algorithmic rules.

The Theorema  system is one of the systems whose emphasis is on this logic aspect of MKM,

which we think is the fundamental aspect of future MKM. Some papers on the logical aspects of
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MKM  within  Theorema  are  [Buchberger&al:00,  Buchberger:01a].  The  question  of

computer–supported  invention  of  mathematical  knowledge  within  Theorema  is  treated  in

[Buchberger:04],  the  question  of  computer-supported  algorithm  synthesis  within  Theorema  is

treated  in  [Buchberger:03a],  [Buchberger:04]  and  [Buchberger&Craciun:03].  The  formal

(computer–supported) reasoning aspect of MKM is not subject of this work.

On  the  surface  of  MKM  we  are  faced  also  with  many  additional  organizational  problems,

which are important for the practical success of MKM:

a.  The translation of the vast amount of mathematical knowledge which is  available only

in printed form (in textbooks, journals etc.) and which has to be brought into a form (e.g.

LATEX),  in  which it  can  be  processed  by computers:  This  is  the  problem  of  "digitizing"

mathematical knowledge, see e.g. [Rockey:04] for a survey on the existing projects in this

area or [ChanYeung:00]. The Theorema project is not engaged in this area of MKM.

b. The translation of digitized mathematical knowledge, for example in the form of LATEX

files,  into  the  form of  formulae  within some  logical  system, e.g.  predicate  logic,  so  that

afterwards they can be  processed  by reasoning algorithms (in particular  theorem proving

assistants):  Many current  projects  are  addressing  this  question,  see  e.g.  MathML,  Open-

Math [Caprotti&Carlisle:99].  The  Theorema  project  is  not engaged in this area of  MKM

either.  In  fact,  we think that  most  of  the mathematical papers,  even if  their  formulae are

typed  in  LATEX,  are  logically  not  sufficiently  consistent  and  explicit  for  automated

extraction of their logical content. Therefore,  in our own experiments on formalization of

mathematical theories, we prefer to build-up mathematical theories by radical reformaliza-

tion from scratch. Such reformalizations may well follow the general flow of presentation

in an existing paper or textbook but the actual formulation of the formulae has to be done

"by hand" or by formal reasoning tools.

c.  The  organization of  big  collections  of  formulae, which are  already completely formal-

ized  within  a  logic  system  (e.g.  predicate  logic)  in  "hierarchies  of  theories":  At  the

moment, the  largest  such collection  is  Mizar  [Miz].  Among other  existing ones we men-

tion MBase [Kohlhase&Franke:01], the Formal Digital Library project  [Allen&al:02], the

NIST  Digital  Library  of  Mathematical  Functions  [Lozier:01],   Hypertextual  Electronic

Library of Mathematics [Helm], the libraries of the theorem provers Isabelle [Paulson:94],

PVS [Owre&al:98], IMPS [Farmer&al:96], Coq [CoQ].

Subproblem c., again, has two sub–aspects:

c1.  The organization of formalized mathematical knowledge by means of mathemati-

cal  /  logical  structuring  mechanisms  like  domains,  functors,  and  categories.  Theo-

rema puts a particular emphasis on this aspect, see for example, [Buchberger:03b].

c2.  The  additional  assignment  of  various  kinds  of  labels  to  formulae and collections

of formulae so that blocks of mathematical knowledge can be identified and combined

in various  ways without actually going into the "semantics"  of  the formulae. The  set

of tools described in Chapter 2 are designed to exclusively treat this subproblem.
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2 2. Label Management in Mathematical Libraries

2.1 Introduction

2.1.1 Label Management as Part of Mathematical Knowledge Management

In traditional mathematical texts, labels are used very often but a systematic management of labels

is,  normally,  not  considered  to  be  important  nor  is  it  feasible.  In  contrast,  in  the  build–up  of

completely  formal  (i.e.  algorithm–processable)  mathematical  knowledge  bases,  the  systematic

design  and  processing  of  structured  labels  (i.e.  individual  labels  like  "(1)",  "(2)"  or

"(associativity)"  etc.,  hierarchical  section  headings,  key  words  like  "definition"  and  "theorem",

names of  files etc.)  becomes vital  for  the automated structuring and re–structuring of  collections

of formulae as input to formal reasoning tools like provers, simplifiers, algorithm verifiers, model

checkers, etc. Consequently, we need algorithmic tools that handle all types of labels and allow us

to partition and combine, structure and re–structure  mathematical knowledge bases according to

the structural information provided by the hierarchical labels. 

In order to avoid misunderstandings, let us emphasize that, in our view, labels do not intend to

have any logical meaning or functionality. This is in contrast to the goal of "annotations", etc. as,

for  example,  in  [Caprotti&Carlisle:99]  and  [Kohlhase:00],  which  convey  at  least  part  of  the

semantics.  In  our  view,  the  semantics  of  formulae  (in  particular  predicate  logic  formulae)  is

exclusively  defined  by  their  inclusion  into  the  context  of  collection  of  other  formulae

(mathematical knowledge bases).  In  other  words,  formulae  obtain  their  meaning relative  to  each

other in the context of the knowledge base in which they occur and in the context of the logic used

for  reasoning  about  the  formulae,  and  labels  only  help  in  addressing,  referencing,  selecting

individual  formulae  in  knowledge  bases  and  in  partitioning  and  re–combining  (small  and  big)

collections  of  formulae.  Summarizing,  in  the  view of  this  chapter,  the  functionality of  labels  is

purely organizational and not logical. (For an introduction on the logical aspects of labels see the

description of "Labelled Deduction Systems" in [Gabbay:90].)

Also, the concept of labels in this organizational view has to be distinguished from the concept

of "comments". Comments have neither a logical meaning nor do they contribute to the organiza-

tion of mathematical knowledge bases. Rather, comments are only meant as meta–level guides for

human  readers of mathematical knowledge bases. Comments are actually skipped in the algorith-
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mic (logical and organizational) processing of knowledge bases. Hence, from the point of view of

Mathematical Knowledge Management (MKM), comments are trivial and we do not say anything

about  them here.  In  fact,  within the  Theorema  system, there  is  ample  possibility  for  comments:

Since  Theorema  uses  the  front–end  of  Mathematica,  in  Theorema  files  comments  can  be  put

everywhere into Mathematica "text cells" and are just overread in any processing of the files. 

2.1.2 The Purpose of Label Management

Now let  us describe  the scenario  that  specifies  the purpose  and the  functionality of  the tools  we

designed  and  implemented,  and  which  we  present  here,  for  handling  hierarchical  labels  in  the

Theorema  system. This  scenario  will also  make it  clear  how our  tools  can be used for  any other

MKM system that relies on predicate logic.

We  start  from the  assumption  that  we  treat  collections  of  formulae  in  pure  (higher  order  or

first  order)  predicate  logic  in  the  internal  form  of  nested  expressions  in  prefix  notation.  For

example,

™ForAll#•range#•var#f', •var#B'', True, ™Iff#is–bounded#•var#f', •var#B'',
™ForAll#•range#•var#x'', True, ™LessEqual#™BracketingBar#•var#f'#•var#x''', •var#B'''''

is  such  a  formula.  Collections  of  such  formulae  can  either  be  input  by  a  user  "by  hand"  in  the

external syntax (see below), or they can be the result of some of the Theorema reasoning tools like

provers, simplifiers, algorithm synthesizers, etc., or they can be the result of translating knowledge

bases from any other mathematical knowledge management system (as long as these systems work

in the frame of predicate logic).

Since the Theorema  system is mainly meant as a practical tool for helping the working mathe-

matician  with  exploring  mathematical  theories  and  presenting  the  trace  and  the  result  of  theory

explorations  in  an  easy–to–read  and  easy–to–write  style,  we  also  provide  an  external  form  of

predicate logic formulae. For example, the above formula, in the current standard external syntax

of Theorema is as follows: 

�
f,B

-is–bounded#f , B' y�
x

�f#x'� � B1 .
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This  external  syntax was carefully designed  in  order  to  come as  close  as  possible  to  the "usual"

syntax of mathematical formulae (including algorithms) in textbooks and articles. However, since

"usual"  syntax  is  a  matter  of  endless  dispute  and  heavily  influenced  by  individual  taste  and

practice, Theorema  offers an extra tool which allows to program, within certain limitations, one’s

own external,  two–dimensional syntax.  Thus,  if  the  user  of  Theorema  does  not  like  the  external

syntax provided  as  a  default,  she  is  welcome to  design and  implement a  different  one  using the

syntax programming tools of Theorema, which are actually provided by the underlying Mathemat-

ica  system and  by  which  formulae  in  the  external  syntax  can  be  turned  into  the  above  internal

standard syntax. (Flexible syntax programming was, in fact, one of the reasons why  Theorema  is

implemented within Mathematica, see MakeExpression in [Wolfram:03, Section 2.9.17]).

Of course, it is also possible to type the variables appearing in the above example:

�
f:
�����

,B �
� -is–bounded#f , B' y �

x �
� �f#x'� � B1.

However, all this does not extend the class of predicate logic formulae and all these details of the

logic language are not relevant in this chapter’s context.

We  start  now  from  the  standard  situation,  in  which  we  have  a  (small  or  big)  collection  of

predicate logic formulae in the above Theorema syntax, contained in the input cells of a couple of

Theorema  files,  which  in  fact  are  just  ordinary  Mathematica  notebooks  files.  Such  files  have

various  kinds  of  "cells"  (see  [Wolfram:03,  Section  1.3.5):  Input  cells,  that  contain  formulae  (in

our  case  predicate  logic  formulae in  Theorema  syntax),  text  cells  for  comments (which have no

relevance for the purposes presented here),  and a whole hierarchy of cells for "section headings"

which,  in  this  paper,  we  will  use  heavily  for  structuring  collections  of  formulae:  We  consider

headings  as  a  kind  of  labels  for  whole  blocks  of  formulae.  For  the  purposes  of  Theorema,  we

added  the possibility  that  formulae in input cells  can have additional  individual labels  and,  also,

that  formulae  in  input  cells  can  be  "wrapped"  by  additional  key  words  like  "definition",

"theorem",  "axiom",  "algorithm",  "lemma",  "fact",  etc.  Note  that  these  key  words,  again,  are

nothing else than a kind of labels: They do not at all add any logical meaning to the formulae they

wrap and, actually, there is no way to decide whether a formula is a "definition" or  a "theorem",

etc.,  except by analyzing its role  in the context of an entire theory exploration activity. In fact,  a

given formula may be  a  definition in one exploration  situation and  a theorem or  an algorithm in

some  other  exploration.  The  assignment  of  keywords  like  "definition"  etc.  is,  hence,  not  some-

thing which is inherent in the formulae but is, rather, something that may change according to the

view  of  the  user  who  organizes  collections  of  formulae  and,  therefore,  is  part  of  our  labelling

system and the tools we provide for managing labels.

In the following sections we will describe the tools we designed and implemented for manag-

ing  hierarchic  labels  and  the  corresponding  management  of  hierarchic  collections  of  predicate

formulae (in  Theorema  syntax).  Typical  users  of  these  tools  are  "working mathematicians" who

want  to  build  up  and  explore  mathematical  theories  within  the  Theorema  system.  However,  by

translators to and from other systems that process collections of predicate logic formulae, the tools
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we describe can also be used from within other systems. Currently, translators to and from Theo-

rema  collections  of  formulae  are  implemented  for  several  deduction  systems  ([Kutsia&-

Nakagawa:01]).  More such translators  are under  way and will be added to the system depending

on the available man power and user request.  In particular,  we plan to have a translator between

Theorema  and MathML. Alternatively, one could design and implement similar labeling manage-

ment tools directly in other systems.

2.1.3 Problem Description by an Example

Let us take a look at the screenshots in Figures 2.1. and 2.2. They present part of the contents of

two Mathematica  notebooks storing text and formulae. The formulae are in predicate logic, in the

Theorema  external  syntax.  The  formulae  and  the  text  in  these  files  are  grouped  under  certain

headings in sections, subsections, etc. Such files can either be the result of an automated process,

or  can  be  created  by  a  human user,  via  Mathematica’s and  Theorema’s front–end  environments.

Typing the documents is  done  in a  WYSIWYG style: Both  Mathematica  and Theorema  provide

several  tools  and  toolbars  for  creating  documents  and  typing  mathematical  formulae  in  a

user–friendly way.

Figure 2.1. Figure 2.2.

The contents of  the first  file (Figure 2.1.)  describe  the basic notions of  the tuple theory. It  gives

the definitions of the tuple concept,  the definitions of operations that can be performed on tuples

(reversion,  concatenation,  etc),  and  propositions  involving the defined concepts.  The  second  file
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(Figure  2.2.)  stores  axioms  and  definitions  in  the  domain  of  natural  numbers,  where  the  natural

numbers are expressed by the Peano axioms.

Note  that  this  is  only  a  small  example.  In  practice  we  may have  dozens  of  files,  each  with

hundreds  of  formulae.  Case  studies  that  involve  files  with  a  large  number  of  formulae  are,  for

example,  the  algorithm synthesis [Buchberger&Craciun:03]  and  the  Groebner  rings  case  studies

[Buchberger:03b].  We  are  also  working  on  a  large  case  study  in  the  frame  of  the  CreaComp

didactic project that aims at the use of Theorema in math teaching.

Let us now assume that we want to investigate some of the properties  of the length of tuples.

For such a case study we need to use basic knowledge about tuples and natural numbers. Since the

two files  already  contain  the  formalization  of  this  knowledge,  we  would like  to  use  this  knowl-

edge,  combine it,  extend it,  and produce  a third file containing the new knowledge (Figure 2.3.).

Furthermore, let us assume that we want to select some of the knowledge contained in some of the

files and give it as an input to one of the automated reasoning tools of Theorema.

Figure 2.3.

For  doing this,  we need means to  access the desired knowledge within the given files.  The  most

natural  way to  access  formulae and  groups  of  formulae is  access  by position  in files,  by section

and subsection  headings,  keywords or  labels.  Since  this  is  not  yet  possible  in  the  current  native

Mathematica  notebooks,  we need  tools  for  transforming hierarchical  section headings,  keywords

and individual  labels  of  formulae into  unique composite  labels,  which is  one  of  the main objec-

tives of this chapter.
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2.2 Description of the Label Management Tools

2.2.1 Starting Point for the Development of the Tools

The  tools  for  label  management  described  here,  take  as  input  Mathematica  notebooks  which

contain comments in text cells and predicate logic formulae in input cells. The formulae are given

in Theorema  external  syntax. Also,  in  these  notebooks,  labels  of  various  kinds (section heading,

key words like "definition", "theorem" etc., and individual labels) can be attached to formulae and

groups of  formulae. For  this,  we developed  a particular  Mathematica  stylesheet. A Mathematica

stylesheet  is  a  special  kind  of  notebook  that  defines  the  styles  to  be  used  in  other  notebooks

[Wolfram:03, Section 2.10]. By our stylesheet, keywords like "definition", "theorem", "property",

etc. can be attached to entire sections, subsections, etc. Formulae that occur under these headings

will  have  attached  the  keyword given  by  the  style  of  the  headings.  If  desired,  the  user  can  also

override  these  keywords  by  keywords  at  the  level  of  individual  formulae.  With  the  help  of  this

stylesheet,  the  label  management  tools  can  identify,  select,  and  re–combine  formal  parts  of

documents and use them, for example, as input to automated reasoners.

The  documents  processed  by  the  label  management  tools  operate  on  libraries  of  Theorema

notebooks. A library is a collection of Mathematica  notebooks using the above stylesheet. By the

tools  described  below it  is  guaranteed  that  the  notebook  labels  are  unique.  Also,  we provide  an

extra  index  file  that  lists  all  notebooks  in  the  library  and  also  describes  the  mutual  inclusion  of

notebooks  in the library,  see below. In addition,  the Mathematica  package facility is  used in the

organization of the notebooks in the library for speeding up re–loading of notebooks.

In  the  following,  we  will  describe  the  main  tools  which  we  designed  and  implemented  for

achieving the objectives  specified  in Section 2.1.3  above.  For  the convenience of the user,  these

tools can be accessed also by a new Theorema toolbar, called 'Library Utilities'.

2.2.2 Tool for Systematic Generation of Hierarchical Labels

An example of a Theorema notebook is given in Figure 2.1. above. It has a notebook title ("Basic

Notions:  Tuples")  and  a  notebook  label  ("BN:Tuples").  Formulae,  in  input  cells,  are  grouped

under section and subsection headings. Hierarchically grouping cells in sections, subsections and

so  on,  is  a  feature  of  Mathematica  notebooks.  It  is  common practice  that  larger  notebooks  have

chapters,  sections  and  so  on,  each  represented  by groups  of  cells.  The  extent  of  these  groups  is

indicated by a bracket on the right. [Wolfram:03] which can also be conveniently used for optical

contraction of sections to obtain an easy overview.

The headings of the cell groups, the notebook title, the notebook label, and labels of individual

formulae  are  the  components  used  for  generating  and  attaching  unique  composite  labels  to  all

formulae  and  groups  of  formulae  in  the  notebook.  If  the  notebook  label  is  not  present  in  the
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document a notebook label will be generated automatically from the notebook title such that every

notebook  in  the  notebook  library  has  a  unique identifier.  For  this  reason,  the  notebook  title  is  a

mandatory element in  the  Theorema  notebooks.  User  given notebook  labels  are  checked  against

the  list  of  existing  notebook  labels  (extracted  from  the  library  index  file).  The  user  is  notified

when the notebook label is already used by another Theorema notebook.

From the notebook  title,  notebook  label,  section headings,  etc.  provided  by the user  our  tool

automatically generates composite labels for each section, subsection, etc., and individual formula

in the notebook. These composite labels are generated in three variants which we call long, short,

and decimal composite labels, respectively. The details of this process are described below. 

In  Figure  2.1.,  for  example,  the  user  provided  notebook  and  theory  labels.  The  user  also

provided all of the headings in the notebook, among them "Operation on Tuples: Concatenation".

The generated labels are: "BN:Tuples.Propositions  Involving the Definitions Above.Operation on

Tuples:  Concatenation’’ for  the  long  label  variant,  "BN:Tuples.ProInvDefAbo.OpeTupCon’’ for

the short label variant, and "BN:Tuples.5.1" for the decimal label variant.

The  short  variant  of  the label  is  obtained from the long variant  by a  simple string truncation

algorithm,  with  some  proviso  for  preserving  uniqueness.  The  period  in  the  above  label  variants

plays the role of a separator, displaying the composite structure of the labels generated.

In Mathematica, notebooks are represented as Mathematica  expressions. The label generating

routine  takes  as  input  the  Mathematica  expression  of  a  Theorema  notebook.  The  notebook

expression  has  a  recursive  structure,  reflecting  the  grouping  and  subgrouping  of  cells  in  the

notebook.  Correspondingly  the  label  generating  routine  proceeds  recursively.  The  label  variants

are created  by concatenation operations,  where the operands  are,  depending on the label  variant,

the text  of  the heading,  the short  text  of  the headings (obtained  by string truncation algorithms),

and notebook counters. Eventual user–given labels are taken into account for the generation of the

short  and  long label  variants.  The  notebook  label  is  prepended  to  each of  the  labels  so  that  any

resulting label we look at, in the Theorema  notebook, contains the notebook label as a substring.

Because the  notebook  label  is  unique among notebook  labels  in the library,  we are  sure that  the

generated labels uniquely identify the formulae and groups of formulae within the library.
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Figure 2.4. Figure 2.5.

Figures 2.4.  and 2.5.  show the notebooks in Figures 2.1.  and 2.2.  after they have been processed

by the label generating routine. The labels that can be seen right above the formulae and groups of

formulae  are  the  decimal  part  of  the  generated  labels.  The  short  label  variants  are  not  shown.

From now on, when we use the word ’label’ we refer to one of the three variants of a label.

Now, groups of  formulae and individual formulae of Theorema  notebooks  can be  referenced

by  composite  labels  and  can  be  used  for  composing  new  Theorema  notebooks  and  knowledge

bases as an input to formal reasoners as described in the next two sections (see Figure 2.3.).

2.2.3 Tool for Including Formal Parts of Notebooks into Other Notebooks

When  we  write  a  new  Theorema  notebook  we  may  now  also  include  parts  of  already  existing

Theorema notebooks in the library. For this we implemented an ’Include’ command which takes all

formulae referenced  in its  arguments and copies  them, together with their unique labels,  into the

current  notebook.  This  gives  us  the  possibility  to  concentrate  knowledge  dispersed  in  various

notebooks  in the library in one Theorema  notebook  and use this new notebook  independently of

the library. Of course, there is also a possibility to list the new notebook in the library index of the

current  library  or  some  other  library.  This  is  particularly  convenient  when  distributing  libraries

over the web.

The ’Include’ command has the structure
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Include#Label1, Label2, ..., Labeln, Option',

whose  functionality should  be  self–explanatory:  Take  the  collections  of  formulae  referenced  by

the  composite  labels  Label1, ..., Labeln  from  the  current  library  and  copy  them  into  a  new

version of the notebook that contains the 'Include' command and cancelled the 'Include' command.

There  are  two  settings  of  the  'Option'  argument  of  the  'Include'  command.  With  the  first

setting,  the  original  composite  labels  of  the  formulae  included  are  kept  unchanged.  With  the

second setting, the composite label of the 'Include' command will be prepended to the labels of the

formulae included. If the no setting for 'Option' is given, the latter setting is considered.

2.2.4 Tool for Using Selected Formal Parts of Notebooks

The  various  reasoners  (provers,  simplifiers,  and  solvers)  of  Theorema  can  be  called  by  instruc-

tions of the following structure

Reason#Goal, using � KnowledgeBase, by � ReasoningMethod',

where 'Reason' can be 'Prove', 'Compute', 'Solve'; 'KnowledgeBase' is expressed by

; Label1, ..., Labeln?,

and Label1 , ..., Labeln  are composite labels of collections of formulae in the notebook library.

For example,

Prove#"LenTpl.3.1", using � ;"BN:Tuples", "NN:Basic"?, by � TupleEqIndProver',

where  'TupleEqIndProver'  is  a  Theorema  prover  that  combines   rewriting  and  induction  over

tuples.

Alternatively, we also implemented the following 'Theory' construct:

Theory#Label, ; Label1, ..., Labeln?',

which is something like a temporary assignment of a new label to specified collections of formu-

lae so that we can formulate calls to reasoners also in the following form:

Reason#Goal, using � Label, by � ReasoningMethod'.

For example, the above call can be formulated in the following way:

Theory#"Tuples and Natural Numbers", ;"BN:Tuples", "NN:Basic.1"? '
Prove#"LenTpl.3.1", by � TupleEqIndProver, using � "Tuples and Natural Numbers"'.

At the implementation level, the selection tool, whose usage is described above, uses a subroutine

that translates the formal content of the Theorema notebooks into Theorema internal syntax which

is  understood  by  the  Theorema  provers.  This  subroutines  use  Theorema's  input  parsing  routines
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described  briefly in [Windsteiger:01].  The  translated knowledge, in Theorema  internal  syntax, is

stored  together  with  the  labels  attached  to  it,  into  Mathematica  package  files  for  efficiency

reasons.  Loading  knowledge  stored  in  Mathematica  package  files  is  faster  than  translating  the

formal  knowledge  in  the  Theorema  notebooks  into  Theorema  internal  syntax.  The  library  index

file keeps record of these package files.

2.3 Conclusions to this Chapter

We  presented  simple  tools  that  allow  to  reference  specific  parts  of  collections  of  mathematical

knowledge bases  organized  in  libraries  of  Theorema  notebooks.  These  tools  generate  systemati-

cally composite hierarchical labels for all  the sections, subsections etc. and the individual formu-

lae of Theorema notebooks from section headings and individual labels of formulae in the original

notebooks  provided  by  the  user.  With  these  tools  one  then  can  quickly  compose  specific  new

notebooks and knowledge bases as input to the formal reasoners of the Theorema system using the

composite hierarchical labels. These tools can also be used for knowledge bases in other systems

by translation of the formulae formats between systems.

Seemingly, label management is a trivial part of mathematical knowledge management. It also

seems that  label  management in  the  sense specified  in  this  chapter  is  not  an  explicit  goal  in  the

current  MKM  systems (see  the  overview in  Chapter  6  Section  1).  However,  we believe  that,  in

fact,  systematic  and  efficient  label  management  is  quite  significant  for  the  user–friendliness  of

future mathematical knowledge management systems and  needs systematic treatment.  For  differ-

ent  purposes  within  MKM  the  choice  of  labels  must  meet  different  criteria.  For  example,  for

human readers  of mathematical knowledge bases (e.g.  in the form of Theorema  notebooks),  long

textual labels may be preferable whereas, in the presentation  of proofs, short version of labels are

desirable  in  order  not  to  disrupt  the  flow  of  the  proof  presentation.  In  the  extreme  case,  if  the

proof presentation style of 'Focus Windows' is used (see Chapter 5), one even does not need labels

in proof presentations. However, at the same time, labels as references for organizing new knowl-

edge  bases  from given ones,  for  example  as  input  to  provers,  are  very important.  Thus,  flexible

label management tools on top of the logic tools of MKM systems are necessary.
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3 3. Interactive Proving in Theorema

3.1 The Problem

One of the main goals of the Theorema project is the design and  implementation fully automated

provers.  In  this  paradigm,  the  user  provides  the  formula  to  be  proved  and  the  knowledge  from

which  the  goal  and  the  prover  will  either  come  up  with  a  proof  or  report  that  it  cannot  find  a

proof. However, interaction of the user with an algorithmic prover at certain situations during the

generation of  a  proof  may sometimes be  very helpful.  Let  us  try,  for  example,  to  prove  that  the

limit of the sum of two sequences of real numbers is the sum of their limits. Formalized in Theo-

rema, this is:

Proposition#"limit of sum", any#f , a, g, b',
+limit#f , a' Â limit#g, b'/w limit#f ¨g, a � b' "lim of ¨"'

where ’limit’ and ’̈ ’ are defined as follows:

Definition%"limit",
�
f,a

limit#f , a'y ��
���

0

�
N
�
n

n � N

�f#n'� a� � H "lim:" )

Definition#"sum of sequences", any#f , g, x', +f ¨g/#x'  f#x'� g#x' "f ¨ g" '

where ’+’ and – are the well known addition and subtraction operations on the reals.

Using  the  Theorema  PND  prover,  which  is  a  general  prover  for  predicate  logic,  a  first  proof

attempt may be generated by the call:

Prove#Proposition#"limit of sum"',
using � �Definition#"limit"', Definition#"sum of sequences"'�, by � PredicateProver';

The (failing) proof attempt is:

Prove:

(Proposition (limit of sum): lim of ¨)

�
a,b, f ,g

+limit# f , a' Â limit#g, b' Á limit# f ¨ g, a � b'/ ,

under the assumptions:

(Definition (limit): lim:) �
a, f

-limit# f , a' x�� -H ! 0 Á �
N
�
n

+n � N Á � f #n' � a� � H /11 ,
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(Definition (sum of sequences): f ¨ g) �
f ,g,x

++ f ¨ g/#x'  f #x'� g#x'/ .

For proving (Proposition (limit of sum): lim of ¨) we take all variables arbitrary but fixed and 

prove:

(1) limit# f0, a0' Â limit#g0, b0' Á limit# f0 ¨ g0, a0 � b0' .

Proving (1) by the deduction rule fails.

We assume

(2) limit# f0, a0' Â limit#g0, b0'  

and show

(3) limit# f0 ¨ g0, a0 � b0' .

From (2.2), by (Definition (limit): lim:), we obtain:

(5) �� -H ! 0 Á �
N
�
n

+n � N Á �g0#n'� b0� � H /1 .

From (2.1), by (Definition (limit): lim:), we obtain:

(4) �� -H ! 0 Á �
N
�
n

+n � N Á � f0#n' � a0� � H /1 .

 Proving (3) by contradiction fails.

We assume 

(6) » limit# f0¨ g0, a0 � b0' ,

and show a contradiction .

From (6), by (Definition (limit): lim:), we obtain:

(7) » �� -H ! 0 Á �
N
�
n

+n � N Á �+ f0 ¨ g0/#n' � +a0 � b0/� � H /1 .

Formula (7) is simplified to:

(8) �� -» -H ! 0 Á �
N
�
n

+n � N Á �+ f0 ¨ g0/#n'� +a0 � b0/� � H /11 .

By (8) we can take appropriate values such that:

(9) » -H0 ! 0 Á �
N
�
n

+n � N Á �+ f0¨ g0/#n' � +a0 � b0/� � H0/1 .

Formula (9) is expanded into 

(10) H0 ! 0 Ð �
N
�
n

+n � N Á �+ f0¨ g0/#n'� +a0 � b0/� � H0/ .

Formula (10.2) is simplified to:

(11) �
N

-» �
n

+n � N Á �+ f0 ¨ g0/#n'� +a0 � b0/� � H0/1 .

From (10.1), by (5), we obtain:

(13) �
N
�
n

+n � N Á �g0#n'� b0� � H0/ .

From (10.1), by (4), we obtain:

(12) �
N
�
n

+n � N Á � f0#n'� a0� � H0/ .

By (12) we can take appropriate values such that:

(14) �
n

+n � N0 Á � f0#n'� a0� � H0/ .

By (13) we can take appropriate values such that:

(15) �
n

+n � N1 Á �g0#n'� b0� � H0/ .

The proof of (a contradiction) fails. (The prover "PND" was unable to transform the proof 

situation.)

Ã
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The reason why the proof attempt fails is manifold. The main reason is that, in fact, the knowledge

we provided  is not strong enough for proving the goal formula in the exact sense that the goal is

not  a  logical  consequence  of  the  knowledge.  Hence,  as  a  first  interaction  of  the  user,  we  use  a

different  prover  (the  "PCS"  prover)  that,  implicitly,  uses  quite  some  special  knowledge  on  real

numbers  and,  in  addition,  applies  a  particular  strategy  for  handling  formulae  with  operations

defined by alternating quantifiers (like "� � �") as, for example, the operation of ’limit’. The PCS

prover  (which stands for  "Prove  Compute Solve")   combines predicate logic proving, simplifica-

tion, and inequality solving over the reals. Its main strategy is the reduction of a proof problem on

functions on the reals to inequality solving over the reals. The PCS prover has been proposed  B.

Buchberger,  see  [Buchberger:96],  and  was  implemented  in  the  PhD  thesis  [Vasaru–Dupré:00].

The corresponding prove call in our example is:

Prove#Proposition#"limit of sum"',
using � �Definition#"limit"', Definition#"sum of sequences"'�, by � PCS'.

The proof attempt is:

Prove:

(Proposition (limit of sum): lim of ¨)

�
f ,a,g,b

+limit# f , a' Â limit#g, b' Á limit# f ¨ g, a � b'/ ,

under the assumptions:

(Definition (limit): lim:) �
f ,a

L

N

MMMMMMMlimit# f , a' x ��
� �

0

�
N

�
n

n � N

+� f #n'� a� � H /
\

^

]]]]]]] ,

(Definition (sum of sequences): f ¨ g) �
f ,g,x

++ f ¨ g/#x'  f #x'� g#x'/ .

We assume

(1) limit# f0, a0' Â limit#g0, b0' ,

and show

(2) limit# f0 ¨ g0, a0 � b0' .

As there are several methods which can be applied, we have several choices to proceed with the 

proof.

Alternative proof 1: failed

Formula (1.1), by (Definition (limit): lim:), implies:

(3) ��
� �

0

�
N

�
n

n � N

+� f0#n'� a0� � H / .

By (3), we can take an appropriate Skolem function such that

(4) ��
� �

0

�
n

n � N0
� � �

+� f0#n' � a0� � H / ,

As there are several methods which can be applied, we have several choices to proceed with the 

proof.

Alternative proof 1: failed

Formula (1.2), by (Definition (limit): lim:), implies:

(5) ��
� �

0

�
N

�
n

n � N

+�g0#n'� b0� � H / .
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By (5), we can take an appropriate Skolem function such that

(6) ��
� �

0

�
n

n � N1
� � �

+�g0#n'� b0� � H / ,

As there are several methods which can be applied, we have several choices to proceed with 

the proof.

Alternative proof 1: failed

Formula (2), using (Definition (limit): lim:), is implied by:

(7) ��
� �

0

�
N

�
n

n � N

+�+ f0¨ g0/#n' � +a0 � b0/� � H / .

We assume

(8) H0 ! 0 ,

and show

(9) �
N

�
n

n � N

+�+ f0 ¨ g0/#n'� +a0 � b0/� � H0/ .

As there are several methods which can be applied, we have several choices to proceed with 

the proof.

Alternative proof 1: failed

The proof of (9) fails. (The prover "QR" was unable to transform the proof situation.)

Alternative proof 2: failed

We have to find  N2
�
 such that

(10) �
n

+n � N2
�
Á �+ f0 ¨ g0/#n'� +a0 � b0/� � H0/ .

Formula (10), using (Definition (sum of sequences): f ¨ g), is implied by:

(11) �
n

+n � N2
�
Á �+ f0#n' � g0#n'/� +a0 � b0/� � H0/ .

The proof of (11) fails. (The prover "QR" was unable to transform the proof situation.)

Alternative proof 2: failed

The proof of (2) fails. (The prover "NDS" was unable to transform the proof situation.)

Alternative proof 2: failed

The proof of (2) fails. (The prover "NDS" was unable to transform the proof situation.)

Alternative proof 2: failed

The proof of (2) fails. (The prover "NDS" was unable to transform the proof situation.)

Ã

The  PCS prover  also  failed to  prove  this conjecture.  The  next  type of  user  interaction  is  adding

the appropriate  knowledge to  the knowledge bases.  In our  example,  by examining the last  proof

attempt,  especially  formulae  (11),  (4)  and  (6),  we  conclude  that  additional  knowledge  about

modules and distances between points (expressed by modules) may  help:

Lemma$"distance of sum",

�
x,y,z,t,

�
, �

+�+x� z/ � +y� t/� � +G � H//u+�x� y� � G Â �z� t� � H/ "dist �" (

Prove#Proposition#"limit of sum"',
using � �Definition#"limit"', Definition#"sum of sequences"', Lemma#"distance of sum"'�,
by � PCS'
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The  proof  attempt  is  (for  a  better  overview,  we  have  omitted  the  proof  steps  that  were  already

presented in the previous proof attempt):

Prove:

(Proposition (limit of sum): lim of ¨)

�
f ,a,g,b

+limit# f , a' Â limit#g, b' Á limit# f ¨ g, a � b'/ ,

under the assumptions:

(Definition (limit): lim:) �
f ,a

L

N

MMMMMMMlimit# f , a' x ��
� �

0

�
N

�
n

n � N

+� f #n'� a� � H /
\

^

]]]]]]] ,

(Definition (sum of sequences): f ¨ g) �
f ,g,x

++ f ¨ g/#x'  f #x'� g#x'/ ,

(Lemma (distance of sum): dist+)

�
x,y,z,t,

�
,
� +�x � y� � G Â �z� t� � H Á �+x � z/� +y� t/� � G � H / .

We assume

(1) limit# f0, a0' Â limit#g0, b0' ,

and show

(2) limit# f0 ¨ g0, a0 � b0' .

(... omitted proof steps ...)

We have to find  N2
�
 such that

(10) �
n

+n � N2
�
Á �+ f0 ¨ g0/#n'� +a0 � b0/� � H0/ .

Formula (10), using (Definition (sum of sequences): f ¨ g), is implied by:

(11) �
n

+n � N2
�
Á �+ f0#n' � g0#n'/� +a0 � b0/� � H0/ .

Formula (11), using (Lemma (distance of sum): dist+), is implied by:

(12) ��
,
�

� � � ���
0

�
n

+n � N2
�
Á � f0#n'� a0� � G Â �g0#n' � b0� � H / .

As there are several methods which can be applied, we have several choices to proceed with the 

proof.

Alternative proof 1: failed

The proof of (12) fails. (The prover "QR" was unable to transform the proof situation.)

Alternative proof 2: failed

We have to find  G0
�
, H1

�
, and N2

�
 such that

(13) +G0
�
� H1

�
 H0/ Ð �

n
+n � N2

�
Á � f0#n' � a0� � G0

� Â �g0#n'� b0� � H1
� / .

Formula (13), using (6), is implied by:

+G0
�
� H1

�
 H0/ Ð �

n
+n � N2

�
Á H1

�
! 0 Â n � N1#H1

� ' Â � f0#n'� a0� � G0
� / ,

which, using (4), is implied by:

(14) +G0
�
� H1

�
 H0/ Ð �

n
+n � N2

�
Á G0

�
! 0 Â H1

�
! 0 Â n � N0#G0

� ' Â n � N1#H1
� '/ .

As there are several methods which can be applied, we have several choices to proceed with the 

proof.

Alternative proof 1: failed

The proof of (14) fails. (The prover "QR" was unable to transform the proof situation.)
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Alternative proof 2: failed

Formula (14) is implied by

(15) +G0
�
� H1

�
 H0/ Ð G0

�
! 0 Ð H1

�
! 0 Ð �

n
+n � N2

�
Á n � N0#G0

� ' Â n � N1#H1
� '/ .

The proof of (15) fails. (The prover "QR" was unable to transform the proof situation.)

Ã

We can, again, examine the proof attempt to decide on how to continue in order to obtain a proof

of  the  given  proposition.  We  can  either  add  more  lemmata  to  the  knowledge  base  used  by  the

prover, or use a different prover and/or different proof strategies of the chosen prover.

Following the first alternative, we can formulate the required knowledge (as lemmata, proposi-

tions, definitions, etc.) and call the prover again, where the knowledge base used by the prover is

now enlarged  to  contain  the  new knowledge. The  last  proof  attempt  in  the  above  example illus-

trates  this  procedure.  We  can  repeatedly  call  the  prover,  each  time  with  some  new  knowledge

added  to  the  base  used  by  the  prover,  until  hopefully  a  proof  or  disproof  of  the  conjecture  is

obtained.  However,  this  style  of  work (attempt  to  find a  proof,  add  more  knowledge, restart  the

proving process) is, of course, not really economic. Rather, we want to introduce new knowledge

right at the time when the proof fails and continue the proof from this point on.

In the case we want to use a different prover  of the Theorema  system we have to modify the

’Prove’ call so that it invokes a different prover of the Theorema system. In the example above, we

have first used the ’PredicateProver’ and then the ’PCS’ prover. Now, each prover of the Theorema

system comes with a set of options that give users the possibility to indicate certain strategies to be

applied  during a  proof  search.  The  options  have default  values.  For  all  that,  their  values do  not

change during a proof search, so users of the system cannot, for example, chose to first apply one

strategy, and then continue with another.

From the outset, Theorema’s current provers  are designed to work in an automatic style: they

take as input a goal formula to be proven and a (possible empty) list of assumption formulae to be

used  for  proving  it.  The  prover  can  be  ’tuned’ via  its  options,  but  no  other  operation  can  be

performed by the user once the ’Prove’ call is sent to the Mathematica  kernel for evaluation. The

result  of  this  automated proof  search  process  is  presented  then to  the  user  in  a  natural  language

style.  If  the  proof  is  unsuccessful  the  user,  as  in  the  alternatives  presented  before,  re–starts  the

proof  search  process,  on  different  premises  (additional  knowledge,  different  options  of  the  used

prover,  different  prover  of  Theorema).  However,  we would like  to  have the  possibility  to  guide

the proof search routines during the proof search. For example, we would like to hint the prover to

use certain  instances for  specific  quantified variables  at  various points  in the proof.  In the proof

attempt  above,  for  instance,  we  would  like  to  hint  the  prover  to  use  
�

0cccccc2  for  each  G0
�

 and  H1
�

 in

formula (13),  where H0  is introduced by formula (8). In other words, we are interested to have an

interaction  between  the  user  and  the  Theorema  system amid  the  development  of  proofs.  In  the

following sections we will describe the tools that support such a user–system interaction.

First  attempts  to  integrate  interactivity  into  Theorema  were  done  by  Tudor  Jebelean  (a  core

member of  the Theorema  group)  and are  described  in [Buchberger&al:98].  Some of  the ideas  in
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this  work  were  taken  as  the  starting  point  of  the  work  in  this  thesis.  Prior  to  this  work,  in

[Tomuta:98]  is  shown how interactive  proving  was to  be  integrated  in  the  architecture  of  Theo-

rema,  but  very  little  implementation was done.  Another  attempt  to  provide  user–system interac-

tion  is  described  in  [Nakagawa&Kossak:99].  Felix  Kossak,  in  [Kossak:99],  further  develops  the

prototype presented in [Nakagawa&Kossak:99].

The  set  of  tools  we  have  implemented  form  an  environment  that  we  will  refer  to  as  the

"interactive environment", from now on. Proving within this environment will be called proving in

the  "interactive  mode",  while  the  default  proving  mode  in  the  Theorema  system will  be  called

proving in the "non–interactive mode".

3.2 Description of the Tools

3.2.1 Preliminaries

The  interactive  environment  allows  a  finer  grained  interaction  between  a  human  user  and  the

Theorema system. When the environment was designed we had in mind three groups of users. For

the  first  group  of  users,  the  environment  has  a  didactical  value:  it  can  be  used  to  train  formal

proving, only allows correct  operations and never gets tired. The second group of users are those

who  are  already  familiar  with  formal  proving  techniques  and  with  the  details  of  the  Theorema

system.  For  them,  the  interactive  environment  enriches  the  proving  power  of  the  Theorema

system,  by  allowing  them  to  use  their  creative  ideas  and  intuition  (for  example,  instantiating

quantified  variables  with  certain  values).  The  third  group  of  users  is  the  Theorema  developers

group,  for  which  the  environment  can  be  used  as  a  tool  for  testing  the  provers  that  are  still  in

development.
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In  the  non–interactive  mode,  the  Theorema  provers  apply  the  inference  rules  automatically.

The  inferences  are  repeatedly  applied  until  either  a  proof  is  obtained  or  no  inferences  can  be

applied  anymore. The users only see the final output of this process.  In contrast,  when searching

for proofs in the interactive environment, the system is compelled to stop after each application of

an inference rule, to present the produced proof sofar, and to wait for a decision from the side of

user. In the interactive mode, the proofs are gradually developed starting from an initial proof tree

that  has  two  nodes:  the  root  node  that  contains  the  proof  problem  as  given  by  the  user  (goal

formula and assumption formulae, if any), and a child node, which contains the proof problem as

in  the  root  node  and,  additionally,  internal  information,  specific  to  the  provers  and  to  the  proof

search routines of Theorema. The child node is an unexplored node, or in Theorema  terminology:

a pending node.  The  information stored in an unexplored  node  is called  a "proof  situation".  The

node expansion is done by calling a prover to apply one of its inferences on the proof situation of

the node to expand. An inference rule application will produce none, one or more proof situations

that are inserted into the proof tree as unexplored children of the expanded node. The proof search

mechanism will add  to  the information stored  in the expanded node  a trace  of  the inference rule

application.

While  the system waits for  a  user  decision  to  continue,  in  the interactive mode,  the user  can

perform one or more of the following actions:

• select a proof situation in the proof;

• inspect a selected proof situation;

• add or remove assumptions in a selected proof situation;

• suggest instances for universally or existentially bound variables;

• add or remove branches in the proof tree;

• choose one among different provers to continue the proof, eventually change its options;

• make the system expand the proof by one inference rule application;

• ask the system to finish the proof without anymore user interventions;

• put an end to the proving session and exit the environment.

The components of the interactive environment which realize the concrete execution of the above

user actions can be grouped in three categories:

• working notebook files;

• developer information and log windows;

• menu–palette windows (also called toolbars).
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3.2.1.1 Working Notebook Files

In  this  category  fall  the  Mathematica  notebook  files  in  which  the  user  writes  and  stores  the

mathematical knowledge used during a proving session (interactive or not). A special notebook is

"The Proof Window" which is used for presenting the proofs generated by the Theorema provers.

In  the  non–interactive  mode  this  notebook  displays  the  proof  in  a  natural  language  style.  The

proof  cannot  be  modified  anymore.  In  the  interactive  mode,  "The  Proof  Window"  displays  the

sofar developed proof, which can be modified via the tools of the interactive environment.

By  combining  selection  of  cells  in  the  working  notebooks  and  button  clicks  on  the

menu–palettes of the interactive environment, the user can navigate inside the proof–tree, in order

to  continue  the  proof  on  a  certain  branch,  introduce  new  branches,  add/remove  assumptions,

instantiate variables, etc.

3.2.1.2 Developer Information and Log Windows

These  windows  are  used  to  display  environment  specific  and  proof  specific  information.  Their

content does not directly influence the proving process. The interactive environment makes use of

one  log  window  and  one  developer  information  window.  The  log  window  records  the  main

commands of  the  user,  displays  messages  about  the  interactive  environment  status  and  eventual

warnings. The developer information window is used to display (on user request) the information

stored  in  the  nodes  of  the  proof–tree.  This  information can  be  displayed  both  in  a  user–friendly

external and in Theorema internal form.

In addition to these two windows, the environment uses notification dialogs to inform the user

that an action she performed is not accepted by the system.

3.2.1.3 Menu–palette Windows

The  menu–palette  windows (also  called  toolbars)  are  an  important  component  of  the  interactive

environment. The commands triggered by the buttons on these toolbars allow the user to guide the

proof  development.  Some  of  the  commands  require  arguments  which  are  provided  by  prior

selections in the working notebooks (e.g. 'New Goal' needs a formula as an argument, 'Start' needs

a 'Prove' command as an argument, etc.).

There  are five toolbars  which help the user to carry out the actions listed at  the beginning of

this  section.  We  give  now a  brief  description  of  these  toolbars  and  of  the  functionality of  their

buttons, more details being given in the next section of this chapter in Section 3.2.2.

• The "Theorema Interactive" toolbar (Figure 3.1.a.) contains the main commands for control-

ling the development of the proof in the interactive mode. These commands are 'Start', 'Next', 

'Finish' and 'Stop'. The 'Start' command will trigger the execution of a 'Prove' call, in the interac-

tive mode. The 'Next' command will ask the proving system to expand the selected proof situation 
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by one inference rule application. (The inference rule is automatically chosen by the current 

prover.) The ’Finish’ command will signal the proof search routines to automatically expand the 

pending nodes in the current proof until either a successful or failed proof is obtained. The ’Stop’ 

command will abort the current proof development and reset the environment, preparing it for a 

new prove session.

Additionally, the "Theorema Interactive" toolbar has buttons that toggle the display of the 

"Advanced Proof Operations", of the "Prover", and of the "Debug" toolbars, a button that toggles 

the interaction mode on and off, and an ’Exit’ button for closing the interactive environment.

• The "Advanced Proof Operations" toolbar (Figure 3.1.b.) is shown by pressing the 'Ad-

vanced Op' button on the "Theorema Interactive" toolbar. Pressing this button again will hide the 

"Advanced Proof Operations" toolbar. All of the operations triggered by the buttons on this 

toolbar need, among their input parameters, a pointer to a proof situation in the proof–tree of the 

current proof. This pointer determines where the next operation will be performed. The pointer 

can be set using the 'Set Focus' button, which takes as input a cell selected in "The Proof Win-

dow". The '� Inst' button helps the user instantiate existentially quantified variables, while '� Inst' 

does the same for universally quantified variables. '+ Branch' creates and alternative branch in the 

proof–tree, while '– Branch' removes a branch in the proof–tree. '+ Assm' triggers the insertion of 

a formula into the list of assumptions of the selected proof situation (i.e. where the focus is set).  '– 

Assm' button triggers the removal of an assumption formula from the list of assumptions of a 

focused proof situation. For a formula in a selected cell in some working notebook, the function 

called by the 'New Goal' button will add a new branch in the proof object, where the respective 

formula is set as the current goal, while on the already existing branches the formula is added as 

an assumption.

a. b.

Figure 3.1: a. The "Theorema Interactive" toolbar;  b. The "Advanced Proof Operations" toolbar. 

• The "Theorema Provers" toolbar  (Figure 3.2.a.)  allows the user to select a domain–specific

prover to be used for the next proving steps. The currently selected prover is marked with red on

this toolbar. The "Prover Options ... " button opens a prover specific palette ("Prover Options ...")

which allows the user to alter the options of the currently selected prover.
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a. b.

Figure 3.2: a. The "Theorema Provers"; b. The "Prover Options ... " toolbars.

In Figure 3.2.  we see that  the currently selected prover  is the prover  for  Predicate  Logic and

on the "Prover  Options ..."  menu–palette we see that the 'TryAlternatives' option is in bold  fonts

which mean that its value is 'True'. (This option, when set to 'True' will instruct the 'PredicateProv-

er' to try to prove each of the disjuncts in a disjunctive goal.)

• The "Debug"  toolbar (Figure 3.3.) gives users the possibility to display, for a selected proof

situation in  the  proof–tree,  the  content  of  the  proof  situation.  Namely, it  can  display the  current

goal formula, the assumption formulae for the selected proof situation. The information displayed

when pressing the  '•lf Goal',  '•asml', '•prinfo',  '•af' and  'Focused  Position'  buttons  is  especially  of

interest for the developers of the Theorema system and is described in the subsections below.

Figure 3.3: The "Debug" toolbar.

In the next section we describe  in detail  how each of  the actions triggered by the buttons on the

described toolbars are carried out.

3.2.2 Using the Environment

For  illustrating the  operations  performable  in  the  interactive  proving  mode  we will use  a  simple

theorem on quantifiers:

Theorem%"Simple Example", --�
x

P#x'1 Á Q1w-�
x

+P#x' Á Q/1).

We chose an easy example because we want to focus on the description of the interactive environ-

ment  rather  than  on  the  proof  of  the  theorem  itself.  We  will  use  this  example  throughout  the

remainder of this section.

After initializing the Theorema  environment, the user can, at  any time, open the toolbars that

enables him to use the interactive environment by the following call:
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+
 Initialize the Theorema environment 
/
�� Theorema‘;

+
 open the interactive environment 
/
StartInteractive# ';

The desktop of the user will look, now, similar to the one in Figure 3.4:

                Figure 3.4: The initial screen in the Interactive environment.

In  Figure  3.4  we  can  see  the  "Theorema  Interactive"  toolbar,  a  working  notebook,  ’Interactive

Example.nb’, and  the  Log  Window  which  is  empty  for  the  moment.  All  other  toolbars  can  be

brought  onto  the  desktop  by  pressing  their  corresponding  button  (’Advanced Op’ for  the  "Ad-

vanced  Proof  Operations"  toolbar,  ’Provers’ to  obtain  the  "Theorema  Provers"  toolbar,  and

’Debug’ to display the "Debug" toolbar.)  Leaving the interactive environment is done by pressing

the ’Exit’ button,  which will  cause  all  the  objects  belonging to  the  interactive  environment to  be

hidden except for the notebooks that were previously open (like the ’Interactive Example.nb’). The

’On/Off’ button is used to temporarily turn off the interactive proving mode, without hiding all the

environment’s components.

Notice  that  some  of  the  buttons  on  the  "Theorema  Interactive"  toolbar  are  grayed  out  and

cannot be pressed. They will become active when a proof is started. From now on we assume that

the  toolbar  "Theorema  Interactive"  is  always visible  on  the  user’s desktop  when working within

the interactive environment.
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3.2.2.1 Setting the Action Focus

In  the  interactive  mode,  after  each  completed  proof  step,  the  user  must  decide  which  action  to

carry out next (add an assumption, instantiate variables,  let the chosen prover  perform one infer-

ence  step,  change  the  active  Theorema  prover,  etc.  See  the  following  subsections).  Several  of

these actions require  that the user first specifies where  in the proof  the actions should be carried

out, i.e. where the "Action Focus" is. In other words, the user has to have the possibility to select

nodes  in  the  proof–tree.  The  'Set  Focus'  button  on  the  "Advanced  Proof  Operations"  toolbar  is

providing this possibility. We say that a node that is selected has the "Action Focus" set on it.

At  any  given  time  in  the  interactive  proving  mode,  "The  Proof  Window"  shows  a  natural

language representation of the current proof–tree.  It is natural to expect, then, that selecting cells

in  this  window  will  also  set  the  Action  Focus  on  the  underlying  nodes  in  the  proof–tree.  This

behavior  can  be  realized  with the  help  of  the  'Set  Focus'  button:  The  user  selects  a  cell  in  "The

Proof Window", by a click on the cell bracket, and presses then the 'Set Focus' button. (In Mathe-

matica,  selecting cells in notebooks is done by a click on the cell's bracket). This will trigger the

execution of a routine that searches, in the current proof–tree,  the node that contains the informa-

tion displayed in the selected cell. When the node is found the Action Focus is set to it. There are

two restrictions that the user has to consent with. First, the only cells that can be selected are cells

that  contain  formulae  and  cells  that  represent  pending  nodes  (they  have  a  gray  background).

Second, multiple cell selection is not allowed.

3.2.2.2 Main Operations: Start, Next, Finish, Stop

To start a proof session in the interactive mode the procedure is as follows: the user selects a cell

that contains a 'Prove' call. Now, a click on the 'Start' button of the "Theorema Interactive" toolbar

will  start  the  proof  attempt.  The  user  will  see  "The  Proof  Window"  display  the  initial  proof

situation.  The  'Prove'  command  that  was  called  in  our  example  can  be  seen  in  Figure  3.4.  The

initial  proof  situation  contains  the  goal  to  prove  and  no  other  assumptions.  Notice  now that  the

'Next', 'Finish' and 'Stop' buttons are active.
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Figure 3.5: Starting a proof attempt.

The proof tree created by carrying out this operation contains two nodes: the root node, stating the

initial proof situation, and its child node, which is a pending node (i.e. not yet expanded). In "The

Proof Window" this node is represented by a cell with a gray background (see Figure 3.5.).

If  we click  on  the  ’Next’ button,  the  ’PredicateProver’ (which was chosen  to  prove  this  theo-

rem) will  expand  the  pending node  by an  application  of  one  inference rule.  In  our  example, the

prover applied the deduction rule. Namely, it assumed that the left hand side of the implication in

the goal formula is true, the new goal to prove is now the right hand side of the implication. The

result of this inference application is displayed in "The Proof Window" (see Figure 3.6.).

By  default,  a  proof  that  has  more  than  one  pending  node  in  the  proof–tree  is  expanded  by

expanding the left–most pending node in the tree. In "The Proof Window" this node corresponds

to the first cell with a gray background, when the window is parsed top–down. If the user whishes

to continue the proof on a different branch she has to set the Action Focus to the pending node of

that branch, prior to the click on the 'Next' button. Further clicks on the 'Next" button will expand

the proof on the branch of the selected node, until either the branch cannot be expanded anymore,

or the user decides to continue the proof exploring on a different branch. (In "The Proof Window"

branches are illustrated by group cells, the extent of a group is indicated by a bracket on the right.

See Figure 3.11. below.)
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Figure 3.6: The Next step in the proof.

The  ’Finish’ button  indicates  the  proof  search  routines  to  continue  the  expansion  of  the  proof

without any intervention from the user.  The result of this action,  in our example is the following

successful proof (which is the content of "The Proof Window", after the proof search routines are

done):

Prove:

(Theorem (Simple Example)) -�
x

P#x' Á Q1 Á �
x

+P#x' Á Q/ ,

with no assumptions.

We prove (Theorem (Simple Example)) by the deduction rule.

We assume

(1) �
x

P#x' Á Q 

and show

(2) �
x

+P#x' Á Q/ .

Formula (2) is transformed into:

(3) �
x

+» P#x' Á Q/ .

Formula (3) is transformed into:

(4) �
x

+» P#x'/ Î Q.

We prove (4) by proving the first alternative negating the other(s).

We assume

(6) » Q.

We now show
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(5) �
x

+» P#x'/ .

From (6) and (1) we obtain by modus tollens

(7) » �
x

P#x' .

Formula (7) is simplified to:

(8) �
x

+» P#x'/ .

Formula (5) is true because it is identical to (8).

Ã

The  ’Stop’ button  on  the  "Theorema  Interactive"  toolbar  will  clear  "The  Proof  Window"  of  its

actual content, and will prepare the interactive environment for a new proof session.

3.2.2.3 Displaying Information (not only) for Developers

The natural  language representation  of  the proof–tree  does  not  show all  the content  of  the proof

nodes. The reason for this is that part of the information stored in the nodes is not relevant for the

user, but only for the provers  of the system. The  information displayed to the user is describing

the  way  an  inference  rule  was  applied  on  a  certain  proof  situation.  (An  inference  application

involves,  normally,  only  a  few formulae  from  the  set  of  available  formulae  at  a  position  in  the

proof–tree.)  Other  information  stored  in  the  nodes  of  the  proofs  is  prover  specific,  like  the  fact

that certain formulae are already matched against others for the application of a certain inference

rule.

However,  in  the  interactive  proving  mode  it  is  often  the  case  that  we  are  interested  in  the

whole content of the proof node. We may want to know, for example, which are the formulae that

are or were available when an inference rule was applied. The developers of the Theorema system

may  want  to  check  the  prover  specific  information  to  help  them  to  develop  and  improve  their

provers.  For  this  reasons,  we  have  implemented  a  set  of  routines  that  access  and  display  the

additional  information stored  in  a  node.  These  routines are  triggered by clicks on  the buttons of

the "Debug" toolbar.  Each routine extracts and presents the content of a node that has the Action

Focus  set  on  it.  These  routines  display  the  extracted  information  in  a  special  window,  called

"Debug Messages". From left to right on the "Debug" toolbar, these routines do the following:

•  display  the  goal  for  the  selected  proof  node:  The  'Goal'  and  '•lf  Goal'  buttons  trigger

routines  that  extract  the  goal  formula  of  the  proof  situation  stored  in  the  user  selected

proof  node.  The  display of  the formula is  done  in a  user–friendly form when the 'Goal'

button  is  pressed,  and  in  Theorema  internal  form when the  '•lf  Goal'  button  is  pressed.

For example, when the Action Focus is set on the pending node of the unfinished proof

shown in Figure 3.6.  (the cell with the gray background), the user–friendly external and

the  Theorema  internal  form of  the  goal  of  the  node  are  displayed  in  the  "Debug  Mes-

sages" window like this:

Goal at the selected proof step :
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�(2) � ��
x

+P#x' Á Q/�

Goal at the selected proof step :

•lf%"2", �
x

+P#x' Á Q/, •finfo#')

•  display  the  list  of  available  assumptions:  The  'Assm List'  and  '•asml'  buttons  trigger

routines that extract the list of assumptions stored by the user–selected proof  node. The

assumptions are displayed in a user–friendly form when the 'Assm List' button is pressed,

and in Theorema  internal form when the '•asml' button is pressed.  For the Action Focus

set as in the example above, the assumptions displayed in the "Debug Messages" window

are:

Assumptionsin the proof situation at selected proof step :

�(1) � ��
x

P#x' Á Q

in the user–friendly style, and

Assumptionsin the proof situation at selected proof step :

•asml%•lf%"1", �
x

P#x' Á Q, •finfo#'))

in the Theorema  internal style. Note that,  in this example and at this point in the proof,

the only assumption available is the temporary assumption that was made by the applica-

tion of the deduction rule in the previous proof step.

•  display  the  proof  information:  When  an  inference  rule  is  applied,  trace  about  how it

was  applied,  which  formulae  it  used  and  generated  is  stored  in  the  nodes  of  the

proof–tree.  This trace is called 'proof information' and is used for generating the natural

language presentation  style  of  the  proof,  which is  shown in  "The  Proof  Window".  The

nodes of the proof–tree that were not yet expanded do not have a trace information. The

'Proof  Info'  and  '•prinfo'  buttons  trigger  routines  that  extract  the  proof  information  (if

available),  and  display  it  to  the  user.  The  proof  information  is  presented  in  a

user–friendly  form  when  'Proof  Info'  is  pressed,  and  in  Theorema  internal  form  when

'•prinfo'  is  pressed.  If  the  proof  information  is  not  available  (when  the  selected  proof

node is a pending node) the routines display a message stating this fact.

In  the  example  above,  the  Action  Focus  is  set  on  the  pending  node  of  the  unfinished

proof. In this case there is no proof information to display, because the node was not yet

expanded. (No inference rule was yet applied that would have left a trace of its applica-

tion.)  Let  us  set  the  Action Focus  on  the  node  that  contains  information about  formula

Tools for Mathematical Theory Exploration

33



(2).  For  this, we select  the cell  that  contains formula (2)  (in "The  Proof  Window") and

click  on  the  ’Set Focus’ button.  If  we  click  now on  the  ’Proof Info’ button  the  "Debug

Messages" window will show the following:

The Proof Information at the selected proof step :

Inference Rule Keyword : ProveImplication

Used Formulae Labels : Theorem +Simple Example/

Generated Formulae :

�(1) � ��
x

P#x' Á Q�,

�(2) � ��
x

+P#x' Á Q/�.

and  by  clicking  on  the  '•prinfo'  button,  the  following  will  be  displayed  in  the  "Debug

Messages" window:

The Proof Information at the selected proof step :

�"ProveImplication", •usedFormulae#"Theorem +Simple Example/"',
•generatedFormulae%•lf%"1", �

x
P#x' Á Q, •finfo#'), •lf%"2", �

x
+P#x' Á Q/, •finfo#'))!

The three parts of the proof information above, namely the inference keyword, the labels

of the formulae used, and the formulae generated, are present for all the traces created by

any  given  inference  rule  throughout  the  provers  of  the  Theorema  system.  Some  infer-

ences may leave additional traces in the proof information. Take, for example, the ’PCS’

inference rule that is applied when an assumption formula is an instance of an existential

goal  formula.  When this  inference rule  is  applied  to  a  proof  situation,  the proof  search

mechanism  stores  in  the  proof  information,  additional  to  the  three  parts  above,  facts

about  the  substitution that  unifies the  two formulae.  All  these  will also  be  displayed  in

the  "Debug  Messages"  window  when  one  of  the  ’Proof Info’ or  '•prinfo'  buttons  are

clicked on.

• display the proof situation:  The 'Proof Situation' button triggers a routine that extracts

the proof situation at the selected node in the proof–tree. This includes the goal formula,

the  list  of  assumption  formulae,  and  prover  specific  facts.  The  '•af'  button  triggers  the

display of the prover specific facts, only. For both of these buttons, the displayed data is

in  Theorema  internal  form. Below is  shown the  proof  situation for  the  already selected

node in the example considered in this section:

Proof Situation at the selected proof step :
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�
•lf%"Theorem +Simple Example/", -�

x
P#x' Á Q1 Á �

x
+P#x' Á Q/, •finfo#'),

•asml#', •lkTab%��"ProversHistory", ���, �"LastProver", PND�,
�"PND", •lkTab%��"ModusPonensFacts", •lkTab#��'�,

�"MatchingFacts", •lkTab#��'�, �"NewFormulae", ���, •oldForms#'��,
�"GoalHistory", �-�

x
P#x' Á Q1 Á �

x
+P#x' Á Q/!!!)!!)

!

Please observe the difference between the proof situation and the proof information of a

node in the proof–tree. The proof situation contains a goal formula and a possible empty

list  of  assumptions,  together  with  prover  specific  facts,  while  the  proof  information

contains the trace of applying an inference rule to this proof situation.

•  display  all  assumptions:  The  inference  rules  of  the  Theorema  provers  transform  the

proof  situation  they  are  applied  to  into  other  proof  situations.  It  is  often  the  case  that

inferences which rewrite formulae among the assumptions of a proof situation replace the

formulae with the newly inferred ones. Therefore,  formulae which occurred in the list of

assumption formulae  of  a  node  in  the  proof–tree  may not  occur  anymore  in  the  list  of

assumption formulae  of  a  descendant  node.  The  'All Assumption' button  calls  a  routine

that extracts  all  the formulae that  occurred  as  assumptions during the proof  prior  to  the

selected  node  in  the  proof–tree.  The  formulae  are  displayed  in  the  "Debug  Messages"

window in the user–friendly style.

•  display  the  position  of  the  node  where  the  Action  Focus  is  set:  'Focused  Position'

displays the position of the selected node in the proof–tree. The position is relative to the

style  Mathematica  organizes  and  stores  expressions.  The  developers  of  the  Theorema

system  can  use  the  displayed  position  for  directly  manipulating  the  data  structure  that

holds the proof–tree,  using special  Theorema  and Mathematica  function calls which we

do  not  describe  here.  In  our  example,  the  position  of  the  node  which  has  the  Action

Focus set is:

The Current Focused s Selected Position :

�2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1�
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3.2.2.4 Adding and Removing Assumptions

In  the  introductory  example  of  this  chapter  we  have  seen  that,  in  the  non–interactive  proving

mode, all the knowledge that might be needed to obtain a successful proof of a conjecture has to

be provided beforehand, at the time the proof search process is started. In contrast, in the interac-

tive mode the user  of the Theorema  system can start  with some assumptions and,  as soon as she

sees the need for it,  may add assumption formulae to the proof situation of an unexpanded node.

This can be done in the following way:

• First, the user has to make sure that the Action Focus is set on an unexpanded node in

the  proof–tree.  If  the Action Focus  is  not  correspondingly set  and the  user  still  tries  to

add the assumption, a notification window with a message will appear, asking the user to

set the focus correctly.

• Second,  the user  has  to  select  the cell  with the formula she wants to  add to  the proof

situation  of  the  selected  pending  node.  The  formula  has  to  be  given  in  the  Theorema

language, as a Lemma, Proposition, Definition, etc. After selecting the cell, the user has

to click on the '+ Assm' button on the "Advanced Proof Operations" toolbar.

When  the '+  Assm' button  is  clicked the  selected  pending node  will be  expanded.  The  proof

information of  the expanded  node  is  generated  by the routine attached to  the button and  has the

same structure  with the  proof  information produced  by  an  inference  rule  of  a  Theorema  prover.

The new pending node is a child of the expanded node and will contain a proof situation derived

from the one of the expanded node by adding to its assumption formulae the formula added by the

user. This can be easily checked by using the buttons on the "Debug" toolbar (Section 3.2.2.3)  to

display the new proof situation. 

The  screenshot  in the Figure 3.7.  shows the working notebook  "Interactive  Example.nb" that

contains a lemma "Instance", in Theorema  language, whose formula is labeled "I1".  The user has

added  this  lemma to  the  proof  situation  of  the  pending  node  shown in  Figure  3.6.  The  result  is

shown  in  "The  Proof  Window"  in  Figure  3.7.  (the  notebook  partially  behind  the  "Interactive

Example.nb" notebook).

Dual  to  the  assumption  addition  operation,  we  provide  the  user  with  a  formula  deleting

operation,  which  allows  her  to  remove  assumptions  from  a  proof  situation.  Discarding  assump-

tions can  be  done  when the  user  considers  that  certain  formulae will  not  contribute  to  the  proof

development.
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Figure 3.7: Added assumption "I1".

Assumptions  can  be  removed  only  from  a  proof  situation  of  an  unexpanded  node  in  the

proof–tree. Removing assumptions is done following the same procedure as adding them: the user

has  to  set  the  Action Focus  on  a  pending node,  select  the formula she  wants removed,  and  then

click the '– Assm' button on the "Advanced Proof Operations" toolbar. The formula to be removed

must be  selected  in the "Debug Messages"  window, where the user  has  previously displayed the

list  of  assumptions  for  the  selected  pending  node,  in  the  user–friendly  style  (see  'Assm  List'

description  in  Ssection  3.2.2.3).  The  routine  that  deletes  the  indicated  assumption formula  from

the proof  situation of  the selected  pending node  will first  check that  the formula, indeed,  occurs

among the assumptions of the proof situation.

   Figure 3.8: Removed the assumption "I1".

Tools for Mathematical Theory Exploration

37



In Figure 3.8. we can see the outcome of removing the formula "I1" from the proof situation of the

unexpanded  node  in  figure  3.7.  Selecting  the  formula  to  be  removed  was  done  in  the  "Debug

Messages" window (also shown in Figure 3.8.).

3.2.2.5 Instantiate Quantified Variables

One of the specific difficulties in algorithmic proof generation is finding appropriate instances for

quantified  formulae.  Within  the  interactive  environment  we  give  the  user  the  possibility  to  pro-

pose instances in these situations.

To  instantiate  a  universally or  existentially quantified  variable  the user  has  to  select  in  "The

Proof Window" the quantified formula and click on the ’� Inst’ or ’� Inst’, respectively. A window

will appear  where the user  can type in a  substitution for  the variables  she whishes to  instantiate.

The  substitution  has  the  syntax ’{variable_list} |  {term_list}’. The  number  of  variables  has  to

coincide  with  the  number  of  terms.  It  is  not  necessary  that  the  variables  given  in  this  window

occur  in  the  formula  for  which the  user  gives  a  variable  substitution.  The  variables  that  do  not

occur in the formula will be ignored by the instantiation routines.

In Figure 3.9.  the user  instantiates variables  x  and y  in formula (2).  The  instantiation routine

will,  of  course,  ignore  the  variable  y  which  does  not  occur  in  formula  (2).  The  result  of  the

instantiation is  shown in  Figure  3.10.  Note  that,  even though the  variable  y  is  ignored  when the

instantiation in formula (2) is performed, the given substitution shows all the user given variables.

Figure 3.9: Instantiating  the variable in the goal.
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Figure 3.10: The result of variable instantiation.

Of course,  the  user  can  instantiate  existentially quantified  variables  only  if  they occur  in  a  goal

formula and universally quantified variables only if they occur in assumption formulae.

3.2.2.6 Add/Remove Branches, Insert a Goal Formula

For the case the user wishes to work on an alternative proof of a goal of a proof in development,

within  the  same  interactive  proving  session,  the  interactive  environment  provides  her  with  the

possibility  to  add  branches  at  any  position  in  the  proof–tree,  except  for  the  root.  The  button  '+

Branch' on the "Advanced Proof Operations" toolbar  implements this facility. To add a branch at

some point in the proof, the user has to select a formula cell in "The Proof Window" and click on

the '+ Branch'  button of  the "Advanced  Proof  Operations"  toolbar.  The  routine triggered by this

button will insert two nodes in the proof–tree. One node is inserted as a child of the  node that was

selected in "The Proof Window". (Recall that such a selected node has the Action Focus set.) The

node  will  have,  then,  two  sub–trees:  The  first  one  is  the  sub–tree  of  the  node  with  the  Action

Focus set, the second sub–tree is a pending node, which is the second node inserted by the routine

in the proof–tree.  The  proof  situation of  the inserted pending node duplicates  the proof situation

of the node with the Action Focus set. In this way, the user can continue to develop the proof with

the sofar derived formulae available on the added branch as well.
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Figure 3.11: A new branch was added to the proof–tree.

Using the simple example of this section, Figure 3.11. shows that the user (after a few proof steps

were executed) decided to investigate how the proof develops if the lemma "Instance" is added to

the  proof  situation.  In  order  not  to  overwrite  the  existing  proof  steps,  a  new  branch  is  added

immediately after the generation of formula (2). Then, the user set the focus on the pending node

of the new branch, and added the lemma "Instance", whose formula is labeled "I1".  The user can

continue to  develop  the proof  on  any of  the two branches,  provided  that  the Action Focus is  set

correspondingly to the pending node of one branch or the other.

Within the interactive environment, the user  also has the possibility to delete  entire  branches

from  a  current  proof–tree.  For  example,  if  the  user  decides  that  a  proof  alternative  she  was

working on  does  not  lead  to  a  successful proof,  she  can  delete  it  so  that  the proof  contains  less

unuseful information.  To  delete  a  branch  in  the  proof–tree,  the  user  has  to  select  a  formula cell

that belongs to the undesired branch. When the '– Branch' button on the "Advanced Proof Opera-

tion" toolbar is clicked, the branch will be deleted.

The  'New  Goal'  button  on  the  "Advanced  Proof  Operation"  toolbar  combines  the  branch

addition  and  assumption  addition  operations  in  the  following  way:  If  the  user  selects  a  cell

containing a formula (in Theorema language) in any of the working notebook files and then clicks

the  'New Goal'  button  the  triggered  routine  adds  a  new branch  to  the  proof–tree  after  the  node
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with the  Action Focus set.  The  second branch will contain the formula as  an assumption, while

the first branch will contain the formula as a goal to be proven. In other words, the added formula

can be used in proving the original goal if it can be, in turn, proved. 

Figure 3.12: Adding a new goal to the proof.

Figure 3.12.  shows the  outcome of  using the  ’NewGoal’ routine.  The  goal  for  the  first  branch  is

formula (I1)  while, on  the second branch,  the goal  is  formula (4)  and formula (I1)  is  among the

assumptions of the pending node.
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3.2.2.7 Change Provers, Set Prover Options

The  Theorema  system has  different  provers  for  different  mathematical domains  and  theories.  In

the non–interactive proving mode, the prover called to find a proof for a conjecture remains fixed

during the whole proof search process. In the interactive mode, the user can call the application of

the  various  domain  specific  provers  within  the  same  proof  search  process.  The  selection  of  the

different provers  is done  by a click on one of  the buttons on the "Theorema  provers"  toolbar,  at

any time during an interactive proving session.

We have said before that each of the Theorema provers comes with a set of options which can

guide  the  prover  in  finding  a  proof  of  a  conjecture.  In  the  non–interactive  proving  mode  these

options are fixed for the duration of the proof search. In contrast, in the interactive mode we can

change the values of these options during a proof session. The "Prover  Options ..." button on the

"Theorema  provers"  toolbar  will  dynamically  create  another  toolbar,  "Prover  Options"  which

contains a button for each of the options of the currently selected Theorema prover. Setting prover

options  whose  possible  values  are  'True'  or  'False'  can  be  done  by  a  click  on  the  name  of  the

option.  The  option  name will  appear  in  bold  face  when set  to  'True',  and plain face  when set  to

'False'. For the options that take other values than 'True' or 'False', a click on their name will open

a small dialog window where the user can type in the value of the option.

3.2.3 Comments on Implementation

One crucial  matter of  interactive proving is  to make the proof  search routine stop after a  certain

number of inference rule applications and await input from the user. The solution chosen in earlier

implementations was to suspend the execution of the proof search routine, after one inference rule

application,  to  allow  user  input.  This  was  done  by  starting  a  Mathematica  subprocess  that  col-

lected the user actions. Unfortunately, closing the subprocess to continue the proof search was not

a  clean  operation  due  to  a  bug  in  Mathematica  (version  3.0  for  Linux  and  Unix)  [Kossak:99].

Several workarounds had to be implemented to ensure that the user input was not lost.

In  the  current  implementation we  have  opted  for  a  different  solution.  We  have  introduced  a

system–global  boolean  variable  which  keeps  track  on  the  current  proving  mode  (interactive  or

non–interactive),  and  a  step–counter  that  controls  the  number of  proof  steps  to  be  performed by

the proof search routine.

In the non–interactive proving mode, the step–counter variable is ignored and the proof search

routine  proceeds  until  either  a  successful  proof  is  obtained  or  no  inference  rule  can  be  applied

anymore. In the interactive mode, every time the proof search routine is invoked the step–counter

is, first, set to a predefined value. With each inference rule application this value is decreased by

one.  As  soon  as  the  step–counter  reaches  zero,  the  proof  search  routine  stops,  and  returns  the

proof developed sofar which is, then, presented to the user, in "The Proof Window". The user can

modify  the  proof  via  the  tools  of  the  interactive  environment.  When  the  'Next'  button  on  the
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"Theorema Interactive" toolbar is clicked the proof search routine is invoked to further expand the

proof.  The  expansion is  done  for  the left–most pending node  in the proof–tree,  unless otherwise

indicated by the user (see Section 3.2.2.2). The value of the step–counter in the current implementa

tion is set to 1, which means that the proof search stops after one inference rule application.

We  mention  here  two  important  advantages  of  this  solution.  One  is  that  only  few modifica-

tions  of  the  main  proof  search  routines  of  the  system  were  necessary:  First,  a  check  of  the

step–counter  value  was  added  to  the  termination  conditions  of  the  proof  search  routine  and,

second,  certain  Theorema  specific  variable  initialization are  by–passed  when the  proof  search  is

invoked in the interactive mode. (For example, we do not want the proof–tree to be initialized to

an  empty  one,  as  in  the  non–interactive  mode,  but  we  want  to  expand  it  further).  The  second

important advantage of the solution chosen by us is that no alteration of the existing provers of the

Theorema system had to be done in order to use them for proving in the interactive mode. 

From the outset, Mathematica is not an environment for developing user interfaces. Therefore,

the elements of the interactive environment interface do not include objects like drop–down lists,

dynamic menus,  context–sensitive  menus,  check boxes,  etc.  Also,  to  our  knowledge, there  is  no

possibility, in Mathematica, to track the mouse actions. In other words, we cannot determine user

inputs  by  tracking  the  mouse  clicks  and  movements. The  solution  we have  chosen  to  overcome

this difficulty is to use the manipulation of notebooks in the Mathematica kernel. Within any open

notebook,  the  front  end  always  maintains  a  current  selection  [Wolfram:03,  Section  2.11.3].

Selections can be done by user clicks or by issuing commands from the kernel. Mathematica  also

provides  commands  for  extracting  the  content  of  a  selections  in  a  notebook.  So  we  are  able  to

retrieve user  input when the user makes selections in notebooks.  The retrieved input is passed to

the routines implementing the tools  of the interactive environment. The routines will process  the

input  correspondingly  to  the  tool  they  implement,  e.g.  add  an  assumption  to  the  current  proof

situation,  delete  a  branch  in  the  proof–tree,  provide  solving  terms  for  the  proof  of  existentially

quantified formulae, etc.

The  toolbars  described  in  the previous  sections are  implemented using Mathematica's  button

box objects,  i.e.   objects  that  perform actions whenever one clicks on them. The implementation

of the toolbars is done in such a way that it is easy to add new buttons to them, and also to arrange

them in various ways on the user–screen.
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3.2.4 Further Developments

With the following versions of Theorema  we plan to include in the interactive environment a

tool for inference rule selection. Namely, for a selected proof situation, the tool should present, on

request, a list with the inference rules that can be applied. The user can select, then, one or more

inferences to  be  applied  in  the  next  step.  Selecting more  than one  inference from the  list  means

that  the  user  intends  to  investigate  several  proof  alternatives  for  the  given  proof  situation,  one

alternative  for  each  inference  rule  selected.  However,  to  implement  such  a  inference  selection

tool,  important  modifications  of  the  provers  of  Theorema  are  necessary.  For  example,  inference

rules  need  to  be  uniquely  identifiable  among all  the  inferences  of  the  system. This  requirement

was  expressed  also  in  [Kossak:99]  where,  for  a  correspondingly  modified  ’PredicateProver’,

selecting an inference rule for the next step was possible.

Other tools we plan to include in the environment are possibilities to store and load interactive

proof sessions, extracting proof strategies from an interactive proof session. A variant of the latter

tool can be used to help the developers  of the Theorema  provers compose new provers based on

the sequence of  inferences used in an interactive proof  session.  To  achieve this,  we will have to

analyze the proofs obtained in the interactive mode, in order to extract the relevant proof steps and

inference rules.

3.3 Back to the Introductory Example

Let us continue the example given at  the beginning of  this chapter.  We recall  that  we wanted to

prove  that  the limit of  the sum of  two sequences if the sum of  their limits. As additional  knowl-

edge,  we  only  considered  the  definitions  of  ’limit’ and  of  the  ’sum of  sequences’. Later  we have

added a lemma on distances expressed by modules. In the Theorema formulation all these are:

Proposition#"limit of sum", any#f , a, g, b',
+limit#f, a' Â limit#g, b'/w limit#f ¨g, a � b' "lim of ¨"'

Definition%"limit",

�
f,a

limit#f , a'y ��
���

0

�
N
�
n

n � N

�f#n'� a� � H "lim:" )

Definition#"sum of sequences", any#f , g, x',
+f ¨g/#x'  f#x' � g#x' "f ¨ g" '

Lemma$"distance of sum",

�
x,y,z,t,

�
,
� +�+x� z/ � +y� t/� � +G � H//u+�x� y� � G Â �z� t� � H/ "dist �" (

Let us try to prove the proposition using the interactive environment of the Theorema system. The

’Prove’ call we start with is:

Tools for Mathematical Theory Exploration

44



Prove#Proposition#"limit of sum"', using �

�Definition#"limit"', Definition#"sum of sequences"', Lemma#"distance of sum"'�, by � PCS'

After clicking on the ’Start’ button on the "Theorema  Interactive" toolbar  we are faced with "The

Proof  Window"  in  Figure  3.13.  The  window  shows  us  the  initial  proof  situation  of  our  proof

problem.

              Figure 3.13: Initial Proof Situation in the interactive mode.

We continue to develop the proof step–wise, by repeatedly pressing the 'Next' button. Let us, now,

look at the below content of "The Proof Window":

Prove:

(Proposition (limit of sum): lim of ¨)

�
f ,a,g,b

+limit# f , a' Â limit#g, b' Á limit# f ¨ g, a � b'/ ,

under the assumptions:

(Definition (limit): lim:) �
f ,a

L

N

MMMMMMMlimit# f , a' x ��
� �

0

�
N

�
n

n � N

+� f #n'� a� � H /
\

^

]]]]]]] ,

(Definition (sum of sequences): f ¨ g) �
f ,g,x

++ f ¨ g/#x'  f #x'� g#x'/ ,

(Lemma (distance of sum): dist+)

�
x,y,z,t,

�
,

� +�x � y� � G Â �z� t� � H Á �+x � z/� +y� t/� � G � H / .

We assume

(1) limit# f0, a0' Â limit#g0, b0' ,

and show
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(2) limit# f0 ¨ g0, a0 � b0' .

As there are several methods which can be applied, we have several choices to proceed with the 

proof.

Alternative proof 1: pending

Formula (1.1), by (Definition (limit): lim:), implies:

(3) ��
� �

0

�
N

�
n

n � N

+� f0#n'� a0� � H / .

By (3), we can take an appropriate Skolem function such that

(4) ��
� �

0

�
n

n � N0 � � � +� f0#n' � a0� � H / ,

As there are several methods which can be applied, we have several choices to proceed with the 

proof.

Alternative proof 1: pending

Formula (1.2), by (Definition (limit): lim:), implies:

(5) ��
� �

0

�
N

�
n

n � N

+�g0#n'� b0� � H / .

By (5), we can take an appropriate Skolem function such that

(6) ��
� �

0

�
n

n � N1 � � � +�g0#n'� b0� � H / ,

As there are several methods which can be applied, we have several choices to proceed with 

the proof.

Alternative proof 1: pending

Formula (2), using (Definition (limit): lim:), is implied by:

(7) ��
� �

0

�
N

�
n

n � N

+�+ f0¨ g0/#n' � +a0 � b0/� � H / .

We assume

(8) H0 ! 0 ,

and show

(9) �
N

�
n

n � N

+�+ f0 ¨ g0/#n'� +a0 � b0/� � H0/ .

As there are several methods which can be applied, we have several choices to proceed with 

the proof.

Alternative proof 1: failed

The proof of (9) fails. (The prover "QR" was unable to transform the proof situation.)

Alternative proof 2: pending

We have to find  N2
�
 such that

(10) �
n

+n � N2
�
Á �+ f0 ¨ g0/#n'� +a0 � b0/� � H0/ .

Formula (10), using (Definition (sum of sequences): f ¨ g), is implied by:

(11) �
n

+n � N2
�
Á �+ f0#n' � g0#n'/� +a0 � b0/� � H0/ .

Formula (11), using (Lemma (distance of sum): dist+), is implied by:

(12) ��
,

�

� � � ���
0

�
n

+n � N2
�
Á � f0#n'� a0� � G Â �g0#n' � b0� � H / .
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Pending proof of (12).

Alternative proof 2: pending

Pending proof of (2).

Alternative proof 2: pending

Pending proof of (2).

Alternative proof 2: pending

Pending proof of (2).

Ã

Notice  that  the  current  goal  on  the  left–most  branch  of  the  proof  is  an  existentially  quantified

formula, namely, formula (12). The prover has to find some values for G and H such that G + H = H0 .

After some thought we decide to instantiate both G and H  in formula (12) with 
�

0
cccccc2 . The content of

"The Proof Window", omitting the steps that already occurred in the proof attempt above, is:

(... omitted proof text ...)

Formula (11), using (Lemma (distance of sum): dist+), is implied by:

(12) ��
, �

� �
� ��� 0

�
n

+n � N2
�
Á � f0#n'� a0� � G Â �g0#n' � b0� � H / .

The user instantiated the existential goal (12)with: 

(instantiation) �H, G� � � � 0cccccc2 , � 0cccccc2 �
The new goal is 

(ng) + � 0cccccc2 �
� 0cccccc2  H0/ Ð �

n
+n � N2

�
Á � f0#n'� a0� � � 0cccccc2 Ï �g0#n' � b0� � � 0cccccc2 /

Pending proof of (ng).

(Note:  From  now  on  we  will  only  present  the  changes  of  the  proof  displayed  in  "The  Proof

Window".) 

Proceeding some proof steps more we are stuck with the following proof attempt:

(... omitted proof text ...)

The user instantiated the existential goal (12)with: 

(instantiation) �H, G� � � � 0cccccc2 , � 0cccccc2 �
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The new goal is 

(ng) + � 0cccccc2 �
� 0cccccc2  H0/ Ð �

n
+n � N2

�
Á � f0#n'� a0� � � 0cccccc2 Ï �g0#n'� b0� � � 0cccccc2 /

Formula (ng), using (6), is implied by:

+ � 0cccccc2 �
� 0cccccc2  H0/ Ð �

n
+n � N2

�
Á

� 0cccccc2 ! 0 Ï n � N1# � 0cccccc2 ' Ï � f0#n'� a0� � � 0cccccc2 / ,

which, using (4), is implied by:

(13) + � 0cccccc2 �
� 0cccccc2  H0/ Ð �

n
+n � N2

�
Á

� 0cccccc2 ! 0 Ï n � N0# � 0cccccc2 ' Ï n � N1# � 0cccccc2 '/ .

As there are several methods which can be applied, we have several choices to proceed with the 

proof.

Alternative proof 1: failed

The proof of (13) fails. (The prover "QR" was unable to transform the proof situation.)

Alternative proof 2: pending

Formula (13) is implied by

(14) + � 0cccccc2 �
� 0cccccc2  H0/ Ð � 0cccccc2 ! 0 Ð �

n
+n � N2

�
Á n � N0# � 0cccccc2 ' Ï n � N1# � 0cccccc2 '/ .

Pending proof of (14).

Our intuition has already found a value for N2
�

, namely, the maximum of N0#
�

0cccccc2 '  and N1#
�

0
cccccc2 ' .

But the pending proof situation of the current proof does not contain any knowledge on maximum.

Therefore, we provide the prover with an auxiliary lemma:

Lemma$"max greater",

�
m, M1, M2

++m � max#M1, M2'/ Á +m � M1 Â m � M2// "�max" (

The content  of  "The  Proof  Window", after  adding the above lemma and clicking once the ’Next’

button, is:

(... omitted proof text ...)

Alternative proof 2: pending

Formula (13) is implied by

(14) + � 0cccccc2 �
� 0cccccc2  H0/ Ð � 0cccccc2 ! 0 Ð �

n
+n � N2

�

Á n � N0# � 0cccccc2 ' Ï n � N1# � 0cccccc2 '/ .

The user added the assumption: 

(�max) �
m,M1,M2

+m � max#M1, M2' Á m � M1 Â m � M2/ ,

Formula (14), using (�max), is implied by:

(15) + � 0cccccc2 �
� 0cccccc2  H0/ Ð � 0cccccc2 ! 0 Ð �

n
+n � N2

�

Á n � max#N0# � 0cccccc2 ', N1# � 0cccccc2 ''/ .

Pending proof of (15).

At this point, we decide to let the proof search routines finish the proof without user intervention.

We press the ’Finish’ button on the "Theorema Interactive" toolbar, and the outcome is :
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(... omitted proof text ...)

Formula (14), using (�max), is implied by:

(15) + � 0cccccc2 �
� 0cccccc2  H0/ Ð � 0cccccc2 ! 0 Ð �

n
+n � N2

�

Á n � max#N0# � 0cccccc2 ', N1# � 0cccccc2 ''/ .

As there are several methods which can be applied, we have several choices to proceed with the 

proof.

Alternative proof 1: failed

The proof of (15) fails. (The prover "QR" was unable to transform the proof situation.)

Alternative proof 2: proved

Partially solving it, formula (15) is implied by

(16) + � 0cccccc2 �
� 0cccccc2  H0/ Ï � 0cccccc2 ! 0 Ï +N2

�

 max#N0# � 0cccccc2 ', N1# � 0cccccc2 ''/ .

As there are several methods which can be applied, we have several choices to proceed with the 

proof.

Alternative proof 1: failed

The proof of (16)fails. (The prover "QR" was unable to transform the proof situation.)

Alternative proof 2: proved

We can partially solve (16). By taking N2
�

� max#N0# � 0cccccc2 ', N1# � 0cccccc2 '' , formula (16) is implied by 

(17) + � 0cccccc2 �
� 0cccccc2  H0/ Ï � 0cccccc2 ! 0 .

We prove the individual conjunctive parts of (17):

Proof of (17.1) � 0cccccc2 �
� 0cccccc2  H0 :

As there are several methods which can be applied, we have several choices to proceed with 

the proof.

Alternative proof 1: failed

The proof of (17.1) fails. (The prover "QR" was unable to transform the proof situation.)

Alternative proof 2: proved

Now,
� 0cccccc2 �

� 0cccccc2  H0

can be proved by a call to Collins cad–method.

Hence formula (17.1) is proved, and we are done.

Proof of (17.2) � 0cccccc2 ! 0:

As there are several methods which can be applied, we have several choices to proceed with 

the proof.

Alternative proof 1: failed

The proof of (17.2) fails. (The prover "QR" was unable to transform the proof situation.)

Alternative proof 2: proved

Now,
� 0cccccc2 ! 0

can be proved by a call to Collins cad–method.

Hence formula (17.2) is proved, and we are done.

Ã
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Indeed,  the proof succeeded,  and we are happy about it.  Using the simplification tools  described

in  Chapter  4.  we  can  post–process  the  final  proof  for  a  better  presentation  of  the  result  of  the

interactive proof session. The proof is, then:

Prove:

(Proposition (limit of sum): lim of ¨)

�
f ,a,g,b

+limit# f , a' Â limit#g, b' Á limit# f ¨ g, a � b'/ ,

under the assumptions:

(Definition (limit): lim:) �
f ,a

L

N

MMMMMMMlimit# f , a' x ��� �
0

�
N

�
n

n � N

+� f #n'� a� � H /
\

^

]]]]]]] ,

(Definition (sum of sequences): f ¨ g) �
f ,g,x

++ f ¨ g/#x'  f #x'� g#x'/ ,

(Lemma (distance of sum): dist+)

�
x,y,z,t,

�
,

� +�x � y� � G Â �z� t� � H Á �+x � z/� +y� t/� � G � H / .

We assume

(1) limit# f0, a0' Â limit#g0, b0' ,

and show

(2) limit# f0 ¨ g0, a0 � b0' .

Formula (1.1), by (Definition (limit): lim:), implies:

(3) ��� �
0

�
N

�
n

n � N

+� f0#n'� a0� � H / .

By (3), we can take an appropriate Skolem function such that

(4) ��� �
0

�
n

n � N0 �
� �

+� f0#n' � a0� � H / ,

Formula (1.2), by (Definition (limit): lim:), implies:

(5) ��� �
0

�
N

�
n

n � N

+�g0#n'� b0� � H / .

By (5), we can take an appropriate Skolem function such that

(6) ��� �
0

�
n

n � N1 �
� �

+�g0#n'� b0� � H / ,

Formula (2), using (Definition (limit): lim:), is implied by:

(7) ��� �
0

�
N

�
n

n � N

+�+ f0¨ g0/#n' � +a0 � b0/� � H / .

We assume

(8) H0 ! 0 ,

and show

(9) �
N

�
n

n � N

+�+ f0 ¨ g0/#n'� +a0 � b0/� � H0/ .

We have to find  N2
�

 such that

(10) �
n

+n � N2
�

Á �+ f0 ¨ g0/#n'� +a0 � b0/� � H0/ .

Formula (10), using (Definition (sum of sequences): f ¨ g), is implied by:

(11) �
n

+n � N2
�

Á �+ f0#n' � g0#n'/� +a0 � b0/� � H0/ .

Formula (11), using (Lemma (distance of sum): dist+), is implied by:
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(12) ��
,

�
� � � ���

0

�
n

+n � N2
�

Á � f0#n'� a0� � G Â �g0#n' � b0� � H / .

The user instantiated the existential goal (12) with: 

(instantiation) �H, G� � �
�
0cccccc2 ,

�
0cccccc2 �

The new goal is 

(ng) +
�
0cccccc2 �

�
0cccccc2  H0/ Ð �

n
+n � N2

�

Á � f0#n'� a0� �
�
0cccccc2 Ï �g0#n'� b0� �

�
0cccccc2 /

Formula (ng), using (6), is implied by:

+
�
0cccccc2 �

�
0cccccc2  H0/ Ð �

n
+n � N2

�

Á

�
0cccccc2 ! 0 Ï n � N1#

�
0cccccc2 ' Ï � f0#n'� a0� �

�
0cccccc2 / ,

which, using (4), is implied by:

(13) +
�
0cccccc2 �

�
0cccccc2  H0/ Ð �

n
+n � N2

�

Á

�
0cccccc2 ! 0 Ï n � N0#

�
0cccccc2 ' Ï n � N1#

�
0cccccc2 '/ .

Formula (13) is implied by

(14) +
�
0cccccc2 �

�
0cccccc2  H0/ Ð

�
0cccccc2 ! 0 Ð �

n
+n � N2

�

Á n � N0#
�
0cccccc2 ' Ï n � N1#

�
0cccccc2 '/ .

The user added the assumption: 

(�max) �
m,M1,M2

+m � max#M1, M2' Á m � M1 Â m � M2/ ,

Formula (14), using (�max), is implied by:

(15) +
�
0cccccc2 �

�
0cccccc2  H0/ Ð

�
0cccccc2 ! 0 Ð �

n
+n � N2

�

Á n � max#N0#
�
0cccccc2 ', N1#

�
0cccccc2 ''/ .

Partially solving it, formula (15) is implied by

(16) +
�
0cccccc2 �

�
0cccccc2  H0/ Ï

�
0cccccc2 ! 0 Ï +N2

�

 max#N0#
�
0cccccc2 ', N1#

�
0cccccc2 ''/ .

We can partially solve (16). By taking N2
�

� max#N0#
�
0cccccc2 ', N1#

�
0cccccc2 '' , formula (16) is implied by 

(17) +
�
0cccccc2 �

�
0cccccc2  H0/ Ï

�
0cccccc2 ! 0 .

We prove the individual conjunctive parts of (17):

Proof of (17.1) 
�
0cccccc2 �

�
0cccccc2  H0 :

Now,
�
0cccccc2 �

�
0cccccc2  H0

can be proved by a call to Collins cad–method.

Hence formula (17.1) is proved, and we are done.

Proof of (17.2) 
�
0cccccc2 ! 0:

Now,
�
0cccccc2 ! 0

can be proved by a call to Collins cad–method.

Hence formula (17.2) is proved, and we are done.

Ã
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4 4. Proof Simplification

4.1 The Problem

The  output  of  the  Theorema  provers  are  proof  objects  that  contain  all  the  information  on  the

sequence of inference rules used in the proofs and the formulae involved in each inference step. In

particular,  the  proof  object  also  contains  the  information  on  those  branches  of  the  proof  search

that were not successful or ultimately did not contribute to the successful branch of the proof. By

default,  the  Theorema  post–processor  for  proof  objects  produces  a  Mathematica  notebook  from

the  final  proof  object  that  shows the  entire  proof  object  together  with  some explanatory  text  in

natural language (e.g. English) at each proof step. (In order  to have natural language explanatory

texts in the proofs  these texts have to  be  provided  in the code  of  the postprocessor).  The nested

structure of the proof object is reflected by nested Mathematica  cell brackets so that the user can

open and close entire sub–trees of the proof object depending on which parts and sub–parts of the

proof she wants to inspect.

However,  many times,  the user  does  not  want to  see  the complete  information on  the  proofs

generated. Often, the user is only interested in the successful branch in a proof search and does not

want  to  see  the   information  on  failing  or  superfluous  branches.  Also,  when  a  proof  has  been

found by a prover, it may well be the case that afterwards, by inspecting the proof object, one may

be able to re–structure the proof in such a way that it becomes more concise and easier to under-

stand.  Finally,  when a  proof  has  been  found  by  a  prover  with a  certain  granularity  of  inference

rules,  one  may  want  to  view  the  proof  as  if  it  had  been  produced  by  a  prover  with  a  coarser

granularity  of  inference  rules.  The  tools  which  we  describe  in  this  chapter  perform  these

"simplifications" of proof objects.

Proof  object  simplification is  done  as  post–processing,  i.e.  after  the proof  objects  have been

generated  by  the  provers.  This  is  a  reasonable  and  natural  strategy:  Some  provers  need  to

back–track  on  unsuccessful  branches;  the  repetition  of  sequences  of  proof  steps  in  different

branches  of  a  proof  can  not  be  easily  detected  at  proving  time;  and,  also,  possibilities  for

re–structuring and contracting proofs may only be visible after the complete proof has been found.

Also, let us emphasize that there is no objective criterion for what is "the appropriate granularity"

of  proof  steps  the  reader  of  a  proof  wants  to  see.  Therefore,  in  the  tool  that  combines  certain

patterns  of  proof  steps  to  bigger  proof  steps,  input from the  user  (or  the  designer  of  the prover)
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must  be  provided  telling  the  proof  simplification  algorithm  which  proof  steps  pattern  it  should

contract.

One  might  wish  that  good  provers,  at  proving  time,  eliminate  all  failing  and  successful

branches. However, as a design decision, we did not go for this possible design goal in the basic

design of Theorema  because the information contained in failing proofs  (or proof  branches) may

be  mathematically very  interesting  and  rewarding to  be  studied  (or  post–processed)  in  detail.  In

fact,  the  recent  theorem  conjecturing  and  algorithm  synthesis  method  proposed  in

[Buchberger:03a]  takes  exactly  this  information  from  failing  proofs  as  one  of  the  two  essential

starting points for the method. 

We take the following  proof of a simple  lemma, automatically generated by the Theorema set

theory prover, see [Windsteiger:01] as our basic example:

Prove:

(Lemma (factor–set non–empty)) �
R

+is–reflexive#R' Á is–all–nonempty#factor–set#R''/ ,

under the assumptions:

(Definition (factor set)) �
R

L
N
MMfactor–set#R' : �class#R, x' «

x
x ± X!\

^
]] ,

(Definition (class)) �
R,x

L
N
MMclass#R, x' : �a «

a
a ± X Â ;a, x? ± R!\

^
]] ,

(Definition (is relation)) �
R

+is–relation#R' :x R ° XlX/ ,

(Definition (is reflexive)) �
R

-is–reflexive#R' :x �
x

+x ± X Á ;x, x? ± R/1 ,

(Definition (is subset set)) �
P

L
N
MMis–subset–set#P' :x �

p
+p ± P Á p ° X/\^

]] ,

(Definition (is all non empty)) �
P

L
N
MMis–all–nonempty#P' :x �

p
+p ± P Á p � ��/\^

]] .

Using available computation rules we can simplify the knowledge base:

Formula (Definition (is all non empty)) simplifies to

(1) �
P

L
N
MMis–all–nonempty#P' :x �

p
+p ± P Á �� � p/\^

]] ,

As there are several methods which can be applied, we have several choices to proceed with the 

proof.

Alternative proof 1: proved

We assume

(2) is–reflexive#R0' ,

and show

(3) is–all–nonempty#factor–set#R0'' .

Formula (3), using (Definition (factor set)), is implied by:

is–all–nonempty%�class#R0, x' «
x

x ± X!) ,

which, using (Definition (class)), is implied by:

is–all–nonempty%��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X!) ,

which, using (1), is implied by:
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(4) �
p

L

N

MMMMMMMp ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! Á �� � p
\

^

]]]]]]] .

As there are several methods which can be applied, we have several choices to proceed with the 

proof.

Alternative proof 1: proved

We assume

(5) p0 ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! ,

and show

(6) �� � p0 .

We can choose an appropriate value in (5) such that

(7) a10 ± X,

(8) p0  �a «
a

a ± X Â ;a, a10? ± R0! .

From (7) we can infer

(9) X � �� .

From (8) we can infer

(10) p0 ° �a «
a

a ± X Â ;a, a10? ± R0! ,

(11) �a «
a

a ± X Â ;a, a10? ± R0! ° p0 .

From (10) we can infer

(12) �
a3

+a3 ± p0 Á a3 ± X Â ;a3, a10? ± R0/ .

From (11) we can infer

(13) �
a4

+a4 ± X Â ;a4, a10? ± R0 Á a4 ± p0/ .

Using available computation rules we can simplify the knowledge base:

Formula (13) simplifies to

(14) �
a4

+;a4, a10? ² R0 Á a4 ² X Á a4 ± p0/ ,

Formula (6) means that we have to show that

(15) �
p1

+p1 ± p0/ .

We have no means to solve (15).

As there are several methods which can be applied, we have several choices to proceed with 

the proof.

Alternative proof 1: proved

We did not find any ground formula to match a part of (15).

Formula (15), using (8), is implied by:

(16) �
p1

L
N
MMp1 ± �a «

a
a ± X Â ;a, a10? ± R0!\

^
]] .

In order to prove (16) we have to show:

(17) �
p1

+p1 ± X Â ;p1, a10? ± R0/ .

We have no means to solve (17).

As there are several methods which can be applied, we have several choices to proceed with 

the proof.

Alternative proof 1: proved
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Because parts of the knowledge base match a part of (17), we try to find an instance of (17).

Alternative proof 1: proved

Now, let p1 : a10 . Thus, for proving (17) it is sufficient to prove:

(18) a10 ± X Â ;a10, a10? ± R0 .

As there are several methods which can be applied, we have several choices to proceed 

with the proof.

Alternative proof 1: proved

We prove the individual conjunctive parts of (18):

Proof of (18.1) a10 ± X:

Formula (18.1) is true because it is identical to (7).

Proof of (18.2) ;a10, a10? ± R0 :

Formula (10), by (8), implies:

(19) �a5 «
a5

a5 ± X Â ;a5, a10? ± R0! ° �a «
a

a ± X Â ;a, a10? ± R0! .

From (19) we can infer

(20) �
a51

+a51 ± X Â ;a51, a10? ± R0 Á a51 ± X Â ;a51, a10? ± R0/ .

Using available computation rules we can simplify the knowledge base:

Formula (20) simplifies to

(21) �
a51

True,

Formula (11), by (8), implies:

(22) �a «
a

a ± X Â ;a, a10? ± R0! ° �a6 «
a6

a6 ± X Â ;a6, a10? ± R0! .

From (22) we can infer

(23) �
a7

+a7 ± X Â ;a7, a10? ± R0 Á a7 ± X Â ;a7, a10? ± R0/ .

Using available computation rules we can simplify the knowledge base:

Formula (23) simplifies to

(24) �
a7

True,

Formula (2), by (Definition (is reflexive)), implies:

(25) �
x

+x ± X Á ;x, x? ± R0/ .

Formula (18.2), using (25), is implied by:

(26) a10 ± X.

Formula (26) is true because it is identical to (7).

Alternative proof 2: pending

Pending proof of (18).

Alternative proof 2: pending

Pending proof of (17).

Alternative proof 2: pending
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Pending proof of (17).

Alternative proof 2: pending

Pending proof of (15).

Alternative proof 2: pending

Pending proof of (4).

Alternative proof 2: pending

Pending proof of (Lemma (factor–set non–empty)).

Ã

Now compare this presentation of the proof, which is just a one–to–one nested readable output of

the  nested  proof  object  generated  by  the  prover,  with  the  following  proof,  which  results  from

applying the simplification tools described in this chapter to the proof object.

Prove:

(Lemma (factor–set non–empty)) �
R

+is–reflexive#R' Á is–all–nonempty#factor–set#R''/ ,

under the assumptions:

(Definition (factor set)) �
R

L
N
MMfactor–set#R' : �class#R, x' «

x
x ± X!\

^
]] ,

(Definition (class)) �
R,x

L
N
MMclass#R, x' : �a «

a
a ± X Â ;a, x? ± R!\

^
]] ,

(Definition (is relation)) �
R

+is–relation#R' :x R ° XlX/ ,

(Definition (is reflexive)) �
R

-is–reflexive#R' :x �
x

+x ± X Á ;x, x? ± R/1 ,

(Definition (is subset set)) �
P

L
N
MMis–subset–set#P' :x �

p
+p ± P Á p ° X/\^

]] ,

(Definition (is all non empty)) �
P

L
N
MMis–all–nonempty#P' :x �

p
+p ± P Á p � �� /\

^
]] .

Using available computation rules we can simplify the knowledge base:

Formula (Definition (is all non empty)) simplifies to

(1) �
P

L
N
MMis–all–nonempty#P' :x �

p
+p ± P Á �� � p/\^

]] ,

We assume

(2) is–reflexive#R0' ,

and show

(3) is–all–nonempty#factor–set#R0'' .

Formula (2), by (Definition (is reflexive)), implies:

(25) �
x

+x ± X Á ;x, x? ± R0/ .

Formula (3), using (Definition (factor set)), is implied by:

is–all–nonempty%�class#R0, x' «
x

x ± X!) ,
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which, using (Definition (class)), is implied by:

is–all–nonempty%��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X!) ,

which, using (1), is implied by:

(4) �
p

L

N

MMMMMMMp ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! Á �� � p
\

^

]]]]]]] .

We assume

(5) p0 ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! ,

and show

(6) �� � p0 .

We can choose an appropriate value in (5) such that

(7) a10 ± X,

(8) p0  �a «
a

a ± X Â ;a, a10? ± R0! .

Formula (6) means that we have to show that

(15) �
p1

+p1 ± p0/ .

Formula (15), using (8), is implied by:

(16) �
p1

L
N
MMp1 ± �a «

a
a ± X Â ;a, a10? ± R0!\

^
]] .

In order to prove (16) we have to show:

(17) �
p1

+p1 ± X Â ;p1, a10? ± R0/ .

Now, let p1 : a10 . Thus, for proving (17) it is sufficient to prove:

(18) a10 ± X Â ;a10, a10? ± R0 .

We prove the individual conjunctive parts of (18):

Proof of (18.1) a10 ± X:

Formula (18.1) is true because it is identical to (7).

Proof of (18.2) ;a10, a10? ± R0 :

Formula (18.2), using (25), is implied by:

(26) a10 ± X.

Formula (26) is true because it is identical to (7).

Ã
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4.2 Simplifying Proofs

The  proof  simplification  behavior  can  be  controlled  by  the  options  of  the  function  call  that

invokes them. This is consistent with the general philosophy of Theorema  (and similar to the one

of Mathematica  functions), in which the behavior of the main commands (’Prove’, ’Compute’, etc.)

is  determined  by  options.  The  user  is  not  imposed  any  additional  burden  in  specifying  these

options  because  default  values are  provided  for  each of  the options  available.  The  option  names

recognized by the proof simplifier refer to branches of proofs and inference steps, options named

’branches’  and  ’steps’,  respectively.  The  values  the  option  ’branches’ can  take  are  ’Proved’,
’Disproved’,  ’Failed’,  ’Pending’  and  ’All’.  The  values  the  option  ’steps’ can  take  are  ’Useful’,

’Combined’, ’Lifted’, ’LiftedParallel’, ’Essential’ and ’All’. Each of the option names and values

will be detailed in the following sections.

The proof simplification process is driven by the information stored in the proof object.  With

the exception of the procedures corresponding to the option values ’Combined’ and ’Essential’ (see

below), the simplification routines will consider only the formulae occurring in the proof, ignoring

the information on how they were obtained (i.e. which inference rule was applied and how). 

We have seen in Chapter 1 Section 1.3.1. how information about the proving process is stored

in the proof object.  The simplification routines use only part of that information, i.e. the name of

the inference rule applied,  the formulae used when the inference rule was applied, and the gener-

ated  formulae.  Using  this  information,  during  the  simplification  process,  trivial  but  necessary

proof steps can be presented to the user in a more concise and intuitive form.

A typical proof call that produces a proof–object is:

Prove#Proposition#"Goal"', using � Knowledge, by � Prover +
, other options 
/';

Simplification within Theorema  may either  be  invoked as  part  of  the  ’Prove’ command, or  as  a

separate ’Transform’ command:

Prove#Proposition#"Goal"', using � Theory#"Assumptions"', by � Prover

+
, other options 
/, TransformBy� ProofSimplifier, TransformerOptions�

�branches � +
 simplification options 
/, steps �+
 simplification options 
/�';

or

Transform#proof � object, by � ProofSimplifier, TransformerOptions�

�branches � +
 simplification options 
/, steps �+
 simplification options 
/�';

The ’Transform’ function takes as input a proof object and returns another proof object which is

processed  by  the  proof  simplifier  to  retain  only  the  information  required  by  the  user  via  the

options.
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In  the  following we  will  describe  in  detail  how each  of  the  option  values  of   ’branches’ and

’steps’ influence the simplification process.

4.2.1 ’branch’ Simplification

A Theorema  proof  object  is  a  tree–like  data  structure  that  may  contain  four  types  of  branches,

determined  by  the  proof  value  of  their  leaves:  "Proved",  "Disproved",  "Failed"  and  "Pending".

Depending  on  the  proving  technique  that  was  used,  a  proof  built  by  Theorema's  provers  may

contain  one  or  more  branches  of  possible  different  types.  In  no  case  can  "Proved"  and  "Dis-

proved" branches occur in the same proof object.  A successful proof has at least one branch with

the proof value either "Proved" or "Disproved".  In this sense, "successful" means that the provers

of the system have completed a proof either by proving that the given goal is true or by disproving

it.  The  proof  object  might contain  other  types  of  branches,  too.  For  example,  branches  with the

proof  value  of  the  nodes  "Pending"  correspond  to  the  eventual  proof  alternatives  that  were  not

inspected anymore by the prover after the proof succeeded. 

Most  of  the times when a proof  is  displayed, the user is  interested to see only the successful

branches, if any. When the result of a 'Prove' command is a failed proof it is not necessary that the

property the user tried to prove is not true. For this reason, the user may want to inspect the failed

branches of the proof.

The ’branches’ option gives the user the possibility to indicate the proof simplifier which type

of  branches  are  to  be  retained  in  the  proof  object.  The  values  this  option  can  take  are  ’All’,

’Proved’,  ’Disproved’,  ’Failed’ and ’Pending’.  The ’All’ option value is the default one, leaving

the branches of the proof object untouched.

The most common usage of the option 'branches', 'branches |  Proved',  is  to remove unsuc-

cessful and pending branches from a proof object.  For example, suppose that among the assump-

tions of  a  proof  situation we have a  formula 'A w  G'  and that  the  current  goal  to  be  proved  is

formula 'G'. The propositional prover of Theorema will produce two proof alternatives:

Alternative 1: prove  'A';

Alternative 2: add the formula '¬A' to the assumptions and prove 'G'.

If the first proof alternative succeeds the proof object has the proof value "Proved":   the success-

ful branch in the proof is  the one of Alternative 1. The proof object contains a pending branch for

Alternative  2  which  was  not  investigated  anymore  since  the  proof  succeeded  in  the  first  case.

Using the 'branches | Proved' option of the ProofSimplifier, the first branch (the successful one)

is kept and the pending one is deleted.

In the case the first alternative does not succeed, the proof branch for Alternative 1 will have

the  proof  value  "Failed".  The  prover  continues  with  the  proof  of  the  second  alternative.  If  the
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proof  succeeds  in  this  case,  this  proof  branch  makes  the  whole  proof  successful.  Using  the

’branches |  Proved’ of  the  ProofSimplifier,  this  successful  branch  is  now  kept  and  the  first

branch is deleted, as a failed branch.

The  function  implementing  this  simplification  process  takes  as  input  the  proof  object  to  be

simplified and  the  type  or  a  list  with the  types of  branches  to  be  kept  (e.g.  ’{Proved, Failed}’ ).

Then it  removes all  the nodes in the proof object  that have the proof value different from any of

the input branch types. It may be possible that the output of this process is an empty proof object.

This  can  happen,  for  example,  when  the  proof  did  not  succeed  (i.e.  the  proof  object  has  no

successful  branch),  but  the  option  passed  to  of  the  proof  simplifier  is  ’branches |  Proved’,

removing all branches of the proof object.

Let  us  apply  the  branch  simplification to  the proof  given as  example at  the beginning of  the

chapter. The proof has several pending branches which correspond to the unexplored nodes in the

proof. The result of the branch simplification is:

Prove:

(Lemma (factor–set non–empty)) �
R

+is–reflexive#R' Á is–all–nonempty#factor–set#R''/
,

under the assumptions:

(Definition (factor set)) �
R

L
N
MMfactor–set#R' : �class#R, x' «

x
x ± X!\

^
]] ,

(Definition (class)) �
R,x

L
N
MMclass#R, x' : �a «

a
a ± X Â ;a, x? ± R!\

^
]] ,

(Definition (is relation)) �
R

+is–relation#R' :x R ° XlX/ ,

(Definition (is reflexive)) �
R

-is–reflexive#R' :x �
x

+x ± X Á ;x, x? ± R/1 ,

(Definition (is subset set)) �
P

L
N
MMis–subset–set#P' :x �

p
+p ± P Á p ° X/\^

]] ,

(Definition (is all non empty)) �
P

L
N
MMis–all–nonempty#P' :x �

p
+p ± P Á p � ��/\^

]] .

Using available computation rules we can simplify the knowledge base:

Formula (Definition (is all non empty)) simplifies to

(1) �
P

L
N
MMis–all–nonempty#P' :x �

p
+p ± P Á �� � p/\^

]] ,

We assume

(2) is–reflexive#R0' ,

and show

(3) is–all–nonempty#factor–set#R0'' .

Formula (3), using (Definition (factor set)), is implied by:

is–all–nonempty%�class#R0, x' «
x

x ± X!) ,

which, using (Definition (class)), is implied by:

is–all–nonempty%��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X!) ,

which, using (1), is implied by:
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(4) �
p

L

N

MMMMMMMp ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! Á �� � p
\

^

]]]]]]] .

We assume

(5) p0 ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! ,

and show

(6) �� � p0 .

We can choose an appropriate value in (5) such that

(7) a10 ± X,

(8) p0  �a «
a

a ± X Â ;a, a10? ± R0! .

From (7) we can infer

(9) X � �� .

From (8) we can infer

(10) p0 ° �a «
a

a ± X Â ;a, a10? ± R0! ,

(11) �a «
a

a ± X Â ;a, a10? ± R0! ° p0 .

From (10) we can infer

(12) �
a3

+a3 ± p0 Á a3 ± X Â ;a3, a10? ± R0/ .

From (11) we can infer

(13) �
a4

+a4 ± X Â ;a4, a10? ± R0 Á a4 ± p0/ .

Using available computation rules we can simplify the knowledge base:

Formula (13) simplifies to

(14) �
a4

+;a4, a10? ² R0 Á a4 ² X Á a4 ± p0/ ,

Formula (6) means that we have to show that

(15) �
p1

+p1 ± p0/ .

We have no means to solve (15).

We did not find any ground formula to match a part of (15).

Formula (15), using (8), is implied by:

(16) �
p1

L

N
MMp1 ± �a «

a
a ± X Â ;a, a10? ± R0!\

^
]] .

In order to prove (16) we have to show:

(17) �
p1

+p1 ± X Â ;p1, a10? ± R0/ .

We have no means to solve (17).

Now, let p1 : a10 . Thus, for proving (17) it is sufficient to prove:

(18) a10 ± X Â ;a10, a10? ± R0 .

We prove the individual conjunctive parts of (18):

Proof of (18.1) a10 ± X:

Formula (18.1) is true because it is identical to (7).

Proof of (18.2) ;a10, a10? ± R0 :

Formula (10), by (8), implies:

(19) �a5 «
a5

a5 ± X Â ;a5, a10? ± R0! ° �a «
a

a ± X Â ;a, a10? ± R0! .
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From (19) we can infer

(20) �
a51

+a51 ± X Â ;a51, a10? ± R0 Á a51 ± X Â ;a51, a10? ± R0/ .

Using available computation rules we can simplify the knowledge base:

Formula (20) simplifies to

(21) �
a51

True,

Formula (11), by (8), implies:

(22) �a «
a

a ± X Â ;a, a10? ± R0! ° �a6 «
a6

a6 ± X Â ;a6, a10? ± R0! .

From (22) we can infer

(23) �
a7

+a7 ± X Â ;a7, a10? ± R0 Á a7 ± X Â ;a7, a10? ± R0/ .

Using available computation rules we can simplify the knowledge base:

Formula (23) simplifies to

(24) �
a7

True,

Formula (2), by (Definition (is reflexive)), implies:

(25) �
x

+x ± X Á ;x, x? ± R0/ .

Formula (18.2), using (25), is implied by:

(26) a10 ± X.

Formula (26) is true because it is identical to (7).

Ã

4.2.2 ’steps’ Simplification

In  contrast  to  simplifying  branches,  proof  steps  simplification  will  inspect  the  proof  steps

(individual  inferences)  of  a  proof.  Simplifying proof  steps means removing, merging, or  moving

proof steps such that the result of all these  actions is a condensed proof with a succinct structure.

Naturally, these kind of  transformations make sense only if  the proof  is  successful. This  kind of

simplification  is  triggered  via  the  ’steps’  option.  The  possible  values  of  the  option  are  ’All’,
’Useful’,  ’Lifted’,  ’LiftedParallel’,  ’Combined’  and  ’Essential’.  We  will  describe  each  of  them

below.

4.2.2.1 Option Value ’All’

This is the default value of the ’steps’ option. It applies, one by one, all of the step simplifications

(that are described below).

4.2.2.2 Option Value ’Useful’

This value of the ’steps’ option causes the removal of all steps that do not contribute at proving the

given goal. The simplification is done in two phases:

a) identification of the useful steps, and 

b) removal of the useless steps. 
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The  first  step  in  the  identification  phase  is  to  remove  the  pending  and  failed  branches  from the

proof object, because it is clear that these do not help in proving the goal. This removal is equiva-

lent with specifying  ’branch | {Proved, Disproved}’ in the call of the proof simplifier. Note that

if  the  proof  is  not  successful  this  will  return  an  empty  proof  object  and  a  warning  message  is

printed.  It  is  understandable,  then,  that  such  a  simplification  only  makes  sense  in  the  case  of  a

successful proof (i.e. a proof that either has a proved or a disproved branch).

Let  us  consider  the  case  of  simplifying  a  successful  proof.  After  removing  any  existing

Pending  and/or  Failing  branches  the  identification  phase  continues  in  a  bottom–up  manner.  The

proof object tree is traversed in post–order (starting from the right–most leaf of the proof tree). As

the nodes of  the proof  tree  are visited,  we construct and maintain a list of formulae labels which

are  used  in  proving  the  goal.  Based  on  this  list  we  can  delete  nodes  and  formulae  that  do  not

contribute to proving the goal. Maintaining the list of used formulae labels is part of the identifica-

tion  phase  of  the  simplification  process,  while  removing  the  steps  and  formulae  is  part  of  the

removal  phase.  In  more  detail,  for  each  of  the  nodes  in  the  proof  tree  we  can  have  one  of  the

following cases:

1. The node has no children: a leaf node in the proof tree is a node that states the reasons

the  goal  is  proved  or  disproved.  (Recall  that  we  have  a  successful  proof  in  which  we

removed  the  pending  and  failed  branches.)  The  formulae  stored  in  this  node  are  defi-

nitely contributing to the proof so we add their labels to the list of used formulae labels.

The parent of the leaf node is notified about the fact that the node was checked.

2.  The  node  has  only  one  child:  in  this  case  we  compare  the  labels  of  the  generated

formulae of the node with the labels in the list of used formulae labels.  If they occur in

the list we replace in the list the occurring labels with the labels of the used formulae in

the current node. If they do not occur in the list we delete the node from the proof tree.

In both cases, the parent node is notified about the check done on the current node.

3.  The  node  has  more than one child:  If  there  is  a  child  that  has  not  produced  a  check

notification, the simplification process continues on the subtree with the unchecked child

as  the  root  of  the  subtree.  If  the  node  has  received  check  notifications  from  all  its

children we perform the same operations as for a node with only one child (case 2).

4.  The  node  is  the root  of  the tree:  this node stores  the conjecture  and the assumptions

the  user  specified  in  the  'Prove'  call.  The  simplification  procedure  checks  whether  the

labels  of  these assumptions are  in the list  of  used formulae labels.  However,  if  they do

not occur in the list, they will not be deleted from the proof object  since this should be

the decision of  the user  and not of the Theorema  system. Messages will notify the user

which of the assumptions were not used.

As an example, let us apply the 'steps | Useful' proof simplification to the basic example given

at the beginning of this chapter in Section 4.1. Formulae (9) – (14), (12) – (14) and (19) – (24) in

the unsimplified proof are removed by the simplification routine, as well as the pending branches

of the proof:
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Prove:

(Lemma (factor–set non–empty))

�
R

+is–reflexive#R' Á is–all–nonempty#factor–set#R''/ ,

under the assumptions:

(Definition (factor set)) �
R

L
N
MMfactor–set#R' : �class#R, x' «

x
x ± X!\

^
]] ,

(Definition (class)) �
R,x

L
N
MMclass#R, x' : �a «

a
a ± X Â ;a, x? ± R!\

^
]] ,

(Definition (is relation)) �
R

+is–relation#R' :x R ° XlX/ ,

(Definition (is reflexive)) �
R

-is–reflexive#R' :x �
x

+x ± X Á ;x, x? ± R/1 ,

(Definition (is subset set)) �
P

L
N
MMis–subset–set#P' :x �

p
+p ± P Á p ° X/\^

]] ,

(Definition (is all non empty)) �
P

L
N
MMis–all–nonempty#P' :x �

p
+p ± P Á p � ��/\^

]] .

Using available computation rules we can simplify the knowledge base:

Formula (Definition (is all non empty)) simplifies to

(1) �
P

L
N
MMis–all–nonempty#P' :x �

p
+p ± P Á �� � p/\^

]] ,

We assume

(2) is–reflexive#R0' ,

and show

(3) is–all–nonempty#factor–set#R0'' .

Formula (3), using (Definition (factor set)), is implied by:

is–all–nonempty%�class#R0, x' «
x

x ± X!) ,

which, using (Definition (class)), is implied by:

is–all–nonempty%��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X!) ,

which, using (1), is implied by:

(4) �
p

L

N

MMMMMMMp ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! Á �� � p
\

^

]]]]]]] .

We assume

(5) p0 ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! ,

and show

(6) �� � p0 .

We can choose an appropriate value in (5) such that

(7) a10 ± X,

(8) p0  �a «
a

a ± X Â ;a, a10? ± R0! .

Formula (6) means that we have to show that

(15) �
p1

+p1 ± p0/ .

Formula (15), using (8), is implied by:

(16) �
p1

L
N
MMp1 ± �a «

a
a ± X Â ;a, a10? ± R0!\

^
]] .

In order to prove (16) we have to show:
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(17) �
p1

+p1 ± X Â ;p1, a10? ± R0/ .

Now, let p1 : a10 . Thus, for proving (17) it is sufficient to prove:

(18) a10 ± X Â ;a10, a10? ± R0 .

We prove the individual conjunctive parts of (18):

Proof of (18.1) a10 ± X:

Formula (18.1) is true because it is identical to (7).

Proof of (18.2) ;a10, a10? ± R0 :

Formula (2), by (Definition (is reflexive)), implies:

(25) �
x

+x ± X Á ;x, x? ± R0/ .

Formula (18.2), using (25), is implied by:

(26) a10 ± X.

Formula (26) is true because it is identical to (7).

Ã

4.2.2.3 Option values ’Lifted’ and ’LiftedParallel’

The order in which the formulae are generated during an automated proof  is  not always the order

that gives short proofs. For this reason we implemented a simplification procedure that rearranges

the  proof  nodes  in  the  proof–tree.  This  simplification  procedure  is  triggered  by  the  ’{steps |

Lifted}’ option. 

The routine that implements this simplification method parses the proof–tree and tries to move

nodes upwards in the tree (closer to the root). The place where a node is moved to depends on the

formulae used by the inference rule that created the information stored in the node.  Assume, for

example,  that  nodes  N1  and  N2  store  information  about  the  inference  rules  that  generated  the

formulae labeled  +l1/  and  +l2/ ,  respectively.  Also assume that  N1  is  an  ancestor  of  N2 .  Assume,

now, that  the  node  N  stores  information about  the  application  of  an  inference  rule  that  used  the

formulae labeled  +l1/  and  +l2/ ,  N  being  a  descendant  of  N2 .  Then,  the  node  N  will  be  removed

from its current position and inserted as a child of the node N2 . The children of the node N2  will

become the children of the inserted node. We call the operation described above "lifting".
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When proving  a  proposition  or  a  conjecture  the  prover  might come to  the  situation where it

has to  prove a  goal which is a conjunction or  a disjunction of formulae. The routines that  create

and manage the proof tree,  will insert a branching node in the tree, i.e. a node that has one child

for  each  formula  in  the  conjunction/disjunction.  The  prover  will  proceed  to  prove  each  of  the

subgoals, one by one. During this process it may happen that the prover infers formulae that were

already  inferred  on  other  branches  of  the  proof  tree.  The  option  ’{steps  |  LiftedParallel}’
searches  for  such  identical  formulae.  Depending  on  the  formulae  that  were  used  for  inferring

them, the nodes are removed, and only one node is inserted at a higher level in the proof tree. This

’removal and insertion’ operation is done in the same way as described for the ’{steps |Lifted}’

simplification option.  Additionally  for  the  ’LiftedParallel’ simplification procedure,  any informa-

tion  that  refers  to  the  formulae  generated  at  the  removed  nodes  will  be  modified to  refer  to  the

information available in the newly inserted node. 

As a final remark for this subsection we note that, without specifically searching for identical

formulae  on  different  branches  as  the  ’LiftedParallel’ simplification  routine  does,  the  ’Lifted’

simplification lifts these formulae as well, i.e. take them out from the parallel branches.

To  illustrate  this  kind  of  simplification,  we  use  the  proof  which  shows  that  the  congruence

relation defined by ’�’ is transitive. The call for obtaining this proof is:

proof–object  Prove#Proposition#"Equivalence Transitivity"',
using � �Definition#"Congruence Def by LessOrEqual"',

Proposition#"LessOrEqual Transitivity"'�, by � PredicateProver'

The  obtained  proof  is  rather  lengthy and can  be  simplified using the ’steps|Useful’ simplifica-

tion described above:

proof–object  

Transform#proof–object, by � ProofSimplifier, TransformerOptions� �steps � Useful�';

Then, the proof is:

Prove:

(Proposition (Equivalence Transitivity): aaÁa) �
x,y,z

+x a y Â y a z Á x a z/ ,

under the assumptions:

(Definition (Equivalence Def by LessOrEqual): a:��) �
x,y

+x a y :x x � y Â y � x/
,

(Proposition (LessOrEqual Transitivity): ��Á�) �
x,y,z

+x � y Â y � z Á x � z/ .

For proving (Proposition (Equivalence Transitivity): aaÁa) we take all variables arbitrary but 

fixed and prove:

(1) x0 a y0 Â y0 a z0 Á x0 a z0 .

We prove (1) by the deduction rule.

We assume

(2) x0 a y0 Â y0 a z0  
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and show

(3) x0 a z0 .

For proving (3), by the definition (Definition (Equivalence Def by LessOrEqual): a:��), it 

suffices to prove:

(4) x0 � z0 Â z0 � x0 .

The formula (2.1) is expanded by the definition (Definition (Equivalence Def by 

LessOrEqual): a:��) into:

(5) x0 � y0 Â y0 � x0 .

The formula (2.2) is expanded by the definition (Definition (Equivalence Def by 

LessOrEqual): a:��) into:

(6) y0 � z0 Â z0 � y0 .

We prove the individual conjunctive parts of (4):

Proof of (4.1) x0 � z0 :

From (5.1), by (Proposition (LessOrEqual Transitivity): ��Á�), we obtain:

(7) �
z

+y0 � z Á x0 � z/ .

From (6.1), by (7), we obtain:

(12) x0 � z0 .

Formula (4.1) is true because it is identical to (12).

Proof of (4.2) z0 � x0 :

From (6.2), by (Proposition (LessOrEqual Transitivity): ��Á�), we obtain:

(20) �
z

+y0 � z Á z0 � z/ .

From (5.2), by (20), we obtain:

(27) z0 � x0 .

Formula (4.2) is true because it is identical to (27).

Ã

The formulae that the prover derived after the splitting point in the proof above are candidates for

the ’steps|Lifted’ simplification:

Prove:

(Proposition (Equivalence Transitivity): aaÁa) �
x,y,z

+x a y Â y a z Á x a z/ ,

under the assumptions:

(Definition (Equivalence Def by LessOrEqual): a:��) �
x,y

+x a y :x x � y Â y � x/
,

(Proposition (LessOrEqual Transitivity): ��Á�) �
x,y,z

+x � y Â y � z Á x � z/ .

For proving (Proposition (Equivalence Transitivity): aaÁa) we take all variables arbitrary but 

fixed and prove:

(1) x0 a y0 Â y0 a z0 Á x0 a z0 .

We prove (1) by the deduction rule.

We assume

(2) x0 a y0 Â y0 a z0  

and show
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(3) x0 a z0 .

For proving (3), by the definition (Definition (Equivalence Def by LessOrEqual): a:��), it 

suffices to prove:

(4) x0 � z0 Â z0 � x0 .

The formula (2.1) is expanded by the definition (Definition (Equivalence Def by 

LessOrEqual): a:��) into:

(5) x0 � y0 Â y0 � x0 .

From (5.1), by (Proposition (LessOrEqual Transitivity): ��Á�), we obtain:

(7) �
z

+y0 � z Á x0 � z/ .

The formula (2.2) is expanded by the definition (Definition (Equivalence Def by 

LessOrEqual): a:��) into:

(6) y0 � z0 Â z0 � y0 .

From (6.1), by (7), we obtain:

(12) x0 � z0 .

From (6.2), by (Proposition (LessOrEqual Transitivity): ��Á�), we obtain:

(20) �
z

+y0 � z Á z0 � z/ .

From (5.2), by (20), we obtain:

(27) z0 � x0 .

We prove the individual conjunctive parts of (4):

Proof of (4.1) x0 � z0 :

Formula (4.1) is true because it is identical to (12).

Proof of (4.2) z0 � x0 :

Formula (4.2) is true because it is identical to (27).

Ã

4.2.2.4 Option value ’Combined’

The simplification options described above have only dealt with removing unused or re–arranging

the  information  inside  a  proof  object  so  that  the  user  may  get  a  better  grasp  of  the  proof.  The

option  value ’Combine’  will  merge  simpler  steps  into  more  complex ones,  by applying a  set  of

rules that are specific to the particular inferences.

The  rationale  for  this  type  of  simplification is  better  explained  by  an  example.  For  instance,

one  version  of  the  predicate  logic  prover  uses  level–saturation  by  forward  inference  on  ground

formulae  combined  with  universal  formulae.  If  the  set  of  assumptions  contains  the  formulae:

'P[a]', 'Q[b]' and '(� x,y)(P[x] Â Q[y] w R[x,y])', one inference step will produce the intermedi-

ary formula '(� y)(Q[y] w R[a,y])' (which looks less "natural") and another step will produce the

final  result  'R[a,b]'.  By  combining  the  two  inferences  one  obtains  in  one  step  the  final  result

(without showing the intermediary formula). One may ask: why not use such a complex inference

rule  during  the  search  for  the  proof?  We  could  include  such  an  inference  into  the  code  of  the

prover. This will increase the size of the prover which, in turn, makes searching for inferences that

are  applicable  to  such  a  proof  situation  more  time consuming, since  there  would be  more  infer-

Tools for Mathematical Theory Exploration

68



ences to be checked for applicability. We let the developer of the prover decide whether it pays of

to have more inference rules.

One notes that  this type of simplification is dependent  on the particular  prover,  because only

certain types of inferences can be combined in a meaningful way. Since it is not desirable to write

a simplification routine for every particular combination of inferences, we implemented a flexible

and universal  "combining"  routine  which takes  the  specification  of  such combinations in  a  stan-

dard form from the developer of the prover:

�proof step1, proof step2, ..., proof stepn�| �combined step�

In the example above, the simple inference steps are identified by the keyword "ObtainFromBy":

obtain from ground formula ("base") by universal formula ("rule").  The complex inference step is

identified by the keyword "ObtainFromManyBy": obtain from many ground bases by a universal

rule. The specification of the combination is given as:

��¢ObtainFromBy, �base1_, rule_� � �intermediary_��,
�¢ObtainFromBy, �base2_, intermediary_� � �final_���
| �¢ObtainFromManyBy, �base1, base2, rule� � �final��

The  specification  is  given as  a  Mathematica  rewrite  rule,  having  on  the  left–hand  side  a  list  of

inference steps  (to  be  combined)  and  on  the  right–hand  side  the  resulting inference.  Each  infer-

ence is represented as a pair consisting of the keyword corresponding to the inference and another

rule which specifies the formulae involved in the inference: the list  of the formulae used, on the

left–hand side, and the list of resulting formulae, on the right–hand side. The underscores occur-

ring on the left–hand side of the main rule qualify the corresponding names as variables (they can

represent  any formula)  –  this  notation  is  borrowed  from the  syntax of  Mathematica.  The  under-

scores  are  necessary  in  order  to  be  able  to  express  recursive  combination  rules,  which  make

possible to specify, in this example, the use of an arbitrary number of "bases" in the following way:

��¢ObtainFromBy, �bases__, rule_� � �intermediary_��,
�¢ObtainFromBy, �base_, intermediary_� � �final_��� |

�¢ObtainFromManyBy, �bases, base, rule� � �final��

Here,  the  variable  "bases__"  (with  two  underscores)  has  the  meaning  "an  arbitrary  number  of

formulae" (but at least one) – again this notation is borrowed from Mathematica.

In the example below the simplification given by the developer of the prover looks like:

���¢ExpandAssmByDef, �base1_, def1_� � �rule2_��,
�¢ObtainFromBy, �base2_, rule2�, � �base3_,���|

�¢ObtainFromManyBy, �base1, base2, def1� � �base3��,
��¢ObtainFromBy, �base1_, rule1_� � �rule2_��,

�¢ObtainFromBy, �base2_, rule2_� � �final_��� |
�¢ObtainFromManyBy, �base1, base2, rule1� � �final���
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meaning  that  whenever  an  assumption  expanded  by  a  definition,  or  a  formula  inferred  at  some

moment in the proof, is used later to infer another formula we can combine these two steps in one

step.

We take the same proof we used for illustrating the ’steps | Lifted’ simplification.

Transform#proof–object, by � ProofSimplifier,

TransformerOptions� �steps � �Lifted, Combined��'

The  result  of  the  call  follows.  By  using  the  ’Combined’ simplification  routine  formulae  (7)  and

(20) were removed.

Prove:

(Proposition (Equivalence Transitivity): aaÁa) �
x,y,z

+x a y Â y a z Á x a z/ ,

under the assumptions:

(Definition (Equivalence Def by LessOrEqual): a:��) �
x,y

+x a y :x x � y Â y � x/
,

(Proposition (LessOrEqual Transitivity): ��Á�) �
x,y,z

+x � y Â y � z Á x � z/ .

For proving (Proposition (Equivalence Transitivity): aaÁa) we take all variables arbitrary but 

fixed and prove:

(1) x0 a y0 Â y0 a z0 Á x0 a z0 .

We prove (1) by the deduction rule.

We assume

(2) x0 a y0 Â y0 a z0  

and show

(3) x0 a z0 .

For proving (3), by the definition (Definition (Equivalence Def by LessOrEqual): a:��), it 

suffices to prove:

(4) x0 � z0 Â z0 � x0 .

The formula (2.1) is expanded by the definition (Definition (Equivalence Def by 

LessOrEqual): a:��) into:

(5) x0 � y0 Â y0 � x0 .

The formula (2.2) is expanded by the definition (Definition (Equivalence Def by 

LessOrEqual): a:��) into:

(6) y0 � z0 Â z0 � y0 .

From (5.1) and (6.1), by (Proposition (LessOrEqual Transitivity): ��Á�), we obtain:

(12) x0 � z0 .

From (6.2) and (5.2), by (Proposition (LessOrEqual Transitivity): ��Á�), we obtain:

(27) z0 � x0 .

We prove the individual conjunctive parts of (4):

Proof of (4.1) x0 � z0 :

Formula (4.1) is true because it is identical to (12).

Proof of (4.2) z0 � x0 :
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Formula (4.2) is true because it is identical to (27).

Ã

4.2.2.5 Option value ’Essential’

As its  name suggests, the value ’{steps |  Essential}’ option  of  the  proof  simplifier will retain

only  the  most  important  part  of  the  proofs.  Concretely,  it  will  perform  a  simplification  of

branches,  removing  any  pending  and  failing  branches  (’branches|{Proved,  Disproved}’), then

will remove any steps  in the proof  that  are  not  relevant  for  proving  the goal  (’steps |  Useful’)

and will lift the nodes if it is possible (’steps|Lift’). In the end, it will try to merge as many proof

steps as possible  into more complex proving steps using merging rules defined by the user  (’steps

| Combined’). 
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5 5. Focus Windows

5.1 The Problem

From  the  Theorema  theory  exploration  that  covers  the  theory  of  equivalence  relations,  equiva-

lence classes, partitions, and induced relations [Windsteiger:01] we consider the following lemma:

"The  factor  set  of  a  reflexive relation  is  a  non–empty set  of  subsets".  The  mathematical notions

used  to  obtain  a  successful  proof  of  this  lemma are  all  defined  in  terms  of  sets  (where  'X'  is  a

constant). In the Theorema language this is done as follows:

Definition#"is relation", any#R', is–relation#R' :x +R ° XlX/';

Definition%"is reflexive", any#R', is–reflexive#R' :x �
x � X

;x, x? ± R);

Definition%"class", any#x, R', class#R, x' : �a «
a � X

;a, x? ± R!);

Definition%"factor set", any#R', factor–set#R' : �class#R, x' «
x

x ± X!);

Definition%"is subset set", any#P', is–subset–set#P' :x �
p � P

p ° X);

Definition%"is all non empty", any#P', is–all–nonempty#P' :x L
N
MM �

p � P
p � ��\^

]]);

The lemma "The factor set of a reflexive relation is a non–empty set of subsets" can be formulated

in the Theorema language in the following way:

Lemma#"factor set is non empty set of subsets", any#R', +is–relation#R' Â is–reflexive#R'/ Á
+is–all–nonempty#factor–set#R'' Â is–subset–set#factor–set#R''/'

Since all the definitions are given in terms of  set theory, for proving the above lemma we invoke

the set theory prover (described in detail in [Windsteiger:01]).
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Prove#Lemma#"factor set is non empty set of subsets"',
using � ;Definition#"factor set"', Definition#"class"', Definition#"is relation"',

Definition#"is reflexive"', Definition#"is subset set"', Definition#"is all non empty"'?,
by � SetTheoryPCSProver, ProverOptions � �GRWTarget� �"goal", "kb"�,

RWExistentialGoal� True, UseCyclicRules� True, DisableProver � �STC, PND��,
transformBy� ProofSimplifier, TransformerOptions� �branches � Proved, steps � Useful�,
SearchDepth� 50'

Not used: �Definition +is relation/�

By the option mechanism we give the prover some general directions on how to prove the lemma.

Among these directions, we indicate that whenever the goal can be rewritten it should be rewritten

before  any  formula  in  the  knowledge  is  rewritten,  even  when  it  is  an  existentially  quantified

formula.  When  the  proof  is  done,  we  transform  it  by  the  proof  simplifier,  using  the  branches

simplification and the useful steps simplifications. The  simplification process  informs us that the

definition "is relation" was not used in the proving process. The outcome of the ’Prove’ call is:

Prove:

(Lemma (factor set is non empty set of subsets))

�
R

+is–relation#R' Â is–reflexive#R' Á
is–all–nonempty#factor–set#R'' Â is–subset–set#factor–set#R''/

,

under the assumptions:

(Definition (factor set)) �
R

L
N
MMfactor–set#R' : �class#R, x' «

x
x ± X!\

^
]] ,

(Definition (class)) �
R,x

L
N
MMclass#R, x' : �a «

a
a ± X Â ;a, x? ± R!\

^
]] ,

(Definition (is relation)) �
R

+is–relation#R' :x R ° XlX/ ,

(Definition (is reflexive)) �
R

-is–reflexive#R' :x �
x

+x ± X Á ;x, x? ± R/1 ,

(Definition (is subset set)) �
P

L
N
MMis–subset–set#P' :x �

p
+p ± P Á p ° X/\^

]] ,

(Definition (is all non empty)) �
P

L
N
MMis–all–nonempty#P' :x �

p
+p ± P Á p � ��/\^

]] .

Using available computation rules we can simplify the knowledge base:

Formula (Definition (is all non empty)) simplifies to

(1) �
P

L
N
MMis–all–nonempty#P' :x �

p
+p ± P Á �� � p/\^

]] ,

We assume

(2) is–relation#R0' Â is–reflexive#R0' ,

and show

(3) is–all–nonempty#factor–set#R0'' Â is–subset–set#factor–set#R0'' .

We prove the individual conjunctive parts of (3):

Proof of (3.1) is–all–nonempty#factor–set#R0'' :

Formula (3.1), using (Definition (factor set)), is implied by:

is–all–nonempty%�class#R0, x' «
x

x ± X!) ,

which, using (Definition (class)), is implied by:
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is–all–nonempty%��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X!) ,

which, using (1), is implied by:

(4) �
p

L

N

MMMMMMMp ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! Á �� � p
\

^

]]]]]]] .

We assume

(5) p0 ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! ,

and show

(6) �� � p0 .

We can choose an appropriate value in (5) such that

(7) a10 ± X,

(8) p0  �a «
a

a ± X Â ;a, a10? ± R0! .

Formula (6) means that we have to show that

(15) �
p1

+p1 ± p0/ .

Formula (15), using (8), is implied by:

(16) �
p1

L
N
MMp1 ± �a «

a
a ± X Â ;a, a10? ± R0!\

^
]] .

In order to prove (16) we have to show:

(17) �
p1

+p1 ± X Â ;p1, a10? ± R0/ .

Now, let p1 : a10 . Thus, for proving (17) it is sufficient to prove:

(18) a10 ± X Â ;a10, a10? ± R0 .

We prove the individual conjunctive parts of (18):

Proof of (18.1) a10 ± X:

Formula (18.1) is true because it is identical to (7).

Proof of (18.2) ;a10, a10? ± R0 :

Formula (2.2), by (Definition (is reflexive)), implies:

(27) �
x

+x ± X Á ;x, x? ± R0/ .

Formula (18.2), using (27), is implied by:

(28) a10 ± X.

Formula (28) is true because it is identical to (7).

Proof of (3.2) is–subset–set#factor–set#R0'' :

Formula (3.2), using (Definition (factor set)), is implied by:

is–subset–set%�class#R0, x' «
x

x ± X!) ,

which, using (Definition (class)), is implied by:

is–subset–set%��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X!) ,

which, using (Definition (is subset set)), is implied by:

(29) �
p

L

N

MMMMMMMp ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! Á p ° X
\

^

]]]]]]] .

We assume
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(30) p1 ± ��a «
a

a ± X Â ;a, x? ± R0!
§§§§§§§§
x

x ± X! ,

and show

(31) p1 ° X.

We can choose an appropriate value in (30) such that

(32) a80 ± X,

(33) p1  �a «
a

a ± X Â ;a, a80? ± R0! .

For proving (31) we choose

(40) p20 ± p1 ,

and show:

(41) p20 ± X.

Formula (40), by (33), implies:

(44) p20 ± �a «
a

a ± X Â ;a, a80? ± R0! .

From (44) we can infer

(45) p20 ± X Ï ;p20, a80? ± R0 .

Formula (41) is true because it is identical to (45.1).

Ã

Looking  at  proofs  like  the  one  above,  we  can  make  the  following comments: In  each  step  of  a

mathematical proof,  a  new formula is  derived from formulae appearing in earlier  portions  of the

text using an inference rule.  Typically, in long proofs,  the formulae used in a proof  step occur a

couple of lines, paragraphs, or even pages distant from the place in the text at which the proof step

occurs. In the proof above, for example, formula (27) is obtained using (also) the definition of the

factor  set  which occurred  right  at  the  beginning of  the  proof.  Reference  to  the  used  formulae  is

traditionally  done  by  labels  and  the  reader  has  to  jump  back  and  forth  between  the  formulae

referenced and the proof step in which they are needed. This is unpleasant and makes understand-

ing of proofs quite difficult even if the proofs are nicely structured and well presented.

From the outset,  in Theorema  we tried  to  emphasize attractive  proof  presentation.  Theorema

proofs  are  designed  to  resemble  proofs  generated  by  humans,  i.e.  they  contain  formulae  and

explanatory text in English. In addition, Theorema provides various tools for helping the reader to

browse  the  proofs:  nested  brackets  at  the  right–hand  margin  make  it  possible  to  contract  entire

sub–proofs  to  just  one  line;  various  color  codes  distinguish  the  (temporary)  proof  goals  from

formulae in the (temporary) knowledge base; links to labeled formulae are realized as hyperlinks

that display the formula referenced in a small auxiliary window; etc. Using hyperlinks, a reader of

Theorema  proofs can avoid back and forth jumps in the proof, in order to understand the validity

of  a  specific  step.  Still,  reading  and  understanding  linear  proofs  is  difficult  even  for  proofs

generated by the typical Theorema provers.

There are few automated proving assistants that provide  tools for studying proofs (one exam-

ple  is  the  Omega system with its  interface,  L:ui  [Benzmueller&al:97,  Siekmann&al:99]).  How-

ever, even those have the problem described above, that one may have to jump to various formu-
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lae in the proof–tree in order to check or understand the validity of a specific step. Focus windows

provide a means to overcome this problem. 

The technique we will describe below can be can be also viewed as a systematic extension of

the  idea  of  hyperlink  labels  in  proofs.  It  can  be  implemented  for  any  proving  assistant  system

using  proofs  as  formal  objects,  namely,  a  data  structure  which  contains,  for  each  proof  step,

information on which formulae are used and which formulae are produced in the given step. This

means that  also  systems that  do  only  proof  checking (like  Mizar  [Miz])  could  make  use  of  this

technique. 

5.2 The Main Idea

The idea of focus windows was introduced in [Buchberger:00a]:  Starting from the proof objects,

one analyzes, in each of its proof steps, which formulae are used and which ones are produced in

the  given  step.  One  then  composes  a  window containing  exactly  these  formulae  for  each  proof

step.  The  windows  also  contain  buttons  for  moving  to  the  next  window in  the  proof.  In  proof

situations  that  branch  to  two  or  more  proof  situations  the  subsequent  windows are  displayed  in

contracted form and the user can decide which one to open next. In addition, each focus window

contains  a  small  simplified  image  of  the  entire  proof–tree  so  that  the  user  can  also  jump  to  a

randomly chosen proof situation in the proof–tree.

The  data  structure  of  Theorema  proof  objects  was  carefully  designed  in  order  to  give  easy

access  to  the  formulae  relevant  in  each  proof  step.  Also,  the  data  structure  for  Theorema  proof

objects  leaves  some  slots  open  for  adding  additional  information  which  is  relevant  for  certain

prove  methods  or  certain  proof  presentation  methods.  We  recall  here  that  a  proof  situation  in  a

proof generated by one of the Theorema provers consists of the current proof goal and the current

knowledge base (definitions, axioms, known theorems, and temporary assumptions). In one proof

step,  applying an  inference  will  generate  new formulae in  the  knowledge base  or  a  new goal  or

both. In one proof step,  typically,  a prover uses only a few formulae in the knowledge base. We

will call them "relevant formulae". 

In  a  first  phase,  for  the  proof  step  being  inspected,  we  display  in  the  corresponding  focus

window the current goal and the relevant formulae. We do not immediately show the result of the

next proof  step but  give the user time to study and understand the proof  situation and think of a

possible follow–up. Upon clicking, we display in addition to the current information in the focus

window, the  new goal  and/or  the  new formulae  in  the  knowledge base.  When  clicking the  next

button, we then display the focus window for the next proof situation (next proof step).
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Another way of describing the focus window technique is to think about a long proof written

on a sequence of blackboards. Now, for reading and understanding the proof, you equip the reader

with a magic glass (a "focus glass") that, in each proof step, concentrates all the relevant formulae

on one blackboard and erases all the other formulae so that the reader,  in each proof step, has all

the relevant information in front of his eyes and is not distracted by any irrelevant material.

Note that this technique does not depend on the particular inference rule but on its application

results.  For  example,  if  polynomial  simplification  or  even  advanced  techniques  like  cylindric

algebraic  decomposition  or  symbolic  summation  are  black–box  inference  rules  in  the  prover

applied  to  a particular  proof  problem then, for  each proof  step,  the corresponding  focus window

will only show the proof goal and the relevant formulae before applying the special inference rule

and  the  formulae  produced  by  this  inference  rule  and  will  not  show  any  internal  details  of  the

execution of the inference rule. 

5.3 Implementation of Focus Windows

The proof  presentation technique shortly described  above should not be difficult to implement in

any  existing  automated  prover.  The  main  pre–requisite  is  that  the  data  structure  for  the  proof

object,  for  each  proof  step,  contains  sufficient  information for  extracting  the  formulae  used  and

inferred in the particular  step. The Focus Windows technique can then be described,  roughly, by

the following pseudo–algorithm:

Step 1: phase = initial;

current_position = root_position;

ShowWindow[phase, current_position, proof_object];

Step 2: while user_action is not done

   if phase is initial or transformation

   then phase = attention;

   else phase = transformation;

   end if;

   current_position = 

   DetermineCurrentPosition[current_position,  

        user_action, proof_object];

   ShowWindow[phase, current_position, proof_object];

end while;

Step 3: stop.

Note that  the value of  'proof_object'  does not  change during the execution of the algorithm: The

proof  object  is  the  essential  input  of  the  algorithm. The  variables  used  in  this  pseudo–algorithm

are  'phase',  'current_position'  and  'user_action'.  The  variable  'phase'  may have the values 'initial',

'attention',  or 'transformation '.  The 'current_position' points to the current proof step in the proof

object  is.  The  values  'current_position'  may  depend  on  the  exact  data  structure  of  the  proof
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objects.  We  assume  here  that  the  proof  object  is  in  a  tree–like  form  but  the  algorithm  may be

easily adapted to any other data structure. The 'user_action' variable is needed to take in the user

actions (button clicks, keys on the keyboard, words typed in at the prompter, etc.). The constants

appearing in the algorithm are in italics. 

The core of the algorithm is the ShowWindow function. At the very beginning, it is called with

the  initializing  parameters  initial  and  root_position.  In  the  initial  phase,  we  generate  the  initial

focus window that contains the goal  that has to  be proved and the available knowledge (axioms,

definitions, lemmata, temporary assumptions, etc.). When the user takes an action three main steps

are executed: 

1. Depending on the actual phase, the type of the next phase is set. 

2. Depending on the 'current_position' and the 'user_action', the algorithm determines the

position in the proof object of the next proof step on which we want to focus on (Deter-

mineCurrentPosition).

3. The focus window corresponding to the new 'current_position' and 'phase' is shown.

The  front–end  of  Mathematica  provides  convenient  programming  tools  for  active  objects  that,

basically,  allow  to  apply  the  usual  Mathematica  programming  style  also  for  programming

man–machine interfaces. We use this facility for entering the information in the action buttons and

the  schematic  proof–tree  representation  into  the  ShowWindow  function.  We  give  some  more

details about this below.

The user actions are taken in via the buttons 'Next', 'Previous' and 'Done' in the navigation area

and the schematic proof–tree  presentation whose nodes are,  in fact,  also realized as buttons. The

schematic proof–tree representation is a static object in the sense that the data attached to its node

buttons  do  not  change  during  the  presentation  of  the  proof  by  the  focus  window  viewer.   In

contrast,  the  buttons  'Next'  and  'Previous'  are  dynamic objects,  whose information is  used  in  the

following way:

Suppose  that  the  focus  window is  presenting  the  Attention  Window  of  some  node  n  of  the

proof–tree.  Then the data attached to  the 'Previous' button  is  a  link to  the parent  node  of  n.  The

data attached to the 'Next' button is a link to the node n because when pressing it we want to bring

up the Transformation Window of the same node n. 

Suppose  that  the focus window is  presenting the Transformation Window of  some node n  of

the proof–tree. Note that such a window may have several branches. Then the data attached to the

'Previous' button in each of the branches is a link to the node n because when pressing it we want

to  bring  up  the Attention Window of  the same node n.  The  data  attached  to  the 'Next'  button in

each of the branches is a link to the corresponding child node of n.
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5.4 Using Focus Windows

We will present now the focus windows technique using the example we gave in the beginning of

this chapter. We recall how a typical call of a Theorema prover looks like:

Prove #Lemma#"Goal"', using � KnowledgeBase,

by � SomeProver, ProverOptions � �options for the prover�,
showBy � SomeDisplayer'

The  user  of  Theorema  can  control  both  the  work of  ’SomeProver’ by setting the  ’ProverOptions’

and also the way the proof is presented by setting the ’showBy’ options. By default, Theorema will

present the proof  in a  new Mathematica  notebook  as  a  linear  proof  text.  This  happens when the

’showBy’ option  is  not  given in the ’Prove’ call.  By setting  ’showBy �  FocusWindow’ the focus

window display method will be invoked. For the example given at the beginning of the chapter the

following command generates the focus window presentation of the same proof:

Prove#Lemma#"factor set is non empty set of subsets"', using � ; ...�"user given knowledge" ... ?,
by � SetTheoryPCSProver, showBy � FocusWindow +
 , other options 
/',

We mentioned earlier, that the focus window method presents proofs in a step–wise manner. More

specifically, each step of the proof will be shown to the user in two phases: the attention phase and

the transformation phase with a corresponding Attention Window and a Transformation Window.

Each of these windows has

Ê a "goal area" in which the current goals are shown, 

Ê an "assumptions area" in which the "relevant" assumptions are shown, 

Ê a "proof–tree  area" in which the entire proof–tree  is displayed in a schematic, simplified

form,

Ê an area that presents all the assumptions that are available (the "all assumptions area"), 

Ê and a "navigation area" that allows the user navigate in the proof by clicking on various

buttons.

Note that the focus windows tool starts from existing proof objects and just implements a particu-

lar  way of  presenting   proof  objects.  The  focus  window tool  is  not  a  prove  method!  The  focus

windows technique does not  assert  that  each of  the proof  steps should be  "easily" verifiable but,

rather,  it  just  gives a method to  keep track of the relevant information used in each proof  step a

particular  prover  generates.  What  is  considered  to  be  a  proof  step  is  determined by  the  proving

algorithm.
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When calling the ’Prove’ command with the ’showBy’ option set to ’FocusWindows’ the user is,

firstly,  faced  with  a  window that  contains  the  Initial  Proof  Situation,  i.e.  the  goal  that  is  to  be

proved and the user given knowledge. In our example:

Prove#Lemma#"factor set is non empty set of subsets"',
using � ;Definition#"factor set"', Definition#"class"', Definition#"is relation"',

Definition#"is reflexive"', Definition#"is subset set"', Definition#"is all non empty"'?,
by � SetTheoryPCSProver, showBy � FocusWindows ,

transformBy � ProofSimplifier, TransformerOptions � �
branches � Proved, steps � Useful� , ProverOptions �

�
GRWTarget � �

"goal", "kb" � , UseCyclicRules � True, RWExistentialGoal � True, DisableProver � �
STC, PND � � , SearchDepth � 50'

and the user sees now a window as the one below (note the five areas we described earlier):

Figure 5.1: Initial Proof Situation.

After pressing the ’Next’ button a few times, we are faced with an Attention Window (Figure 5.2)

that  shows  us  the  current  goal  formula  (2.1).  The  assumption  area  shows  the  definitions  of  the

functions  ’class’ and  'factor–set'  and  of  the  predicate  'is–all–nonempty'.  The  area  containing  the

schematic  representation  of  the  proof–tree  and  the  area  containing  all  the  assumptions  that  are

currently available are shown in closed cells. If the user is interested to see the contents of these

cells it has to double–click on the respective cell  brackets.  (The organization of notebooks using

cells is a standard Mathematica feature, see [Wolfram:03]). Note that, following the basic philoso-

phy of  the  focus  windows technique,  the  user  will  normally not  want to  see  all  assumptions but

only the ones that are relevant for the current proof step, which are exactly the ones shown in the

assumptions area. 
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Figure 5.2: Attention Window.

A  click  on  the  ’Next’ button  will  bring  up  the  Transformation  Window  like  in  Figure  5.3.  The

inference step applied in the current proof step rewrote the goal using the three definitions in the

assumptions area -  and no other formulae of the current knowledge base! The result of rewriting

the goal is now displayed as formula (3) under the heading ’New goal:’. Formula (2.1)  is now an

’Old goal’. No new assumptions were inferred in this step. Therefore, in this example, the assump-

tions area does not contain any new formulae.

Figure 5.3 Transformation window.

Pressing  the  ’Previous’ button  now  will  take  the  user  back  to  the  Attention  Window.  Clicking

’Previous’ again,  the  user  will  see  the  Transformation  Window  of  the  parent  proof  step  in  the

proof–tree.  One may go back and forth as many times as it  needs to   understand the proof  com-
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pletely.  Here,  by  "understanding"  we  mean  "verifying  the  correctness"  of  each  proof  step  and

"verifying the completeness of the sequence of proof steps".

Figure 5.4:  Attention Window before a branching node.

Now let us look closer at the Attention Window in Figure 5.4. The current goal – formula (2)

– is  a conjunction of two statements, each of them needs to be proved.  Therefore,  the proof will

split into two branches. The Transformation Window that comes up after clicking 'Next' contains

now two closed cells, one for each sub–proof. Each of the cells contains its goal area, assumption

area,  navigation  button  area  and  all–assumption  area.  The  user  can  continue  on  the  branch  she

wishes by clicking on the 'Next' button of the corresponding branch. There is, however, only one

proof–tree area in this window. Figure 5.5.  presents this window, where we have opened the cell

corresponding to the first branch of the proof and the cell containing the schematic representation

of the proof–tree. The focused node, marked with a square, has two sub–trees which correspond to

the two sub–proofs that follow.
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Figure 5.5: Transformation Window. First branch cell and schematic tree cells are open.

The  simplified  proof  representation  in  the  proof–tree  area  is  not  only  a  graphical  representation

but  it  also  has  some  functionality.  The  nodes  of  the  simplified  tree  representation  are  in

one–to–one  correspondence  with  the  nodes  of  the  proof  object.  The  node  corresponding  to  the

proof  step  that  is  currently  seen  in  either  the  Attention  or  the  Transformation  Window  is

high–lighted. Also, clicking any of these nodes will cause the corresponding focus window to be

displayed,  allowing  the  user  to  read  the  proof  in  the  order  she  prefers.  (In  contrast,  using  the

buttons  in  the  navigation,  the  proof  can  be  read  "forward"  and  "backward"  in  the  sequence

generated by the prover.)

The  tool  can,  of  course,  be  applied  also  to  incorrect  proofs.  In  particular  it  can  be  used  to

check the proofs generated by theorem provers that are under construction and not yet fully tested.

Checking the proofs  by the focus window technique makes it  much easier  to detect  errors  in the

provers.  Thus,  the  focus  window tool  is  also  a  useful research instrument for  people  working in

the design and implementation of automated theorem provers.

Starting  the  Focus  Windows presentation  style  with support  for  checking provers  that  are  in

the implementation phase is done by using the 'FocusDebug' option of the 'FocusWindows' proof

displayer. More specifically:

Prove#Lemma#"factor set is non empty set of subsets"',
using � ; ... user given knowledge ... ?, by � SetTheoryPCSProver,

showBy� FocusWindows , ShowOptions � �FocusDebug � True� +
, other options 
/'

Now,  the  windows  in  the  Focus  Windows  presentation  will  have  four  additional  buttons  in  the

lower part. These buttons allow the user to inspect parts of the underlying proof object. Since this
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option  is  meant  for  the  use  of  the  Theorema  developers,  the  information  shown when  pressing

these  buttons  is  in  raw,  Theorema  internal  format.  The  four  buttons  will  display  the  Theorema

internal form of  the formulae (goals and assumptions), the local  context that the prover  stored in

the  proof  object  while  proving,  and  information  about  the  inference  rule  that  was  applied  at  a

certain step. Figure 5.6. presents a focus window with the additional four buttons, and Figure 5.7.

presents the information that is displayed when pressing these buttons.

Figure 5.6: Attention Window with buttons for prover–check support.

Figure 5.7: Proof step information in Theorema internal  form.
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The proof information shown by the window in Figure 5.7. represents the proof information that is

stored in the proof object for the proof step on which we put the focus: the name of the inference

rule that  was applied  ("GoalRewriting"),  the  labels  of  the formulae used,  the formulae that  were

generated at this step, and, for this proof step, it shows how the goal formula (2.1) is transformed

by sequentially applying the definitions of ’factor set’, ’class’, and at last ’all non empty’. (Different

provers may store different proof information in the proof object, depending on the inference rules

they apply.)

Comparing  the  Focus  Windows  presentation  style  with  the  linear  proof  presentation  of  the

same  proof  we  made  the  observation  that  for  small,  one–page  proofs  focus  windows  viewing

technique  generates  presentation  overhead  that  distracts  the  reader  from  the  proof  itself,  rather

than  help  him.  For  longer  proofs,  though,  it  increases  the  possibility  of  verifying  the  proofs

drastically. We also observed that linear presentations are helpful for obtaining a quick overview

on  the  overall  flow  of  the  proof  whereas  focus  window  presentations  support  the  process  of

verifying  proofs.  Therefore,  naturally,  we  offer  the  reader  of  Theorema  proofs  a  possibility  to

combine  these  two  styles.  As  a  result,  when  clicking  a  formula  label  in  a  linear  proof  text,  the

focus window will open showing the relevant formulae of the proof step in which the formula was

generated.
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6 6. A Literature Survey

We will present, now, a review of the existing research that is relevant for the work presented

in the previous chapters.

6.1 Label Management and MKM Systems

It  seems that  label  management in the sense specified in Chapter  2  is  not  an explicit  goal  in the

current  Mathematical  Knowledge  Management  systems.  However,  work  on  annotation  of

(collections  of)  formulae  and  formula  editing  has  an  overlap  with  and  relevance  for  the  work

presented here. We give a review on the pertinent papers.

Starting from the display of  formulae as  graphics in internet document, working W3C issued

an MathML recommendation,  [MathML],  for  displaying and  communicating formulae  by means

different from images. Being an application  of XML, MathML benefits of the existing tools  that

manipulate XML files.  Though it  does offer  some semantics of  the symbols in the mathematical

formulae,  the  set  of  these  symbols  is  too  restricted  when  compared  to  those  used  by  working

mathematicians. To  ameliorate  this  situation  projects  like  OpenMath  [Caprotti&Carlisle:99]  and

OMDoc [Kohlhase:00] emerged. The OpenMath standard concentrates on representing mathemati-

cal  expressions  together  with their  semantics,  allowing them to  be  exchanged between computer

programs, stored in databases, or published on the world wide web. At a first glance, one can view

OpenMath as extending the MathML capabilities by using "content dictionaries" where mathemati-

cal symbols are defined syntactically and semantically. OMDoc is an extension of OpenMath and

MathML,  adding  capabilities  of  describing  the  mathematical  context  of  the  OpenMath  objects

used.

A drawback of the standards mentioned above is that the coherence of the different documents

(e.g. content dictionaries) is not automatically checked. This has to be done by a human. This task

can be rather difficult because the representation formats are not human oriented. This representa-

tion confronts us with another issue, which we intend to address in this paper: publishing mathemat-

ics using these representations is not attractive for the everyday mathematician. There is ongoing

work  to  improve  this  state  of  facts,  like  the  work  described  in  [Goguadze&Palomo:03]  and  the

one in [Kohlhase:04].
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Furthermore,  to  our  knowledge  at  the  time  of  writing,  systems  that  use  and/or  manage  big

collection  of  documents  with  mathematical  content  do  not  make  use  of  a  document  editing

environment like the one we are about to describe. Within most of the proving systems, the users

are typing their documents in an Emacs–based editor or something similar, see for example, Mizar

[Miz],  HOL  [Gordon&Melham:93,  Hol:4],  CoQ  [CoQ,  Bertot&Bertot:96],  PVS  [Owre&al:98].

Where  translators  are  provided,  the  files  can  be  stored,  later,  in  LATEX,  MathML or  OpenMath

formats.  In  this  form,  documents  produced  by  proving  assistants  can  be  included  in  libraries  of

digital  mathematics like  HELM [Helm]  and  MBase  [Kohlhase&Franke:01].  (Helm includes  part

of  the  libraries  of  the  proving  assistants  Nuprl  [Constable&al:86]  and  CoQ  [CoQ],  MBase

includes  libraries  from  Omega  [Benzmueller&al:97]  and  TPS  [Andrews&al:00]).  Systems  that

concentrate  on  representing  and  publishing  mathematics  (on  the  web)  make  use  of  document

translators and formulae editing tools  that translate formulae and documents to different formats.

For example, the JOME OpenMath Editor [Jome] creates and manipulates OpenMath objects, and

within ActiveMath [Libbrecht&al:01], jEditOQMath is a package of tools for editing and manag-

ing documents in OMDoc format [jEdit].

6.2 Interactive Proving Systems

In  general  terms it  is  aggreed  that  mechanized theorem proving  is  about  using computers  to

find a  formal proof  [Aitken&al:98,  Moten:98].  In  the  algorithmic tradition,  mechanized proving

means  employing  a  computer  program  to  determine  automatically  the  truth  of  a  proposition  by

means  of  mathematically  justified  decision  procedures  or  some  more  heuristic  methods

[Aitken&al:98].

A rough classification of  theorem provers  divides  them in automatic provers,  where close  to

no human assistance is needed, and interactive provers, which require human assistance in develop-

ing  the  proof  [Moten:98].  An  extensive  list  of  both  automatic  and  interactive  provers  can  be

inspected  at  [ATPs:99].  Though  the  last  update  was made mid 1999,  the  list  broadly  covers  the

available systems and tools in the area of mechanized reasoning at the time of writing this thesis.

A  concise  historical  overview of  interactive  systems is  given  in  [Nipkow&Reif:98].  Among the

first  interactive  theorem  provers  developed  are  Automath  [deBruijn:80]  and  Stanford  LCF

[Milner:72].  The  LCF  paradigm  described  by  Milner  was  an  ancestor  of  Endinburgh  LCF

[Gordon&al:79],  Cambridge  LCF  [Paulson:87]  and  other  currenty  day  interactive  theorem

provers.  Among  them  Isabelle  [Paulson:94],  HOL  [Gordon&Melham:93],  CoQ  [CoQ],  Nuprl

[Constable&al:86]  (for  Constructive  Type  Theory).  In  the  1990s  new  systems,  using  different

kinds  of  logics,  have  been  implemented:  PVS  [Owre&al:98],  ACL2  [Kaufmann&Moore:97],

Omega  [Benzmueller&al:97],  IMPS  [Farmer&al:92,  Farmer&al:96],  LEGO  [Luo&Pollack:92].

We will briefly describe now some of the above mentioned interactive provers; for descriptions of

the others we direct the reader to the already mentioned references.

The  HOL  System,  now  at  version  4,  is  an  environment  for  interactive  theorem  proving  in

higher–order logic. Its most outstanding feature is its high degree of programmability through the
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meta–language ML [Hol:4].  The system has a wide variety of uses from formalizing pure mathe-

matics  to  verification  of  industrial  hardware.  In  his  PhD  thesis,  Harrison  [Harrison:98]  has

formalized and integrated proving over real numbers into HOL.

Nuprl  is  a  computer  system which supports  the  interactive  creation  of  proofs,  formulas,  and

terms in a formal theory of mathematics [Constable&al:86]. Based on Martin Löf type theory, it is

a system for  implementing mathematics. The theories expressed in the Nuprl  language are sensi-

tive  to  the  computational  meaning of  terms,  assertions  and  proofs,  and  the system can  carry  out

the actions used to define that computational meaning.

OMEGA  is an interactive proof development system. The system has two main components: a

proof  planner,  and  an  integrated  collection  of  tools  for  formulating problems,  proving  subprob-

lems,  and  proof  presentation  [Benzmueller&al:97].  L:ui  is  an  interface  for  Omega which com-

bines  features  for  graphical  display  of  proofs  as  a  graph,  hypertext  facilities  for  term browsing,

proof and proof plan presentation in natural language. It also has an editor for adding and maintain-

ing the knowledge base [Siekmann&al:99].

XBarnacle  is  a  flexible  graphical  user  interface  to  the  Clam  and  OClam  proof  planners

[Bundy&al:90, Richardson&al:98]. It allows the user to interact with the provers using a graphical

hierarchical  tree  display  [Lowe:97].  Among the  interactions  accepted  are  selecting  nodes  in  the

tree, cutting parts of the tree, displaying proof status and proof situations.

CoQ is a proof assistant for a Logical Framework known as the Calculus of Inductive Construc-

tions  [Bertot&Castéran:04].  It  allows  the  interactive  construction  of  formal  proofs,  and  also  the

manipulation of  functional  programs.  A variety  of  user  interfaces  are  provided  for  it:  CoqIde,  a

graphical user interface based on gtk; Pcoq,  a graphical user–interface in Java; CtCoq developed

following a general approach for building user–interfaces for theorem provers, and ProofGeneral.

Lately, an integration of Coq into TeXmacs is also available (see [CoQ].)

Proof  General  is,  actually,  more  than  an  interface  for  CoQ.  It  is  a  generic  tool  for  proof

development  that  provides  a  uniform  interface  and  interaction  mechanism  for  different  proof

assistants  [Aspinall:00].  ProofGeneral  is  oriented  towards  interactive  provers  where  the

user–system interaction consists of a dialog via a command interpreter (shell). It can be used with

LEGO, Isabelle, Coq, and, experimentally, with HOL, ACL2 and OClam.

6.3 Proof Simplification

In  [Vasaru–Dupré:00,  Chapter  7]  the  author  describes  a  technique  by  which  the  user  could

determine the amount of proof details generated and shown. The option 'presentation | <value>'

of the 'Prove' command controlled the natural language representation of a proof in a very similar

way with the 'branches' simplification [Chapter 4, Section 4.2.1]. 
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Proof  simplification  can  be,  also,  explained  as  follows:  given  a  proof  object  in  an  internal

form, we process  it  in  certain  ways by moving around,  cutting,  and  combining proof  steps.  The

result is then presented to the user in a natural language style. The natural language presentation is

generated from the information existing in the proof object.

Presenting  proofs  in  natural  language  is  a  subject  of  interest  in  other  systems,  too.  In

[Coscoy:97]  the  author  describes  a  procedure  that  annotates  CoQ  proofs  and  then  generates  an

english text of the proof. A verbalization of Nuprl proofs, described in [Holland–Minkely&al:99],

uses a language generator  that has two components: a content planner which selects the informa-

tion that should be included in the text, and a linguistinc component that maps concepts to words

and  builds  sentences.  Both  systems,  though,  do  not  perform  any  proof  transformations,  but

directly generate the natural language presentation.  The presentations cannot be done at different

levels of detail.

In  PROVERB  [Huang&Fiedler:96],  the  proof  is  first  transformed  to  an  adequate  level  of

abstraction  in which certain  sequences of low–level proof  steps are  replaced  by one higher level

proof step. The abstracted  proof is, then, processed and a natural language presentation is gener-

ated.  PROVERB  is  embedded  in  the  environment  of  the  interactive  prover  Omega

[Benzmueller&al:97].  Proof  presentations  generated  by PROVERB  cannot  be  depicted  at  differ-

ent levels of detail.

Drawing  on  results  from  cognitive  sciences,  Fiedler  has  developed  an  interactive  proof

explanation  system,  P.rex  [Fiedler:01a,  Fiedler:01b].  The  system  adapts  its  explanations  to  the

level of the user by flexible reactions to his questions or requests. It is provided that the proofs are

represented  such  that  various  levels  of  abstraction  (i.e.  detail)  are  made  explicit.  P.rex  can  be

connected  with  different  theorem  provers  and  it  has  been  used  to  present  Omega

[Benzmueller&al:97] and Twelfe [Pfenning&Schürmann:99] proofs.

In  [Alexoudi&al:04]  Alexoudi  desribes  ClamNL,  a  system  that  produces  natural  language

presentation  at  various  levels  of  detail  of  the  inductive  proofs  generated  by  the  Clam  proof

planner.  ClamNL  has  three  components:  an  abstraction  controller,  a  structure  planner,  and  a

natural language generator. The abstraction controller enables the user–proof planner interaction. 

6.4 Focus Windows

To our knowledge, the focus windows proof presentation tecnhinque has not been explored in the

existing  literature.  We  emphasise,  again,  that  the  focus  windows  tool,  as  described  and  imple-

mented  by  us,  is  not  a  proof  method:  the  proofs  presented  using  focus  windows  are  already

generated by the provers of the Theorema system. 

A reasoning method that  makes use of  windows with a focus set on formulae is presented  in

[Grundy:96].  Grundy generalizes the window inference system shown in [Robinson&Staples:93].
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A window inference system, as  proposed  by Robinson and Staples,  allows users to  transform an

expression by restricting attention to a subexpression and transforming it, leaving the surroundings

of the subexpression unchanged. The reasoning process, in this case, is conducted with a stack of

windows, where each window has a focus (with the expression to be transformed), a set of formu-

lae  that  are  assumed  in  the  context  of  the  window,  and  a  relation  between  the  focus  and  any

expression it may be transformed to, relation that has to be preserved. The objective of a proof in

this  style  is  to  transform the  focus  of  the  window on  the  bottom  of  the  stack  until  it  has  some

desired property. [Grundy:96]. A window inference tool has been implemented in the frame of the

HOL system [Grundy:91].
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